国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

FNA對(duì)短程硝化污泥菌群結(jié)構(gòu)的影響

2019-06-06 08:39高春娣彭永臻
中國(guó)環(huán)境科學(xué) 2019年5期
關(guān)鍵詞:絲狀硝化亞硝酸鹽

高春娣,趙 楠,安 冉,韓 徽,張 娜,彭永臻

?

FNA對(duì)短程硝化污泥菌群結(jié)構(gòu)的影響

高春娣*,趙 楠,安 冉,韓 徽,張 娜,彭永臻

(北京工業(yè)大學(xué)環(huán)境與能源工程學(xué)院,城鎮(zhèn)污水深度處理與資源化利用技術(shù)國(guó)家工程實(shí)驗(yàn)室,北京 100124)

在SBR反應(yīng)器增加游離亞硝酸(FNA)預(yù)處理單元,投加濃度為1.2mgHNO2-N/L的FNA進(jìn)行缺氧攪拌4.5h,連續(xù)處理3d,考察短程硝化污泥中FNA對(duì)氨氧化菌(AOB),絲狀菌和微生物菌群結(jié)構(gòu)的影響.研究表明,FNA對(duì)AOB有短時(shí)抑制作用,并能夠抑制優(yōu)勢(shì)絲狀菌(微絲菌屬)和(噬纖維菌)的增殖,分別由5.1%和1.1%下降到0.78%和幾乎不可見(jiàn).SVI從281mL/g降低到100mL/g左右.NAR能夠維持在90%左右,短程硝化不受到破壞.高通量結(jié)果顯示,FNA處理后微生物菌群結(jié)構(gòu)多樣性與豐度出現(xiàn)下降,但(陶厄氏菌屬)和出現(xiàn)了增殖,分別增加到5.58%和7.82%,同步硝化反硝化(SND)作用明顯,這使得即便只有短程硝化,總氮去除率依然能達(dá)到60%以上.

短程硝化;污泥膨脹;污泥沉降性能;絲狀菌;AOB;微生物菌群結(jié)構(gòu);SND

短程硝化反硝化存在節(jié)省25%的曝氣能耗、減少40%的碳源投加量以及減少污泥產(chǎn)量等優(yōu)點(diǎn)[1-2],因此被廣泛地應(yīng)用于實(shí)際生活污水處理[3-6].短程硝化反硝化技術(shù)是將硝化反應(yīng)控制并維持在亞硝酸鹽階段,不進(jìn)行亞硝酸鹽至硝酸鹽的轉(zhuǎn)化[7].在這一過(guò)程中,亞硝酸鹽是必不可少的中間產(chǎn)物,積累率最高可達(dá)90%以上[2].當(dāng)前關(guān)于亞硝酸鹽對(duì)硝化作用的影響多圍繞對(duì)硝化菌,也就是氨氧化菌(AOB)和亞硝酸鹽氧化菌(NOB)的影響展開(kāi).有研究表明,超過(guò)一定濃度的亞硝酸鹽對(duì)微生物以及污泥沉降性能具有一定的影響[8-13],也有研究表明是亞硝酸鹽的質(zhì)子化產(chǎn)物游離亞硝酸(FNA)對(duì)微生物種群具有抑制作用,而非亞硝酸鹽[9,14].研究發(fā)現(xiàn)FNA對(duì)AOB,NOB,反硝化菌和厭氧氨氧化菌等均有影響[14-19],并且FNA對(duì)微生物的抑制作用還會(huì)影響到污泥中微生物菌群結(jié)構(gòu)的變化[20],利用這種抑制特性能夠?qū)崿F(xiàn)短程硝化[21-23].

隨著短程硝化反硝化研究和應(yīng)用的不斷深入,隨之而來(lái)的污泥膨脹問(wèn)題也越來(lái)越突出.由于亞硝酸鹽的積累會(huì)使污泥的沉降性能惡化[11],這就導(dǎo)致無(wú)論是在實(shí)驗(yàn)室規(guī)模研究,還是在實(shí)際應(yīng)用中,污泥膨脹都時(shí)有發(fā)生.而現(xiàn)有研究中又缺乏FNA對(duì)絲狀菌影響的相關(guān)報(bào)道,并且關(guān)于活性污泥系統(tǒng)中微生物對(duì)FNA影響適應(yīng)性的研究也較少[14].針對(duì)這一現(xiàn)狀,本研究采用增加FNA預(yù)處理單元的方法,專門(mén)考察短程硝化污泥中FNA對(duì)絲狀菌和硝化菌等微生物菌群的抑制作用以及對(duì)這種抑制作用的適應(yīng)性.

1 材料與方法

1.1 試驗(yàn)裝置

試驗(yàn)裝置為SBR反應(yīng)器,由圓柱形有機(jī)玻璃制成,有效容積8L.反應(yīng)器上部固定電動(dòng)攪拌器,底部裝有曝氣盤(pán)并連接轉(zhuǎn)子流量計(jì)和空氣壓縮機(jī),可直接調(diào)控溶解氧(DO)量,進(jìn)、排水口連接蠕動(dòng)泵自動(dòng)進(jìn)水、電動(dòng)閥自動(dòng)排水.溶氧儀裝有DO和pH值探頭,實(shí)時(shí)監(jiān)測(cè)反應(yīng)過(guò)程DO和pH值的變化.試驗(yàn)裝置見(jiàn)圖1.

圖1 試驗(yàn)裝置示意

1.貯水箱;2.蠕動(dòng)泵;3.電動(dòng)水閥;4.攪拌器;5.空氣泵;6.曝氣盤(pán);7.WTW 溶氧儀;8.pH值探頭;9.DO 探頭;10.加熱棒;11.空氣轉(zhuǎn)子流量計(jì);12.FNA預(yù)處理單元

1.2 試驗(yàn)水質(zhì)及接種污泥

試驗(yàn)種泥為馴化良好的短程硝化污泥,沉降性能良好,SV在40%左右.進(jìn)水水質(zhì)為某高校家屬區(qū)實(shí)際生活污水,平均C/N<3.0為低碳氮比生活污水.水質(zhì)參數(shù)如表1所示.

表1 實(shí)際生活污水的水質(zhì)參數(shù)

1.3 試驗(yàn)運(yùn)行方案

第I 階段:污泥膨脹的誘發(fā)(1~40d)

將短程硝化污泥投加到SBR反應(yīng)器中,污泥濃度維持在2500~3000mg/L,排水比為50%,維持溫度在24℃左右.通過(guò)低DO(0.5~1.0mg/L),低負(fù)荷運(yùn)行條件來(lái)誘發(fā)污泥膨脹.運(yùn)行方式為進(jìn)水,好氧攪拌,沉淀30min,排水,每天運(yùn)行4個(gè)周期.運(yùn)行過(guò)程中,pH值隨著亞硝化反應(yīng)的進(jìn)行不斷下降,當(dāng)亞硝化過(guò)程完成后,曝氣作用將水中的CO2吹脫導(dǎo)致pH值上升,出現(xiàn)pH值的突變點(diǎn),此突變點(diǎn)即為氨谷點(diǎn).通過(guò)實(shí)時(shí)監(jiān)測(cè)pH值變化,來(lái)控制好氧曝氣時(shí)長(zhǎng),從而實(shí)現(xiàn)對(duì)氨谷點(diǎn)的實(shí)時(shí)控制.

第II階段:FNA預(yù)處理(41~43d)

從發(fā)生膨脹的SBR反應(yīng)器中取出全部泥水混合物,靜沉后去除上清液,污泥用去離子水離心(4000r/min,5min)洗絳3次消除污泥中NH4+和NO2-等干擾,用去離子水定容至1.0L,控制溫度為24℃,一次性投加NaNO2儲(chǔ)備液使NO2-濃度為5.1g/L,FNA濃度為1.2mgHNO2-N/L,缺氧攪拌4.5h,反應(yīng)進(jìn)行中通過(guò)投加0.1mol/L的HCl和NaOH控制pH值在7.0±0.05.反應(yīng)結(jié)束后,用去離子水離心洗泥3次.洗泥結(jié)束后投加泥到SBR反應(yīng)器中,運(yùn)行方式同第I階段.每天進(jìn)行一次,共運(yùn)行3d.FNA濃度根據(jù)公式(1)計(jì)算[24]:

(2)

式中:NO2-為亞硝酸鈉的濃度,mg/L;為反應(yīng)器內(nèi)的溫度,℃.

第III階段:反應(yīng)器正常運(yùn)行階段(44~72d)

溫度為室溫(20~21℃),與第I階段運(yùn)行方式相同,每天運(yùn)行4個(gè)周期,共運(yùn)行29d.

1.4 試驗(yàn)分析指標(biāo)及方法

水樣分析項(xiàng)目中NH4+,NO2-,NO3-使用Lachat QuikChem8000流動(dòng)注射自動(dòng)測(cè)定儀(Lachat Instruments, Milwaukee,USA).MLSS按國(guó)家標(biāo)準(zhǔn)方法測(cè)定[25].DO和pH值采用WTW溶解氧測(cè)定儀(Multi340i型)測(cè)定.絲狀菌普通鏡檢通過(guò)革蘭式染色法,所用儀器為OLYMPUS-BX61顯微鏡,并通過(guò)Image-Pro Plus軟件分析細(xì)菌的大小和形態(tài).采用Fast DNASpin Kit for Soil(QBIOgen Inc,Carlsba,CA,美國(guó))DNA提取試劑盒提取反應(yīng)器活性污泥樣品的總DNA.MiSeq高通量測(cè)序?qū)嶒?yàn)流程包括:完成基因組DNA 提取,進(jìn)行PCR 擴(kuò)增,并將PCR 產(chǎn)物進(jìn)行檢測(cè)定量,構(gòu)建MiSeq文庫(kù),最終進(jìn)行MiSeq測(cè)序并進(jìn)行微生物菌群結(jié)構(gòu)分析.

1.5 數(shù)據(jù)分析方法

本試驗(yàn)中亞硝酸鹽積累率的計(jì)算如式(3):

式中:NAR為亞酸鹽積累率,%;NO-為氮氧化物的濃度,mg/L;NO2-為亞硝酸鹽的濃度,mg/L;NO3-為硝酸鹽的濃度,mg/L.

2 結(jié)果與討論

2.1 FNA對(duì)污泥沉降性能的影響

圖2 FNA預(yù)處理前、后SV和SVI的變化情況

圖3 革蘭氏染色圖片

a)接種污泥革蘭氏染色圖片;b)膨脹污泥SVI值為280的革蘭氏染色圖片;c)停止FNA預(yù)處理,系統(tǒng)穩(wěn)定運(yùn)行SVI值為100的革蘭氏圖片

在第I階段短程硝化污泥接種初期,系統(tǒng)內(nèi)污泥的SVI為138mL/g左右(如圖2所示),由于采用低DO運(yùn)行結(jié)合低碳氮比進(jìn)水,絲狀菌在與菌膠團(tuán)細(xì)菌對(duì)營(yíng)養(yǎng)物質(zhì)的競(jìng)爭(zhēng)中處于優(yōu)勢(shì)而大量繁殖,在試驗(yàn)第15~40d,SVI逐漸上升,第40d達(dá)到281mL/g.圖3絲狀菌鏡檢可看出,種泥(圖3a)中只有少量的絲狀菌,菌膠團(tuán)結(jié)構(gòu)密實(shí),發(fā)生膨脹后(圖3b)大量絲狀菌增殖,菌絲從菌膠團(tuán)中伸出使菌膠團(tuán)結(jié)構(gòu)松散.由于絲狀菌的大量繁殖,活性污泥的沉降性能惡化導(dǎo)致污泥流失.第II階段的第1d,SVI就下降近50%,達(dá)到115mL/g,并在第III階段SVI穩(wěn)定維持在100mL/g左右.圖3c,較膨脹階段的污泥,第III階段污泥中的菌絲大量減少,污泥沉降性能良好,盡管采用與第I階段相同的運(yùn)行方式,污泥的沉降性能也沒(méi)有惡化.分析原因,認(rèn)為是FNA對(duì)優(yōu)勢(shì)絲狀菌與菌膠團(tuán)活性的抑制具有差異性,其中優(yōu)勢(shì)絲狀菌對(duì)FNA敏感度要高于菌膠團(tuán),所以當(dāng)優(yōu)勢(shì)絲狀菌活性受到FNA抑制時(shí),菌膠團(tuán)在營(yíng)養(yǎng)物質(zhì)的攝取過(guò)程中具有優(yōu)勢(shì)而加快增殖,從而使污泥的沉降性能能夠得到改善.由此可見(jiàn)FNA對(duì)優(yōu)勢(shì)絲狀菌的抑制具有長(zhǎng)期不可恢復(fù)性,并能夠有效改善污泥沉降性能惡化的問(wèn)題.

2.2 FNA對(duì)NH4+-N、氮氧化物去除效果的影響

反應(yīng)器始終在低DO條件下運(yùn)行,由于AOB對(duì)氧的親和力較強(qiáng)[26-27],加之種泥短程硝化性能良好,所以從圖4可看出,第I階段氨氮去除率穩(wěn)定上升,達(dá)90%以上,NH4+-N平均出水在5mg/L左右, NO2--N積累率(NAR)維持在90%以上,短程硝化效果良好.第II階段中的第1d,AOB活性受到抑制,出水NH4+-N為13.79mg/L,相較于階段I增加了8.79mg/L.相關(guān)文獻(xiàn)表明,AOB的FNA抑制濃度為0.50~0.63mgHNO2-N/L[28-29],試驗(yàn)中FNA濃度為1.2mgHNO2-N/L,而從第III階段的第2d,AOB的活性開(kāi)始逐漸恢復(fù),出水NH4+-N達(dá)到2~5mg/L,并在之后的運(yùn)行中穩(wěn)定維持在0~4mg/L,說(shuō)明FNA對(duì)AOB活性的抑制具有短時(shí)性,當(dāng)停止FNA抑制后,AOB的活性能夠得以恢復(fù).其次種泥是短程硝化污泥,即污泥硝化菌AOB占有優(yōu)勢(shì),而NOB含量低,且FNA對(duì)NOB抑制作用要強(qiáng)于AOB[28],加之低DO條件運(yùn)行,使得污泥中的NOB含量逐漸降低,變得微乎其微,所以在第III階段中,出水NO3-接近于0.06mg/L左右,從而污泥NAR能夠維持在95% 以上,并穩(wěn)定維持短程硝化,使得受到FNA抑制的污泥仍能夠保持良好的短程硝化的性能.

圖4 系統(tǒng)運(yùn)行不同階段NH4+-N,NO2--N,NO3--N濃度和NAR的變化

好氧運(yùn)行模式下,理論上只進(jìn)行到硝化階段無(wú)法進(jìn)行TN的去除.從圖4、5中可看出,第I階段TN去除率達(dá)到80%左右,是因?yàn)槲勰嘣诘虳O條件下,系統(tǒng)中存在好氧反硝化菌,發(fā)生了同步硝化反硝化(SND)[30],使TN得以去除.第III階段的第1d,TN去除率為0,之后開(kāi)始升高,并在第15d之后最高達(dá)到60%左右,但始終低于第I階段.原因可能是FNA對(duì)好氧反硝化菌也具有短時(shí)抑制作用且活性無(wú)法得到完全恢復(fù)或污泥中出現(xiàn)能夠適應(yīng)高濃度FNA的好氧反硝化菌,但其反硝化能力要弱于第I階段的好氧反硝化菌.

圖5 系統(tǒng)運(yùn)行不同階段TN濃度和去除率的變化

2.3 活性污泥種群結(jié)構(gòu)的分析

為了探究污泥在3個(gè)階段微生物種群結(jié)構(gòu)的變化情況,分別取第0d種泥,第40d膨脹污泥和第72d污泥樣品,分別記為1,2,3,進(jìn)行MiSeq高通量測(cè)序技術(shù)分析.

從3個(gè)污泥樣品中分別獲得了30242,52902, 33531條優(yōu)化序列,有效序列平均長(zhǎng)度為441,符合MiSeq高通量測(cè)序技術(shù)要求.3個(gè)泥樣分別為970, 1084,1102個(gè)OTUs.如表2所示,Ace,Chao,Sobs代表微生物菌群豐度指數(shù),可看出,2 號(hào)泥樣中微生物種群豐度有所上升,這有可能是絲狀菌的大量增殖或膨脹系統(tǒng)中出現(xiàn)了新微生物菌種導(dǎo)致.而3號(hào)泥樣豐度下降,也再次證明了FNA對(duì)微生物具有一定的抑制作用.相關(guān)文獻(xiàn)報(bào)道[22,31],微生物種群Shannon多樣性指數(shù),可用來(lái)估算污泥中微生物多樣性和均一性.2號(hào)泥樣的Shannon指數(shù)與種泥相比僅有輕微的下降,說(shuō)明發(fā)生膨脹后,其微生物的多樣性與均一性變化可忽略不計(jì).但3號(hào)泥樣中微生物菌群的多樣性、均一性均下降,說(shuō)明FNA對(duì)微生物菌群的多樣性與均一性產(chǎn)生抑制作用.

含有絲狀菌菌屬的3個(gè)菌門(mén)Bacteroidetes(擬桿菌門(mén)),Actinobacteria(放線菌門(mén))和Chloroflexi(綠彎菌門(mén)),在污泥膨脹后分別由24.27%,5.5%,5.29%上升至27.60%,8.52%和12.2%.而第III階段Bacteroidetes下降幅度最大,由27.6%下降至7.67%, Chloroflexi也下降為原來(lái)的50%左右.圖6中,污泥膨脹后優(yōu)勢(shì)菌(微絲菌屬)和(噬纖維菌)分別由3.2% 上升到5.1%,由幾乎不可見(jiàn)增長(zhǎng)到了1.1%,而第III階段,分別下降至0.78%和幾乎不可見(jiàn).但絲狀菌(鏈球菌)在前2個(gè)階段中幾乎沒(méi)有,當(dāng)FNA處理后增長(zhǎng)至3.1%.說(shuō)明FNA對(duì)部分絲狀菌具有抑制作用尤其是優(yōu)勢(shì)菌和.

表2 不同階段反應(yīng)中污泥樣品多樣性指數(shù)統(tǒng)計(jì)

如圖7可知,Proteobacteria(變形菌門(mén))在3個(gè)階段中均占有很大的優(yōu)勢(shì),分別為39.44%,30.63%, 67.86%.Proteobacteria包括β綱,α綱,δ綱,γ綱,這4種綱中含有能夠進(jìn)行硝化反硝化菌屬,其中β綱,γ綱包括氨氧化菌屬,也正因如此3個(gè)階段中污泥具有良好的去除氮物質(zhì)的性能.污泥膨脹后Proteobacteria含量下降,主要因?yàn)榇藭r(shí)絲狀菌處于優(yōu)勢(shì),使Proteobacteria在競(jìng)爭(zhēng)底物中處于劣勢(shì),導(dǎo)致其含量下降.第III階段Proteobacteria含量上升,因?yàn)镕NA對(duì)微生物具有抑制作用,使能夠適應(yīng)高濃度FNA的Proteobacteria菌屬占據(jù)優(yōu)勢(shì)并得以增殖.

圖6 MiSeq高通量測(cè)序序列在屬水平上的分布

圖7 MiSeq高通量測(cè)序序列在門(mén)水平上的分布

圖6中(陶厄氏菌屬)是β綱下能夠利用[32-34].污泥膨脹后由8.57%減少至0.52%,第III階段上升至5.58%.具有反硝化功能的兼性厭氧菌[35-36],第I階段和第III階段中分別為4.5%和7.82%,而第II階段僅占0.6%,即經(jīng)過(guò)FNA處理后,污泥中含量增加了7.22%.好氧反硝化菌(海生桿菌屬)[37]在種泥和第III階段中均幾乎不可見(jiàn),而發(fā)生膨脹后,其含量增長(zhǎng)至6.8%.由此可見(jiàn),高濃度FNA對(duì)增長(zhǎng)具有抑制作用且不可恢復(fù),而具有好氧反硝化功能的和能夠適應(yīng)高濃度FNA,并在第III階段中含量上升,這也是在第III階段中仍能發(fā)生SND的主要原因之一.但FNA對(duì)微生物種群結(jié)構(gòu)具有影響,以及和反硝化能力要弱于的原因,導(dǎo)致了第III階段中TN去除率要明顯低于第I階段的80%,僅維持在60%左右.

3 結(jié)論

3.1 對(duì)于短程硝化過(guò)程中發(fā)生的絲狀菌污泥膨脹,FNA對(duì)絲狀菌增殖有顯著的抑制作用.短程硝化污泥經(jīng)過(guò)FNA濃度為1.2mgHNO2-N/L,4.5h的預(yù)處理后,優(yōu)勢(shì)絲狀菌由5.1%下降至0.78%,由1.1%減少到幾乎不可見(jiàn).SVI迅速?gòu)?81mL/g降低到100mL/g左右,且NAR能夠維持在90%左右,短程硝化不受到破壞.

3.2 FNA對(duì)AOB和好氧反硝化菌均有抑制作用,當(dāng)FNA為1.2mgHNO2-N/L時(shí),對(duì)AOB的抑制作用是短時(shí)且可恢復(fù)的,但對(duì)的抑制作用具有不可恢復(fù)性.

3.3 FNA能夠影響微生物的種群結(jié)構(gòu),使得污泥中微生物的多樣性、均一性以及物種豐度下降.對(duì)高濃度FNA的抑制具有較強(qiáng)的適應(yīng)能力,在FNA處理結(jié)束之后,污泥中占微生物菌群的67.86%,污泥中具有反硝化功能的和含量上升,使在第III階段中仍能夠發(fā)生SND,保證了良好的TN去除效果.

[1] Gao C D, Fan S X, Jiao E L, et al. Operation and optimization of an alternating oxic-anoxic shortcut nitrification-denitrification system [J]. Advanced Materials Research, 2014,1030-1032:387-390.

[2] 高春娣,王惟肖,李 浩,等.SBR法交替缺氧好氧模式下短程硝化效率的優(yōu)化[J]. 中國(guó)環(huán)境科學(xué), 2015,35(2):403-409. Gao C D, Wang W X, Li H, et al. Optimization of short-range nitrification efficiency in alternate anoxic aerobic mode by SBR method [J]. China Environmental Science, 2015,35(2):403-409.

[3] Peng Y Z, Chen Y, Peng C Y, et al. Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater [J]. Water Science and Technology, 2004,50(10):35-43.

[4] Peng Y Z, Zhu G B. Biological nitrogen removal with nitrification and denitrification via nitrite pathway [J]. Appl. Microbiol. Biot., 2006, 73(1):15-26.

[5] 高春娣,李 浩,焦二龍,等.交替好氧缺氧短程硝化及其特性 [J]. 北京工業(yè)大學(xué)學(xué)報(bào), 2015,41(1):116-122. Gao C D, Li H, Jiao E L, et al. Alternate oxic-anoxic mode realizing nitritation and its characterization [J]. Journal of Beijing University of Technology, 2015,41(1):116-122.

[6] Yang Q, Peng Y Z, Liu X H, et al. Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities [J]. Environmental Science Technology, 2007,41(23):8159-8164.

[7] Fdzpolanco F, Villaverde S, Garcia P A. Temperature effect on nitifying bacteria activity in biofilters-activation and free ammonia inhibition [J]. Water Science and Technology, 1994,3030(11):121-130.

[8] Ruiz G, Jeison D, Chamy R. Nitrification with high nitriteaccumulation for the treatment of wastewater with high ammoniaconcentration [J]. Water Research, 2003,37(6):1371?1377.

[9] Zhou Y, Oehmen A, Lim M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants [J]. Water Research, 2011, 45(15):4672-4682.

[10] Guo J H, Peng Y Z, Wang S Y, et al. Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewate [J]. Process Biochemistry, 2009,44(9): 979?985.

[11] Musvoto E V, Lakay M T, Casey T G, et al. Filamentous organism bulking in nutrient removal activated sludge systems.Paper 8: The effect of nitrate and nitrite [J]. Water S A, 1999,25(4):397-407.

[12] Ma Y, Peng Y Z, Wang S Y, et al. Achieving nitrogen removal via nitrite in a pilot-scalecontinuous pre-denitrification plant [J]. Water Research, 2009,43(3):563-572.

[13] 宋姬晨,王淑瑩,楊 雄,等.缺/好氧條件下亞硝酸鹽的存在對(duì)污泥沉降性能的影響[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014,45(4): 1361-1368. Song J C, Wang S Y, Yang X, et al. Influence of nitrite on sludge settleability under anoxic and aerobic conditions [J]. Journal of Central South University (Science and Technology), 2014,45(4):1361-1368.

[14] 李 璐,馬 娟,宋相蕊.FNA在污水生物脫氮除磷中的抑制效應(yīng)[J]. 工業(yè)水處理, 2014,34(6):5-9. Li L, Ma J, Song X R, et al. Inhibitory effect of free nitrous acid (FNA)on wastewater biological denitrification and dephosphorization [J]. Industrial Water Treatment, 2014,34(6):5-9.

[15] 劉甜甜,劉 牡,王淑瑩,等.鹽度耦合FNA對(duì)短程反硝化過(guò)程中N2O還原的影響[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013,44(8):3561- 3568. Liu T T, Liu M, Wang S Y, et al. Impact of salinity coupling FNA on N2O reduction during denitrification via nitrite [J]. Journal of Central South University (Science and Technology), 2013,44(8):3561-3568.

[16] Zahedi S, Romero-Güiza M, Icaran P, et al. Optimization of free nitrous acid pre-treatment on waste activated sludge [J]. Bioresource Technology, 2017,252:216-220.

[17] Egli K, Fanger, U, Alvarez, P J J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate [J]. Archives of Microbiology, 2001,175(3):198-207.

[18] Yoshida Y, Takahashi K, Saito T et al. The effect of nitrite on aerobic phosphate and denitrifying activity of phosphate-accumulating organisms [J]. Water Science and Technology, 2006,53(6):21-27.

[19] Pijuan M, Ye L, Yuan Z. Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms [J]. Water Research, 2010,44(20):6063-6072.

[20] 馬琳娜,劉文龍,張 瓊,等.游離亞硝酸(FNA)對(duì)A2O污泥菌群結(jié)構(gòu)的影響[J]. 中國(guó)環(huán)境科學(xué), 2017,37(7):2566-2573.Ma L N, Liu W L, Zhang Q, et al. Effect of free nitrous acid (FNA) on microorganism community structures of A2O sludge [J]. China Environmental Science, 2017,37(7):2566-2573.

[21] 韓曉宇,張樹(shù)軍,甘一萍,等.以FA與FNA為控制因子的短程硝化啟動(dòng)與維持[J]. 環(huán)境科學(xué), 2009,30(3):809-814. Han X Y, Zhang S J, Gan Y P, et al. Start up and maintain of nitritation by the inhibition of FA and FNA [J]. Environmental Science, 2009,30(3):809-814.

[22] Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology, 1999,65(7):3248-3250.

[23] 馬 斌,委 燕,王淑瑩,等.基于FNA處理污泥實(shí)現(xiàn)城市污水部分短程硝化[J]. 化工學(xué)報(bào), 2015,66(12):5054-5059. Ma B, Wei Y, Wang S Y, et al. Achieving partial nitritation in sewage treatment system based on treating activated sludge by FNA[J].CIESC Journal, 2015,66(12):5054-5059.

[24] Anthonisen A C, Loehr R C, Prakasam T, et al. Inhibition of nitrification by ammonia and nirous-acid [J]. Journal Water Pollution Control Federation, 1976,48(5):835-852.

[25] Walter W G . Standard methods for the examination of water and wastewater (11th ed.) [J]. American Journal of Public Health & the Nations Health, 1961,51(6):940.

[26] Laanbroek H J, Bodelier P L E, Gerards S. Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations [J]. Archives of Microbiology, 1994,161(2):156-162.

[27] 高春娣,孫大陽(yáng),安 冉,等.間歇曝氣下短程硝化耦合污泥微膨脹穩(wěn)定性[J]. 環(huán)境科學(xué), 2018,39(7):3271-3278. Gao C D, Sun D Y, An R, et al. Stability of nitritation combining with limited filamentous bulking under intermittent aeration [J]. Environmental Science, 2018,39(7):3271-3278.

[28] 張宇坤,王淑瑩,董怡君,等.游離氨和游離亞硝酸對(duì)亞硝態(tài)氮氧化菌活性的影響[J]. 中國(guó)環(huán)境科學(xué), 2014,34(5):1242-1247. Zhang Y K, Wang S Y, Dong Y J, et al. Effect of FA and FNA on activity of nitrite-oxidising bacteria [J]. China Environmental Science, 2014,34(5):1242-1247.

[29] Vadivelu V M, Keller J, Yuan Z G. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolicprocesses of an enriched Nitrosomonas culture [J]. Biotechnology and bioengineering, 2006,95(5):830-839.

[30] 周丹丹,馬 放,董雙石,等.溶解氧和有機(jī)碳源對(duì)同步硝化反硝化的影響[J]. 環(huán)境工程學(xué)報(bào), 2007,1(4):25-28. Zhou D D, Ma F, Dong S S, et al. Influences of DO and organic carbon on smiultaneous nitrification and denitrification [J]. Chinese Journal of Environmental Engineering, 2007,1(4):25-28.

[31] Navarro R R, Hori T, Inaba T, et al. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning [J]. Water Research, 2016,94:166-175.

[32] 高晨晨,游 佳,陳 軼,等.絲狀菌污泥膨脹對(duì)脫氮除磷功能菌群的影響[J]. 環(huán)境科學(xué), 2018,39(6):2794-2801. Gao C C, You J, Chen Y, et al. Effect of denitrification and phosphorus removal microorganisms in activated sludge bulking caused by filamentous bacteria [J]. Environmental Science, 2018,39(6):2794- 2801.

[33] Thomsen T R, Kong Y, Nielsen P H. Ecophysiology of abundant denitrifying bacteria in activated sludge [J]. Fems Microbiology Ecology, 2010,60(3):370-382.

[34] 鄭林雪,李 軍,胡家瑋,等.同步硝化反硝化系統(tǒng)中反硝化細(xì)菌多樣性研究[J]. 中國(guó)環(huán)境科學(xué), 2015,35(1):116-121. Zheng L X, Li J, Hu J W, et al. Analysis of denitrifying bacteria community composition in simultaneous nitrification and denitrification systems [J]. China Environmental Science, 2015,35(1): 116-121.

[35] Spring S, Jackel U M, Kampfer P. Ottowia thiooxydans gen nov sp nov a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen nov comb nov [J]. Int. J. Syst. Evol. Microbiol., 2004,54(1):99-106.

[36] 蔡麗云,黃澤彬,須子唯,等.處理垃圾滲濾液的SBR中微生物種群與污泥比阻[J]. 環(huán)境科學(xué), 2018,39(2):880-888. Cai L Y, Huang Z B, Xu Z W, et al. Microbial communities and sludge specific resistance in two SBRs treating leachate [J]. Environmental Science, 2018,39(2):880-888.

[37] 李 楊,王 芳,楊海滟,等.高通量測(cè)序研究李氏禾生態(tài)浮床凈化污水的微生物群落結(jié)構(gòu)變化[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2018,31(9):1903- 1911. Li Y, Wang F, Yang H Y, et al. Study on microbial community composition and variation based on high throughput sequencing under leersia hexandra swartz rcological floating bed [J]. Southwest China Journal of Agricultural Sciences, 2018,31(9):1903-1911.

Effect of FNA on microorganism community structures of partial nitrification sludge.

GAO Chun-di*, ZHAO Nan, AN Ran, HAN Hui, ZHANG Na, PENG Yong-zhen

(National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)., 2019,39(5):1977~1984

The long-term effects on ammonia-oxidizing bacteria (AOB), filamentous bacteria and microorganism community structures in partial nitrification sludge was investigated by adding a pretreatment unit of free nitrous acid (FNA) in the sequence bath reactor (SBR) for three days at 1.2mg HNO2-N/Lfor 4.5. The results showed that FNA had the short-time effect on AOB,andof the dominant filamentous bacteria were also decreased from 5.1% and 1.1% to 0.78% and almost invisible. Sludge volume index (SVI) maintained at 110mL/g dropping from 281mL/g, and the nitrite accumulation rate (NAR) was kept at around 90%, indicating the partial nitrification was not undermined. Furthermore, High-throughput sequencing results showed that the diversity and uniformity of microorganism community decreased. However, the proliferation ofandincreased to 5.58% and 7.82%. Simultaneous nitrification and denitrification (SND) had significant effects, and the total nitrogen removal rate was nevertheless maintained more than 60% even only with partial nitrification.

partial nitrification;sludge bulking;sludge settleability;filamentous bacteria;AOB;microorganism community structures;SND

X172

A

1000-6923(2019)05-1977-08

高春娣(1973-),女,河北唐山人,教授,博士,主要研究方向?yàn)槌擎?zhèn)污水深度處理與資源化利用,絲狀菌污泥膨脹機(jī)制與控制.發(fā)表論文38篇.

2018-10-15

國(guó)家自然科學(xué)基金資助項(xiàng)目(51478012);北京市科技重大專項(xiàng)(Z181100005318001)

*責(zé)任作者, 教授, gaochundi@bjut.edu.cn

猜你喜歡
絲狀硝化亞硝酸鹽
不同添加劑對(duì)污水處理中絲狀菌膨脹的控制作用研究進(jìn)展
緩釋碳源促進(jìn)生物反硝化脫氮技術(shù)研究進(jìn)展
預(yù)處理對(duì)鋁合金噴涂層絲狀腐蝕性能的影響
高位池亞硝酸鹽防控
冬棚養(yǎng)殖需警惕亞硝酸鹽超標(biāo)!一文為你講解亞硝酸鹽過(guò)高的危害及處理方法
反復(fù)燒開(kāi)的水不能喝?
淺談污水中脫氮的途徑
脖頸冒肉芽別拿手去掐
脖頸冒肉芽 別拿手去掐
同步硝化反硝化的影響因素研究