梁越敢,方 濤,李 偉,鮑 靜,劉 博,雒沛文,張 瀏,袁步先
?
磁性龍蝦殼吸附去除水中磷的特性
梁越敢1*,方 濤1,李 偉1,鮑 靜1,劉 博1,雒沛文1,張 瀏2,袁步先2
(1.安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,農(nóng)田生態(tài)保育與污染防控安徽省重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230036;2.安徽省環(huán)境科學(xué)研究院,安徽 合肥 230071)
以四氧化三鐵修飾的龍蝦殼為吸附劑,研究其對(duì)水中磷的吸附特性.結(jié)果顯示:4g/L磁性龍蝦殼吸附除磷效率最佳,低濃度的含磷廢水(£20mg/L)的吸附除磷效率達(dá)到91.6%以上,磁性龍蝦殼吸附除磷適宜的pH值范圍廣,共存離子(Cl-、SO42-、NO3-和HCO3-)對(duì)磁性龍蝦殼吸附除磷的影響很小,其中HCO3-有微弱的抑制效果.Freundlich方程能很好地描述磷在磁性龍蝦殼上的吸附行為,吸附過程很好地遵循準(zhǔn)二級(jí)動(dòng)力學(xué)模型.熱力學(xué)分析表明磁性龍蝦殼對(duì)磷的吸附過程是自發(fā)的.X射線衍射和傅里葉紅外光譜分析進(jìn)一步表明,磁性龍蝦殼吸附除磷的主要機(jī)制是配位交換、靜電作用和表面沉淀.
磁性龍蝦殼;吸附;除磷;機(jī)理
磷是水體富營養(yǎng)化的限制性因素[1].目前除磷技術(shù)主要有生物法、化學(xué)沉淀法和吸附法等[2].其中吸附法具有除磷效率高、速度快和操作方便等優(yōu)點(diǎn)[3-4].尋找廉價(jià)高效的吸附劑成為研究的重點(diǎn).傳統(tǒng)吸附劑難以回收,制備成本高[2].近年來,大量研究通過鐵氧化物改性制備磁性吸附劑,可以提升吸附劑性能[3-5].萬京京等[5]以Mg/Al類水滑石為原料,制備Fe(Ⅲ)摻雜的Mg/Al-LDO吸附劑,發(fā)現(xiàn)摻雜Fe(Ⅲ)的吸附材料除磷效率達(dá)97.3%.
我國龍蝦年產(chǎn)量一百多萬t,產(chǎn)生的蝦殼嚴(yán)重污染環(huán)境[6].目前僅有少量用于制備幾丁質(zhì)、甲殼素和聚多糖等,但存在處理費(fèi)用高、酸堿藥劑量大、廢水產(chǎn)生量大等缺點(diǎn)[7],迫切需要尋求新的龍蝦殼資源化途徑.干蝦殼中含有大量的礦物質(zhì),主要是碳酸鈣(約40%),其次是甲殼素(約20%~25%),其余的是少量蛋白質(zhì)、脂肪、蝦紅素和蝦黃素等[8].甲殼素具有良好吸附性能,可用于吸附去除水中的污染物[9].常秀蓮等[8]利用蝦殼吸附除鎘,在初始鎘離子濃度50~1000mg/L時(shí)的平衡吸附量達(dá)到112.36mg/g.季小洋等[10]以廢棄蝦殼為原料,高溫活化制備生物吸附材料,研究除六價(jià)鉻的吸附熱力學(xué).但是將龍蝦殼制備成吸附劑除磷,以及制備磁性吸附劑回收磷的研究還未見報(bào)道.為此,本文選擇龍蝦殼為研究材料,通過負(fù)載四氧化三鐵,制成磁性吸附劑,探究磁性龍蝦殼對(duì)磷的吸附特性和除磷機(jī)理.
龍蝦殼取自合肥市霍山路小吃一條街,將新鮮龍蝦殼洗凈、干燥、研磨過60目篩備用.磁性吸附劑制備方法參考文獻(xiàn)[11],簡(jiǎn)述如下:取干蝦殼粉20g加入200mL蒸餾水,再將20g FeCl3.6H2O和11.1g FeSO4.7H2O溶解于600mL無氧蒸餾水中,然后將蝦粉溶液和含鐵溶液混合攪拌20min;最后在磁力攪拌下將10mol/L NaOH溶液逐滴滴入含鐵蝦粉混合液,直至混合液的pH=10;再繼續(xù)攪拌1h,然后靜置1d.將靜置后的溶液過濾水洗至中性,放入烘箱70℃烘24h,研磨過100目備用.
1.2.1 靜態(tài)吸附實(shí)驗(yàn)方案 向一系列150mL錐形瓶中加入一定量的吸附劑和50mL的模擬含磷廢水,調(diào)整吸附劑投加量(2~10g/L)、初始磷濃度(5~ 100mg/L)、pH值(2~11,用0.1mol/L NaOH和0.1mol/L HCl調(diào)節(jié))和共存離子(背景濃度為100mg/L的Cl-、NO3-、HCO3-和SO42-)等參數(shù),控制某一變量時(shí),其它變量不變.加塞后以恒速恒溫(180r/min, 25℃)振蕩24h后,取水樣過0.45μm濾膜,測(cè)定濾液中磷濃度.平衡吸附量和去除率計(jì)算如下:
式中:e為平衡吸附量,mg/g;0和e分別為吸附前后磷濃度,mg/L;為溶液體積,mL;為吸附劑用量,g;為磷去除效率,%.
1.2.2 吸附等溫方案 將0.2g磁性龍蝦殼加到50mL磷濃度為5,10,20,25,40mg/L的pH=7的溶液中,且在15,25,35℃下振蕩24h后,過0.45μm濾膜,測(cè)定濾液中磷濃度.
1.2.3 吸附動(dòng)力學(xué)方案 將0.2g磁性龍蝦殼加到50mL磷濃度為20mg/L的pH=7的溶液中,在15,25, 35℃下振蕩,分別在0.5,1,1.5,2,2.5,3,5,8,12,18,24h取樣過0.45μm濾膜,測(cè)定磷濃度.
鉬銻抗分光光度法測(cè)定磷濃度.在pH=7吸附除磷后磁性龍蝦殼樣品經(jīng)離心、冷凍干燥后研磨過100目篩用于FTIR和XRD分析.FTIR用美國Thermo Fisher Scientific公司Nicolette is50型傅里葉紅外光譜分析,XRD用PHILIPS公司X’Pter Pro型X射線衍射儀分析.
如圖1a所示,隨著吸附劑量增加,磷去除率不斷升高.當(dāng)吸附劑量由2g/L增至4g/L時(shí),磷去除率由73.7%迅速上升到91.4%.這是由于提升吸附劑量增加了活性吸附位點(diǎn),使廢水與吸附劑接觸面積增加,進(jìn)而提高了去除率[12].隨著吸附劑量增加,平衡吸附量不斷降低,高劑量的吸附劑雖然大大提高了去除效率,但是過量的吸附劑導(dǎo)致吸附位點(diǎn)相互掩蔽[4],同時(shí)隨著吸附的進(jìn)行,溶液中磷濃度越來越低,導(dǎo)致單位劑量吸附劑的平衡吸附量下降.綜合考慮去除效率與經(jīng)濟(jì)因素,磁性龍蝦殼的最佳投加量為4g/L.
如圖1b所示,在吸附劑為4g/L和pH=7的條件下,磷濃度從5mg/L提高到20mg/L ,去除率從100%降低到91.6%;而磷濃度繼續(xù)增加到100mg/L,去除率從91.6%迅速降低到64.1%.磷濃度升高而去除率迅速下降,這是由于吸附劑的吸附位點(diǎn)逐漸被占據(jù).隨著初始磷濃度的增加,而平衡吸附量不斷升高.因此,磁性龍蝦殼適用于磷濃度£20mg/L的廢水.
初始pH值由2增加到4時(shí),吸附劑除磷效率從91.9%降到87.9%(圖1c);當(dāng)pH值從6增加到10,除磷效率逐漸下降至83.9%,當(dāng)pH值升至12時(shí),去除率卻迅速上升到96.9%.pH值在2~12范圍內(nèi),磁性龍蝦殼對(duì)磷的去除率均高于83%,表明磁性龍蝦殼吸附除磷的pH值適應(yīng)范圍廣.磷酸根水解反應(yīng)如下:
酸性條件下溶液中磷的形態(tài)主要是H3PO4和H2PO4-,吸附劑表面的羥基基團(tuán)(-OH)質(zhì)子化成(-OH2+),(-OH2+)與Fe離子結(jié)合位點(diǎn)更具活性, (-OH2+)容易從結(jié)合位點(diǎn)上轉(zhuǎn)移,與磷酸根離子發(fā)生配位交換[2];同時(shí),磷酸根陰離子通過靜電作用被吸附劑吸附.隨著pH值增加,溶液中OH-濃度越來越高,與磷酸根離子產(chǎn)生競(jìng)爭(zhēng)吸附,爭(zhēng)奪吸附位點(diǎn),降低除磷效率[13].當(dāng)pH值增至12時(shí),磁性龍蝦殼除磷效率驟增,可能是龍蝦殼中所含的Ca與HPO42-在吸附劑表面生成CaHPO4沉淀,增加除磷效率[14].
溶液中存在Cl-、SO42-、NO3-等陰離子時(shí),對(duì)吸附劑的除磷效率具有微弱的促進(jìn)作用(圖1d).而當(dāng)溶液中存在HCO3-時(shí),降低除磷效率;可能是HCO3-與吸附劑上Fe配位的陰離子發(fā)生交換反應(yīng)[3],與磷酸離子競(jìng)爭(zhēng)吸附位點(diǎn).
采用Langmuir方程(式6)和Freundlich方程(式7)對(duì)吸附數(shù)據(jù)進(jìn)行擬合.
式中:e是吸附平衡時(shí)剩余溶質(zhì)濃度,mg/g,e為平衡吸附量,mg/g;m指吸附平衡時(shí)最大吸附量,mg/g;代表吸附強(qiáng)度和吸附率;L、F分別為L(zhǎng)angmuir和Freundlich吸附平衡常數(shù).
圖2為25℃下吸附等溫模型模擬結(jié)果,其它2個(gè)溫度結(jié)果類似,模型模擬結(jié)果概括如表1.與Langmuir模型相比,Freundlich等溫模型能更好地描述磁性龍蝦殼吸附磷,表明磁性龍蝦殼對(duì)磷不是單分子層吸附.本研究的值均大于2,表明磁性龍蝦殼對(duì)磷吸附過程為容易吸附[4].
本研究的磁性龍蝦殼對(duì)磷的平衡吸附量達(dá)到5.34~7.73mg/g,比改性沸石(0.135mg/g)[4]和牛糞生物炭(3.28mg/g)[13]的平衡吸附量高,但是低于載鐵活性炭(9.32mg/g)平衡吸附量[3].相對(duì)于載鐵活性炭吸附劑,磁性龍蝦殼的合成方法簡(jiǎn)單、操作方便.
圖2 25℃下吸附等溫模型模擬結(jié)果
表1 磁性龍蝦殼吸附磷的等溫方程參數(shù)
采用準(zhǔn)一級(jí)動(dòng)力學(xué)方程(式8)、準(zhǔn)二級(jí)動(dòng)力學(xué)方程(式9)和顆粒內(nèi)擴(kuò)散方程(式10)對(duì)吸附動(dòng)力學(xué)數(shù)據(jù)進(jìn)行數(shù)據(jù)擬合.
式中:e和q分別為吸附平衡和時(shí)間時(shí)的吸附量,mg/g;1、2和d分別為準(zhǔn)一級(jí)、準(zhǔn)二級(jí)動(dòng)力學(xué)和顆粒內(nèi)擴(kuò)散方程反應(yīng)速率常數(shù).
由表2和圖3可知,準(zhǔn)一級(jí)方程計(jì)算得到的理論平衡吸附容量與試驗(yàn)得到的相差較大.準(zhǔn)二級(jí)動(dòng)力學(xué)方程擬合所得的決定系數(shù)2均高于0.99.而且,從準(zhǔn)二級(jí)方程計(jì)算得到的平衡吸附容量與試驗(yàn)得到的非常接近,表明磷在磁性龍蝦殼上的吸附符合準(zhǔn)二級(jí)方程,即化學(xué)反應(yīng)為速率控制步驟[11].
磁性龍蝦殼的顆粒內(nèi)擴(kuò)散模型擬合曲線呈3段不同斜率(圖3b和表2),表明磁性龍蝦殼吸附除磷過程分為3個(gè)階段[13]:磷擴(kuò)散到吸附劑表面階段;吸附質(zhì)在吸附劑顆粒內(nèi)部的擴(kuò)散階段;顆粒內(nèi)擴(kuò)散逐漸減弱階段,隨著磷濃度逐漸降低,最終達(dá)到吸附平衡狀態(tài).直線部分未通過原點(diǎn),表明顆粒內(nèi)擴(kuò)散不是唯一控制吸附過程的步驟,還有其它過程控制反應(yīng)速率[15].
表2 磁性龍蝦殼吸附除磷的動(dòng)力學(xué)參數(shù)
吸附熱力學(xué)參數(shù)以及反應(yīng)活化能通過式(11) ~ (13)計(jì)算得到.
式中:Δ0為標(biāo)準(zhǔn)吸附自由能,kJ/mol;Δ0為標(biāo)準(zhǔn)吸附熵變,kJ/(mol·K);0為標(biāo)準(zhǔn)吸附焓變, kJ/mol;是氣體常數(shù),8.314J/(mol·K);是絕對(duì)溫度,K;D為固液分配系數(shù), mL/g;為指前因子;a為反應(yīng)活化能,kJ/mol.
表3 磁性龍蝦殼吸附除磷的熱力學(xué)參數(shù)
如表3所示,3種溫度條件下的Δ0均小于0,表明磁性龍蝦殼吸附除磷反應(yīng)是自發(fā)進(jìn)行的.并且隨著溫度的升高,吸附反應(yīng)自發(fā)的趨勢(shì)就越大[13]. Δ0>0,則表明反應(yīng)屬于吸熱反應(yīng),這與磷在磁性龍蝦殼上的平衡吸附量隨溫度的增加逐漸增大相對(duì)應(yīng).Δ0>0,暗示該吸附反應(yīng)是一個(gè)熵增的過程,體系自由度是增大的,液固界面的無序度增加.活化能a為28.31kJ/mol,表明磁性龍蝦殼吸附磷的過程存在物理吸附[16].結(jié)合動(dòng)力學(xué)結(jié)果,推斷磁性龍蝦殼吸附磷過程受物理吸附、化學(xué)吸附和顆粒內(nèi)擴(kuò)散共同控 制.
由圖4可知,龍蝦殼、磁性龍蝦殼和吸附后磁性龍蝦殼3種材料在3416cm-1處的吸收峰是龍蝦殼上的—OH伸縮動(dòng)引起[14].由于龍蝦殼中富含鈣[8],3種材料在2924cm-1處的吸收峰歸屬于Ca—O鍵;而1648cm-1處的峰對(duì)應(yīng)的是O—H的彎曲振動(dòng)[17],表明3種材料間隙中有水分子存在.1420cm-1處峰歸屬于CO32-振動(dòng)[14].在吸附后的磁性吸附劑上1060cm-1左右處出現(xiàn)的一個(gè)比較寬的吸收峰是P—O的彎曲振動(dòng)峰[18],而磁性龍蝦殼在872cm-1處面積變大的振動(dòng)峰對(duì)應(yīng)的是P—OH的伸縮振動(dòng)[19],這些都證實(shí)磷被吸附在磁性龍蝦殼上.在579cm-1處是Fe—O的振動(dòng)峰.在463cm-1處出現(xiàn)了新峰歸屬為Fe—O—P鍵,說明磷酸根通過配位交換與鐵離子結(jié)合[20].
圖4 三種不同狀態(tài)吸附劑的紅外光譜圖
圖5 磁性龍蝦殼吸附前后的X射線衍射
圖5是吸附前、后的磁性龍蝦殼X射線衍射圖.龍蝦殼負(fù)載鐵后的X射線衍射圖主要特征峰與Fe3O4標(biāo)準(zhǔn)卡片相吻合,表明鐵元素是以Fe3O4的形式負(fù)載在龍蝦殼上.而吸附除磷后的磁性龍蝦殼,在2為11.5°、23°、30°時(shí)出現(xiàn)了Fe(H3O)(HPO4)2的特征峰,而在21°和34°時(shí)出現(xiàn)了CaHPO4的特征峰.進(jìn)一步印證磁性龍蝦殼吸附除磷機(jī)理是配位交換和表面沉淀.
3.1 4g/L磁性龍蝦殼吸附除磷效率最佳,低濃度的含磷廢水(£20mg/L)的吸附除磷效率達(dá)到91.6%以上,磁性龍蝦殼吸附除磷適宜的pH值范圍廣;共存離子SO42-、Cl-、NO3-提升磁性龍蝦殼除磷效率,而HCO3-有微弱的抑制作用.
3.2 Freundlich方程更好地模擬等溫吸附過程,暗示磁性龍蝦殼對(duì)磷的吸附不是單分子層吸附.準(zhǔn)二級(jí)動(dòng)力學(xué)較好地描述磁性龍蝦殼的除磷過程, 另外熱力學(xué)分析表明磁性龍蝦殼吸附磷是自發(fā)進(jìn)行.熱力學(xué)和動(dòng)力學(xué)分析表明磁性龍蝦殼的吸磷速率是由物理吸附、化學(xué)吸附和顆粒內(nèi)擴(kuò)散共同控制.
3.3 磁性龍蝦殼吸附除磷的主要機(jī)理是配位交換、靜電作用和表面沉淀.
[1] 李 冬,孫 宇,曾輝平,等.鐵錳生物污泥吸附磷 [J]. 中國環(huán)境科學(xué), 2014,34(10):2528-2535. Li D, Sun Y, Zeng H P, et al. Phosphorus adsorption oniron and manganese biological sludge [J]. China Environmental Science, 2014,34(10):2528-2535.
[2] Liu J, Zhou Q, Chen J, et al. Phosphate adsorption on hydroxyl– iron– lanthanum doped activated carbon fiber [J]. Chemical Engineering Journal, 2013,215:859-867.
[3] 王正芳.載鐵活性炭的制備及對(duì)P(V)的吸附性能研究 [D]. 南京:南京大學(xué), 2011.Wang Z F. Adsorption removal of phosphate using iron-modified activated carbon [D]. Nanjing: Nanjing University, 2011.
[4] 陸燕勤,朱 麗,何昭菊,等.沸石負(fù)載氧化鐵吸附劑吸附除磷研究[J]. 環(huán)境工程, 2015,33(4):48-52.Lu Y Q, Zhu L, He Z J, et al. Phosphorus adsorption from wastewater by iron-oxide-coated-zeolite [J]. Environmental Engineering, 2015,33(4):48-52.
[5] 萬京京,郝瑞霞,馬靜雨,等.Fe(Ⅲ)摻雜Mg/Al-LDO作為氮磷吸附劑的研究[J]. 中國環(huán)境科學(xué), 2018,(4):1295-1303.Wan J J, Hao R X, Ma J Y, et al. Study on Fe(Ⅲ) doped Mg/Al-LDO as nitrogen and phosphorus adsorbent [J]. China Environmental Science, 2018,38(4):1295-1303.
[6] 郭云峰,朱澤聞,馬達(dá)文,等.中國小龍蝦產(chǎn)業(yè)發(fā)展報(bào)告(2017) [J]. 中國水產(chǎn), 2017,(7):8-17.Guo Y F, Zhu Z W, Ma D W, et al. Report on the industrial development of crayfish in China (2017) [J]. Chinese Aquatic products, 2017,(7):8-17.
[7] 項(xiàng)東升,李紅梅.地產(chǎn)龍蝦殼提取甲殼素及其廢水的綜合利用[J]. 食品與生物技術(shù)學(xué)報(bào), 2008,27(2):52-54.Xiang D S, Li H M. Purification of Chitin from local lobster shell and comprehensive utilization of the waste water [J]. Journal of Food Science and Biotechnology, 2008,27(2):52-54.
[8] 常秀蓮,王文華,溫少紅.生物吸附劑—蝦殼吸附鎘(II)的實(shí)驗(yàn)研究[J]. 離子交換與吸附, 2002,(3):241-248. Chang X L, Wang W H, Wen S H. Investigation of cadmium (II) biosorption on shrimp shell [J].Ion Exchange and Adsorption, 2002, (3):241-248.
[9] Jeon C. Adsorption characteristics of waste crab shells for silver ions in industrial wastewater [J]. Korean Journal of Chemical Engineering, 2014,31(3):446-451.
[10] 季小洋,紀(jì)麗麗,宋文東,等.蝦殼基生物吸附劑的制備及對(duì)Cr(Ⅵ)吸附熱力學(xué)研究[J]. 食品工業(yè)科技, 2018,39(14):44-48+54Ji X Y, Ji L L, Song W D, et al.Thermodynamics of Cr(Ⅵ) adsorption on biological adsorbent by calcined shrimp shells [J]. Science and Technology of Food Industry, 2018,39(14):44-48+54
[11] Ifthikar J, Wang J, Wang Q, et al. Highly efficient lead distribution by magnetic sewage sludge biochar sorption mechanisms and bench applications [J]. Bioresource Technology, 2017,238:399-406.
[12] Ding L, Wu C, Deng H P, et al. Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin [J]. Journal of Colloid and Interface Science, 2012,376(1):224-232.
[13] 馬鋒鋒,趙保衛(wèi),鐘金魁,等.牛糞生物炭對(duì)磷的吸附特性及其影響因素研究 [J]. 中國環(huán)境科學(xué), 2015,35(4):1156-1163.Ma F F, Zhao B W, Zhong J K, et al. Characteristics phosphate adsorption onto biochars derived from dairy manure and its influencing factors [J]. China Environmental Science, 2015,35(4): 1156-1163.
[14] Liu H, Liu W, Zhang J, et al. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies [J]. Journal of hazardous materials, 2011,185(2/3):1528-1535.
[15] Arami M, Limaee N Y, Mahmoodi N M. Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent [J]. Chemical Engineering Journal, 2008,139(1):2-10.
[16] 周 強(qiáng),冒詠秋,段鈺鋒,等.溴素改性活性炭汞吸附特性研究[J]. 工程熱物理學(xué)報(bào), 2014,35(12):2531-2534.Zhou Q, Mao Y Q, Duan Y F, et al. Studies on mercury adsorption on bromine modified activated carbon [J]. Journal of Engineering Thermophysics, 2014,35(12):2531-2534.
[17] Rodrigues L A. An investigation of phosphate adsorption from aqueous solution onto hydrous niobium oxide prepared by co- precipitation method [J]. Colloids and Surfaces A, 2009,334(1-3): 191-196.
[18] Zhou J Z, Xu Z P, Qiao S, et al. Triphosphate removal processes over ternary CaMgAl-layered double hydroxides [J]. Applied Clay Science, 2011,54(3):196-201.
[19] Arai Y, Sparks D L. ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface [J]. Journal of Colloid & Interface Science, 2001,241(2):317-326.
[20] Zhou Q, Wang X, Liu J, et al. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method [J]. Chemical Engineering Journal, 2012,200-202(none):619-626.
Characteristics of phosphorus adsorption by magnetic lobster shell.
LIANG Yue-gan1*, FANG Tao1, LI Wei1, BAO Jing1, LIU Bo1, LUO Pei-wen1, ZHANG Liu2, YUAN Bu-xian2
(1.Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China;2.Anhui Institute of Environmental Science, Hefei 230071, China)., 2019,39(5):1928~1933
The characteristics of phosphorus adsorption were studied by using magneticmodified-lobster shell. The results showed that the highest efficiency of phosphorus removal occurred at the adsorbent dosage of 4g/L, and above 91.6% phosphorus was removed in the wastewater with the phosphorus concentration lower than 20mg/L by magneticmodified-lobster shells, and their ability of removing phosphorus was suitable to a wide range of pH. The co-existing ions (Cl-, SO42-, NO3-and HCO3-) had a little influence on the phosphorus removal ability, and whereas HCO3-ion had a slightly negative effect on phosphorus adsorption. Freundlich equation could well describe the adsorption behaviour of phosphorus of magnetic modified-lobster shells, and the adsorption process followed the quasi-second-order kinetic model. Thermodynamic analysis showed that theadsorption process was spontaneous. The main mechanisms of phosphorus adsorption by magneticmodified-lobster shells were ligand exchange, electrostatic interaction and surface precipitation according to X-ray diffraction and FTIR analyses.
magneticmodified-lobster shell;adsorption;phosphorus removal;mechanism
X131.2
A
1000-6923(2019)05-1928-06
梁越敢(1973-)男,安徽肥東人,博士,副教授,主要從事水污控制技術(shù)方面研究.發(fā)表論文數(shù)20多篇.
2018-09-20
十三五巢湖水專項(xiàng)(2017ZX07603-004)
*責(zé)任作者, 副教授, ygliang@ahau.edu.cn