李 波,喻慶國(guó)*,危 鋒,張銀烽,張 奇,王勝龍,李麗萍
?
滇西北劍湖沉積物釩空間分布特征和生態(tài)風(fēng)險(xiǎn)
李 波1,2,喻慶國(guó)1,2*,危 鋒3,張銀烽1,2,張 奇4,王勝龍1,2,李麗萍1,2
(1.西南林業(yè)大學(xué)濕地學(xué)院,云南 昆明 650224;2.國(guó)家高原濕地研究中心,云南 昆明 650224;3.西南林業(yè)大學(xué)生態(tài)與水土保持學(xué)院,云南 昆明 650224;4.貴州民族大學(xué)生態(tài)環(huán)境工程學(xué)院,貴州 貴陽(yáng) 550025)
用電感耦合等離子體發(fā)射光譜儀(ICP-OES)測(cè)定劍湖表層及柱狀沉積物釩(V)含量,采用改進(jìn)BCR連續(xù)提取法提取V各形態(tài),并對(duì)V空間分布特征和生態(tài)風(fēng)險(xiǎn)進(jìn)行了分析,揭示了粒度對(duì)劍湖沉積物V及形態(tài)含量的影響.結(jié)果表明,劍湖表層沉積物和柱狀沉積物顆粒均以粉砂粒和細(xì)砂為主,細(xì)顆粒V含量更高.表層沉積物V含量為(117.82±63.31)mg/kg,其水平空間分布差異較大.V可交換態(tài)、可還原態(tài)、可氧化態(tài)和殘?jiān)鼞B(tài)含量分別為(8.91±8.91), (18.36±10.53), (7.67±7.67), (80.22±58.71)mg/kg,主要以殘?jiān)鼞B(tài)形式存在,且黏粒和粉砂粒對(duì)V可還原態(tài)和殘?jiān)鼞B(tài)影響較大.V垂直分布差異大,底層V含量高于表層,少部分區(qū)域受黏粒和粉砂粒影響.劍湖沉積物V污染程度小,大部分地區(qū)潛在生態(tài)風(fēng)險(xiǎn)較低,底層沉積物污染程度和潛在生態(tài)風(fēng)險(xiǎn)都高于表層.
釩;沉積物;粒度;空間分布;賦存形態(tài);生態(tài)風(fēng)險(xiǎn)
沉積物作為湖泊生態(tài)系統(tǒng)的重要組成部分,顯著影響著湖泊生物地球化學(xué)循環(huán)過(guò)程,既是重金屬污染物的匯,同時(shí)又是對(duì)水質(zhì)有潛在影響的次生污染源[1-2].目前云貴高原湖泊沉積物重金屬研究主要針對(duì)銅(Cu)、鎘(Cd)、鉻(Cr)、鉛(Pb)、鋅(Zn)等常規(guī)重金屬元素[3-5],對(duì)非常規(guī)重金屬元素釩(V)研究較少.V是人體健康必需的微量元素,它在人體中的含量過(guò)多或缺乏時(shí),都會(huì)嚴(yán)重威脅人體健康[6].環(huán)境中V主要來(lái)源于巖石風(fēng)化、化石燃燒、礦業(yè)開(kāi)采等[7],隨著采礦業(yè)、鋼鐵、化學(xué)工業(yè)不斷發(fā)展和人為排放等原因,造成V中毒的人數(shù)也在不斷增加[8],同時(shí)V污染的水體對(duì)生態(tài)環(huán)境的毒性作用也十分明顯[8-9].水環(huán)境中V主要富集在沉積物和懸浮物中[10],但近年來(lái)對(duì)云貴高原湖泊沉積物中V研究較少,而我國(guó)云貴高原地區(qū)土壤V含量明顯偏高[11],湖泊沉積物V受區(qū)域地質(zhì)背景、入出河流和人為活動(dòng)等因素影響,其空間分布規(guī)律和生態(tài)風(fēng)險(xiǎn)都值得進(jìn)一步研究.
滇西北地處青藏高原與云貴高原的過(guò)渡地帶,是全球25個(gè)生物多樣性“熱點(diǎn)地區(qū)”之一及中國(guó)17個(gè)生物多樣性重點(diǎn)保護(hù)“關(guān)鍵地區(qū)”的第1個(gè)[12-13],劍湖作為滇西北湖群組成之一,在該區(qū)域生物多樣性保育和水生態(tài)安全維持中發(fā)揮著極其重要的作用.近年來(lái)對(duì)劍湖的研究主要關(guān)注植物群落分布格局[14]、沉積物營(yíng)養(yǎng)元素污染[15]、湖泊演變過(guò)程及生態(tài)效應(yīng)[16]等方面,對(duì)沉積物中V的研究尚未見(jiàn)公開(kāi)報(bào)道.劍湖是云南高原湖泊重要濕地類型,水生動(dòng)植物資源極為豐富[17],水生動(dòng)植物死亡后會(huì)通過(guò)一系列物理和化學(xué)等方式使V進(jìn)入水體[11],從而加劇天然水體中V含量,水體中大部分V會(huì)進(jìn)入沉積物中[18].此外,劍湖周邊分布有采石廠、煤礦廠、水泥加工廠等中小型企業(yè),存在V污染的可能性.因此,本研究選取滇西北典型高原湖泊——?jiǎng)檠芯繀^(qū),分析沉積物中V及形態(tài)含量空間分布特征,揭示沉積物粒徑對(duì)V及形態(tài)含量的影響規(guī)律,同時(shí)采用地累積指數(shù)法和潛在生態(tài)風(fēng)險(xiǎn)指數(shù)法對(duì)沉積物中V污染程度和生態(tài)風(fēng)險(xiǎn)進(jìn)行評(píng)價(jià),以期為劍湖及類似湖泊沉積物V污染防治提供科學(xué)參考依據(jù).
劍湖位于云南省大理白族自治州劍川縣境內(nèi),湖區(qū)水域面積6.4km2,湖水以降水、河流和湖內(nèi)地下泉涌補(bǔ)給為主,入湖河流有永豐河、金龍河、格美江等河流,湖水從海尾河流出后注入漾濞江再匯入瀾滄江,是瀾滄江上游重要支流之一.2006年劍湖被云南省人民政府列為省級(jí)濕地自然保護(hù)區(qū),2016年被云南省人民政府列為第一批省級(jí)重要濕地,屬于濕地生態(tài)類型自然保護(hù)區(qū).劍湖周邊有大面積居民聚居地和農(nóng)耕區(qū),沒(méi)有污水收集和處理設(shè)施,且入湖河流上游分布有礦產(chǎn)開(kāi)發(fā)、木雕生產(chǎn)、水泥加工、汽車維修、磚瓦廠等中小型企業(yè).
圖1 劍湖沉積物采樣點(diǎn)分布
為了恢復(fù)劍湖濕地,擴(kuò)大劍湖面積,2016年上半年云南劍湖濕地省級(jí)自然保護(hù)區(qū)管理局在金龍河入湖三角洲實(shí)施了疏挖工程.除掌握金龍河入湖三角洲疏挖前劍湖V分布特征外,疏挖湖區(qū)V分布特征也值得關(guān)注.根據(jù)劍湖湖泊形狀、入出湖河流狀況、人為干擾、工農(nóng)業(yè)分布等因素,在前人研究基礎(chǔ)上[15]按照典型選樣方式,使用ArcGIS 10.2軟件布設(shè)了劍湖表層沉積物和柱狀沉積物采樣點(diǎn)(圖1),并于2017年5月前往研究區(qū)采樣,共采集38個(gè)表層沉積物和12個(gè)柱狀沉積物樣品.沉積物樣品使用定深泥炭鉆(Eijkelkamp 0423SA,荷蘭)采集,表層沉積物采集深度為湖底沉積物表層10cm,為避免一個(gè)采樣點(diǎn)僅采一個(gè)樣品可能產(chǎn)生的隨機(jī)誤差,每個(gè)采樣點(diǎn)都隨機(jī)采集5個(gè)重復(fù)樣,當(dāng)場(chǎng)在塑料盆中用不銹鋼勺充分混合均勻后重新取一個(gè)混合樣品.柱狀沉積物每個(gè)采樣點(diǎn)采集一個(gè)75cm的柱狀沉積物,由上至下分為15層,每5cm分為一層.
沉積物V元素含量測(cè)定參照文獻(xiàn)[19],采用HNO3-HCl-HF消解后用電感耦合等離子體發(fā)射光譜儀(ICPE-9820,日本)測(cè)定其含量.V形態(tài)提取方法采用改進(jìn)的BCR連續(xù)提取法進(jìn)行分級(jí)提取[20-21],提取的4種形態(tài)分別為可交換態(tài)、可還原態(tài)、可氧化態(tài)和殘?jiān)鼞B(tài),殘?jiān)鼞B(tài)含量為重金屬元素總含量減去可交換態(tài)、可還原態(tài)和可氧化態(tài)3種形態(tài)含量之和的差值.本研究中,隨機(jī)選取10%樣品做3次平行實(shí)驗(yàn),每批消解樣品均做一個(gè)空白,并插入一個(gè)標(biāo)準(zhǔn)物質(zhì)(GBW07309)用于質(zhì)量控制,所有樣品和標(biāo)準(zhǔn)物質(zhì)變異系數(shù)均小于15%.樣品測(cè)試時(shí)隨機(jī)選取5%樣品溶液進(jìn)行3次重復(fù)測(cè)定,重復(fù)測(cè)定結(jié)果顯示變異系數(shù)均小于5%,表明儀器穩(wěn)定性較好,結(jié)果符合要求.
沉積物粒度測(cè)定過(guò)程中有機(jī)質(zhì)和碳酸鹽對(duì)結(jié)果影響大[22],為了消除有機(jī)質(zhì)和碳酸鹽對(duì)沉積物粒度測(cè)定的影響,先用過(guò)氧化氫和稀鹽酸去除有機(jī)質(zhì)和碳酸鹽,再離心洗鹽,加入六偏磷酸鈉作為分散劑,最后經(jīng)超聲震蕩后用全自動(dòng)激光粒度儀(HORIBA LA-960S,日本)測(cè)定其粒度分布.
地累積指數(shù)可以評(píng)估沉積物是否被重金屬污染,有效地解釋沉積物環(huán)境質(zhì)量[23],而且該方法不僅考慮了人為干擾因素,還考慮了地球化學(xué)背景值的影響,能夠客觀地評(píng)價(jià)其污染程度.其計(jì)算公式為:
式中:geo為地累積指數(shù);C為元素在待測(cè)沉積物中的實(shí)際含量;B為當(dāng)?shù)爻练e物元素的背景值,本文采用云南省A層土壤V算術(shù)平均值含量作為評(píng)價(jià)計(jì)算過(guò)程中的背景值[24];為成巖作用引起的背景值波動(dòng)參數(shù),本文取1.5[25].根據(jù)地累積指數(shù)大小,可對(duì)沉積物重金屬污染程度進(jìn)行分級(jí),其分級(jí)標(biāo)準(zhǔn)見(jiàn)表1.
表1 地累積指數(shù)與污染程度分級(jí)
潛在生態(tài)風(fēng)險(xiǎn)指數(shù)法是Hakanson從沉積學(xué)角度提出來(lái)對(duì)沉積物中重金屬生態(tài)風(fēng)險(xiǎn)進(jìn)行評(píng)價(jià)的方法[29],該方法考慮了重金屬毒性、污染對(duì)評(píng)價(jià)區(qū)域的敏感度和區(qū)域背景值差異.其計(jì)算公式為:
表2 潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)分級(jí)標(biāo)準(zhǔn)
采用Excel 2016進(jìn)行數(shù)據(jù)初步處理與分析,結(jié)合Surfer 11繪制劍湖表層沉積物V水平空間分布圖,采用Origin 8.0繪制粒度、柱狀沉積物V空間分布圖和生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)圖,使用SPSS 19.0進(jìn)行相關(guān)性分析,采樣點(diǎn)分布圖使用Arc GIS 10.2制作.
劍湖表層沉積物粒度分布特征如圖2,其粒度標(biāo)準(zhǔn)參照國(guó)際制土壤粒度分級(jí)[29].劍湖表層沉積物有黏粒、粉砂粒、細(xì)砂、粗砂、礫石五種類型,其所占比例平均值分別為5.86%、58.97%、27.60%、7.21%、0.38%,平均徑和中值徑平均值分別為67.22, 27.24mm,主要以粉砂粒和細(xì)砂為主,整體顆粒偏細(xì),少部分地區(qū)有礫石.結(jié)合圖1和圖2來(lái)看,劍湖表層沉積物粒度在金龍河入湖口處附近中值粒徑變化范圍為25.86~358.54μm,平均徑變化范圍為45.73~ 711.07μm,其粒徑明顯偏大,這是因?yàn)榻瘕埡由嫌斡写罅坎墒筒傻V現(xiàn)象,水土流失嚴(yán)重[30],再加上金龍河是劍湖最大的入湖河流,水量較大,泥沙在河水的攜帶作用下進(jìn)入劍湖,在湖口處由于湖泊水體對(duì)河流水體的阻擋作用,水動(dòng)力條件減弱,使得大量礫石在此處沉積.此外,該區(qū)域?yàn)槭柰诤^(qū),沉積物粒度也同時(shí)會(huì)受到其磁化率、古氣候、粘土礦物和人為干擾等因素影響[31],其具體原因有待于進(jìn)一步研究.其余湖區(qū)粒度分布相對(duì)均勻,這與其他入湖河流大顆粒泥沙輸入少和水量小有關(guān).同時(shí),劍湖其余湖區(qū)水生植物分布較均勻[14],水生植物對(duì)沉積物顆粒的分選和攔截作用也會(huì)相對(duì)均勻.
圖2 劍湖表層沉積物粒度水平空間分布
劍湖表層沉積物V含量水平空間分布如圖3,V含量為(117.82±63.31)mg/kg.劍湖表層沉積物V水平空間變異系數(shù)為27.34%,其分布差異較大,這是因?yàn)閯且粋€(gè)淺水湖泊,淺水湖泊沉積物-水界面是一個(gè)相對(duì)不穩(wěn)定的區(qū)域,水動(dòng)力和底棲生物擾動(dòng)是造成該界面不穩(wěn)定的主要因素[32],再加上河流攜帶污染源的位置和強(qiáng)度不同也會(huì)影響表層沉積物中V水平空間分布特征.V在金龍河入湖口處附近含量偏低,這主要是由于該地區(qū)是新增疏挖湖區(qū),沉積物疏挖能有效降低重金屬污染物含量[33].同時(shí),水體中的重金屬大部分會(huì)富集在懸浮物中隨水流走[34],金龍河入湖口處沉積物疏挖工程結(jié)束距離采樣時(shí)間只有1年,時(shí)間短,沉積量少.V在黃龍河入湖口東部地區(qū)含量較高,這與黃龍河流經(jīng)了大面積居民區(qū)有關(guān),該地區(qū)居民生活燃料以煤炭為主,再加上河流上游分布有以煤炭為主要燃料的磚瓦廠,煤炭等化石燃料的燃燒會(huì)造成V元素釋放[35],通過(guò)大氣沉降、河流輸送等方式進(jìn)入湖泊.結(jié)合圖1和圖3來(lái)看,在采樣點(diǎn)21處附近V含量也偏高,這是因?yàn)樵撎幬挥诤词柰谥敖瘕埡尤牒谔?金龍河上游采石、采煤現(xiàn)象嚴(yán)重,礦產(chǎn)開(kāi)發(fā)導(dǎo)致V污染增加[6],河流攜帶泥沙進(jìn)入湖泊,所以此處V含量較高.
沉積物粒徑對(duì)其表面物理化學(xué)性質(zhì)、比表面積和表面自由能等均有重要影響,進(jìn)而影響其對(duì)污染物的吸附、解吸和遷移,是影響沉積物中污染物含量的重要控制參數(shù)[36].通過(guò)劍湖表層沉積物V含量和粒度的相關(guān)性分析可知(表3),V含量主要受黏粒、粉砂粒、細(xì)砂和礫石影響,較細(xì)顆粒(黏粒、粉砂粒、細(xì)砂)含量與V含量呈顯著正相關(guān),礫石含量與V含量呈顯著負(fù)相關(guān).較細(xì)顆粒因其具有較大的比表面積,對(duì)重金屬元素吸附能力更強(qiáng)[37],劍湖表層沉積物細(xì)顆粒V含量更高,這也進(jìn)一步驗(yàn)證了該結(jié)論,且該結(jié)果跟王云等[11]和吳俊峰等[38]的研究結(jié)果也具有一致性.
圖3 劍湖表層沉積物V含量水平空間分布
水體重金屬污染物主要富集在沉積物中,通過(guò)水-沉積物界面的交換反應(yīng)在固液兩相間相互遷移轉(zhuǎn)化[39],而表層沉積物是水和沉積物間物質(zhì)和能量交換最頻繁、最迅速的區(qū)域[40].劍湖表層沉積物V形態(tài)含量水平空間分布如圖4,V可交換態(tài)、可還原態(tài)、可氧化態(tài)和殘?jiān)鼞B(tài)含量分別為(8.91±8.91), (18.36±10.53), (7.67±7.67), (80.22± 58.71)mg/kg.可交換態(tài)和可氧化態(tài)水平空間分布差異較大,且兩者有顯著相關(guān)性(=-0.481,<0.01),水平空間分布規(guī)律相反,說(shuō)明劍湖表層沉積物V可交換態(tài)和可氧化態(tài)存在競(jìng)爭(zhēng)吸附關(guān)系.結(jié)合圖1和圖4來(lái)看,可交換態(tài)含量在金龍河和永豐河入湖口處較高,這是因?yàn)橛镭S河和金龍河匯集了大量工農(nóng)業(yè)廢水和生活污水,而廢水中有機(jī)垃圾在自熱分解過(guò)程中產(chǎn)生的有機(jī)酸會(huì)降低水體的pH值[41],可交換態(tài)在pH值發(fā)生改變或酸性條件下容易釋放[42].可交換態(tài)、可還原態(tài)和可氧化態(tài)合稱為生物有效態(tài),自然條件下,重金屬遷移轉(zhuǎn)化能力取決于生物有效態(tài)含量[43].V在新增疏挖湖區(qū)除可交換態(tài)之外,其余形態(tài)含量都比較低,說(shuō)明疏挖湖區(qū)生物有效態(tài)含量低,這與毛志剛等[33]的研究結(jié)果一致.總體來(lái)說(shuō),劍湖表層沉積物V生物有效態(tài)含量低,殘?jiān)鼞B(tài)所占比例平均值高達(dá)70.15%,主要以殘?jiān)鼞B(tài)形式存在,這與王蕾等[10]的研究結(jié)果一致.殘?jiān)鼞B(tài)主要來(lái)源于土壤母質(zhì),且不參與水-沉積物系統(tǒng)的再分配[44],所以劍湖表層沉積物V主要受區(qū)域地質(zhì)背景影響,遷移轉(zhuǎn)化能力弱.
由表3可知,劍湖表層沉積物V可交換態(tài)和可氧化態(tài)不受粒度影響,是因?yàn)榭山粨Q態(tài)和可氧化態(tài)主要受pH值和氧化還原條件影響[42,45].V可還原態(tài)和殘?jiān)鼞B(tài)受粒度影響大,這兩者都與黏粒和粉砂粒含量呈顯著正相關(guān),與礫石含量呈負(fù)相關(guān),說(shuō)明V可還原態(tài)和殘?jiān)鼞B(tài)主要吸附在黏粒和粉砂粒上.V的4種形態(tài)與中值粒徑和平均粒徑均無(wú)相關(guān)性,不受這兩者影響.
表3 劍湖表層沉積物V及形態(tài)含量和粒度的相關(guān)系數(shù)
注:表中“*”表示在0.05水平(雙側(cè))上顯著相關(guān),“**”表示在0.01水平(雙側(cè))上顯著相關(guān).
平均徑和中值粒徑是常用的粒度參數(shù),也是評(píng)價(jià)沉積物顆粒大小的重要指標(biāo)[22,44].劍湖柱狀沉積物V和粒度垂直空間分布特征如圖5,其V含量為(319.32±255.07)mg/kg,平均變異系數(shù)為34.08%.結(jié)合圖1和圖5來(lái)看,永豐河、新水河、獅河和格美江入湖口處附近沉積物表層(第1層:0~5cm)V平均含量為106.02mg/kg,底層(第15層:70~75cm)V平均含量為299.37mg/kg,除在局部地區(qū)有波動(dòng)外,都呈現(xiàn)出底層高于表層的特征.同時(shí),各入湖口柱狀沉積物垂直分布差異都較大,表明各入湖河流污染源輸入差異大,且入湖河流水動(dòng)力擾動(dòng)會(huì)影響沉積物V垂直空間分布.采樣點(diǎn)C3處V垂直空間分布差異大,這可能與湖周淺水區(qū)分布有大量水生植物有關(guān),劍湖水生植物對(duì)水質(zhì)有凈化作用[46],水質(zhì)好的區(qū)域底棲生物豐富[47],對(duì)沉積物擾動(dòng)大.采樣點(diǎn)C4處V垂直空間變異系數(shù)為40.64%,分布差異明顯,這是因?yàn)樵撎幱械叵潞佑砍?地下河流水涌出對(duì)沉積物擾動(dòng)大.采樣點(diǎn)C5、C7處V垂直空間變異系數(shù)分別為15.11%、10.12%,分布均勻,這是因?yàn)樵摰貐^(qū)水深較深,湖水?dāng)_動(dòng)相對(duì)于淺水區(qū)干擾較小[36].采樣點(diǎn)C9、C11處V垂直空間變異系數(shù)分別為40.03%、49.34%,分布差異大,這可能是受到疏挖湖區(qū)的影響,疏挖湖區(qū)沉積物受人為疏浚影響,干擾大.劍湖柱狀沉積物V含量垂直分布特征各異,這跟劍湖是一個(gè)淺水湖泊有關(guān),沉積物受入出湖河流水動(dòng)力、水生動(dòng)植物、人為活動(dòng)等因素?cái)_動(dòng)大.
劍湖柱狀沉積物中值粒徑和平均徑之間存在顯著正相關(guān)(=0.845,<0.01),且所有柱狀沉積物都以粉砂粒和細(xì)砂為主.沉積物粒度特征反映了水動(dòng)力條件[48],劍湖是一個(gè)半封閉的淺水湖泊,處于相對(duì)封閉的地理環(huán)境[14],入湖河流水量小,更容易沉積細(xì)顆粒.采樣點(diǎn)C2、C8和C10粒度垂直分布波動(dòng)性較大,中值粒徑和平均徑變異系數(shù)均超過(guò)50%,其余采樣點(diǎn)粒度垂直分布相對(duì)均勻.從劍湖柱狀沉積物V含量和粒度的相關(guān)分析(表4)可知,永豐河和新水河入湖口處柱狀沉積物V受黏粒和粉砂粒影響,主要吸附在較細(xì)的顆粒上,V含量與中值粒徑呈顯著負(fù)相關(guān),格美江入湖口處柱狀沉積物V含量與粉砂粒呈顯著正相關(guān),與平均徑呈顯著負(fù)相關(guān).采樣點(diǎn)C4和C5柱狀沉積物顆粒偏大,有少部分礫石出現(xiàn),其余柱狀沉積物粒度相對(duì)較小.劍湖柱狀沉積物粒度垂直分布波動(dòng)較大,表明粒度不僅受水動(dòng)力和人為活動(dòng)影響,也可能受其他生物過(guò)程干擾[49].
a~l分別代表1~12號(hào)柱狀沉積物采樣點(diǎn)
劍湖表層沉積物V地累積指數(shù)平均值為-1.09,且地累積指數(shù)均小于零,表明劍湖V污染程度屬于清潔,沒(méi)有出現(xiàn)較大的污染現(xiàn)象.結(jié)合圖5來(lái)看,劍湖表層沉積物V有向底層富集的趨勢(shì),所以表層的污染程度低.劍湖表層沉積物單元素潛在生態(tài)風(fēng)險(xiǎn)指數(shù)如圖6,其平均值為1.49.劍湖表層沉積物38個(gè)采樣點(diǎn)中僅有10.53%的V潛在生態(tài)風(fēng)險(xiǎn)指數(shù)超過(guò)2,屬于中等風(fēng)險(xiǎn)程度,其余部分潛在生態(tài)風(fēng)險(xiǎn)都屬于輕微程度.結(jié)合圖1和圖6來(lái)看,黃龍河和獅河入湖口處附近V潛在生態(tài)風(fēng)險(xiǎn)指數(shù)較高,對(duì)該處的水生動(dòng)植物危害較大,而劍湖水生動(dòng)植物具有很高的保護(hù)價(jià)值[17],沉積物V較高的生態(tài)風(fēng)險(xiǎn)將會(huì)影響當(dāng)?shù)厣鷳B(tài)環(huán)境,降低生物多樣性.
表4 劍湖柱狀沉積物V含量和粒度的相關(guān)系數(shù)
注:“*”表示在0.05水平(雙側(cè))上顯著相關(guān),“**”表示在0.01水平(雙側(cè))上顯著相關(guān),“-”表示沒(méi)有相關(guān)數(shù)據(jù).
劍湖柱狀沉積物V地累積指數(shù)和潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)結(jié)果見(jiàn)圖7.劍湖柱狀沉積物V地累積指數(shù)為(-0.27±1.58),12個(gè)柱狀沉積物采樣點(diǎn)中V地累積指數(shù)平均值有16.67%超過(guò)零,屬于輕度污染,其余部分污染程度均屬于清潔,表層沉積物(第1層:0~5cm)地累積指數(shù)平均值(-0.99)小于底層(第15層:70~75cm)沉積物(-0.29).劍湖柱狀沉積物V潛在生態(tài)風(fēng)險(xiǎn)指數(shù)為(4.13±3.30),底層(第15層:70~75cm)沉積物潛在生態(tài)風(fēng)險(xiǎn)高出表層(第1層:0~5cm)0.87倍.永豐河、獅河和格美江入湖口處潛在生態(tài)風(fēng)險(xiǎn)指數(shù)均偏高,說(shuō)明河流通過(guò)輸送污染物,加劇了各入湖口處沉積物生態(tài)風(fēng)險(xiǎn).同時(shí),柱狀沉積物在原金龍河入湖口處附近地累積指數(shù)和潛在生態(tài)風(fēng)險(xiǎn)指數(shù)均偏高,這與金龍河上游采石和采礦等工業(yè)活動(dòng)有關(guān),人為活動(dòng)增加了V潛在生態(tài)風(fēng)險(xiǎn).總體來(lái)說(shuō),劍湖柱狀沉積物V大部分地區(qū)處于清潔程度,少部分區(qū)域有輕度污染,但局部地區(qū)潛在生態(tài)風(fēng)險(xiǎn)較高.沉積物能夠穩(wěn)定地記錄人為和自然生態(tài)過(guò)程對(duì)于環(huán)境的影響歷史[50],劍湖底層V污染程度和潛在生態(tài)風(fēng)險(xiǎn)都高于表層,說(shuō)明劍湖沉積物V污染排放正在逐年減少,這與當(dāng)?shù)毓芾聿块T采取了保護(hù)和防治措施有關(guān),如底泥疏挖、植物收割、減少礦產(chǎn)開(kāi)發(fā)等.
圖6 劍湖表層沉積物V潛在生態(tài)風(fēng)險(xiǎn)指數(shù)
a~l分別代表1~12號(hào)柱狀沉積物采樣點(diǎn)
3.1 劍湖表層沉積物平均徑和中值粒徑平均值分別為67.22,27.24μm,主要以粉砂粒和細(xì)砂為主.V水平空間變異系數(shù)為27.34%,較細(xì)的沉積物顆粒V含量更高.
3.2 劍湖表層沉積物V可交換態(tài)、可還原態(tài)、可氧化態(tài)和殘?jiān)鼞B(tài)水平空間分布規(guī)律各異,主要以殘?jiān)鼞B(tài)形式存在,V可還原態(tài)和殘?jiān)鼞B(tài)主要吸附在黏粒和粉砂粒上.
3.3 劍湖柱狀沉積物V垂直空間平均變異系數(shù)為34.08%,其分布特征差異大,主要以粉砂粒和細(xì)砂為主,少部分區(qū)域V含量受黏粒和粉砂粒影響較大.
3.4 劍湖表層沉積物V污染程度小,目前未出現(xiàn)嚴(yán)重的污染現(xiàn)象.從垂直空間上看,底層沉積物潛在生態(tài)風(fēng)險(xiǎn)高出表層0.87倍.
[1] 張清海,林昌虎,譚 紅,等.草海典型高原濕地表層沉積物重金屬的積累、分布與污染評(píng)價(jià) [J]. 環(huán)境科學(xué), 2013,34(3):1055-1061. Zhang Q, Lin C, Tan H, et al. Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai Plateau Wetland, Guizhou Province [J]. Environmental Science, 2013,34(3): 1055-1061.
[2] Shiji M, Kavya P, Harikumar P S P. Sediment quality assessment of Kavvayi Wetland in South Coast India with special reference to phosphate fractionation and heavy metal contamination [J]. Journal of Environmental Protection, 2015,6:1308-1321.
[3] 蔡艷潔,張恩樓,劉恩峰,等.云南陽(yáng)宗海沉積物重金屬污染時(shí)空特征及潛在生態(tài)風(fēng)險(xiǎn) [J]. 湖泊科學(xué), 2017,29(5):1121-1133. Cai Y, Zhang E, Liu E, et al. Spatio-temporal characteristics of heavy metal pollution and potential ecological risk in the sediments of Lake Yangzonghai, Yunnan Province [J]. Journal of Lake Sciences, 2017, 29(5):1121-1133.
[4] 于真真,劉恩峰,張恩樓,等.程海沉積物重金屬時(shí)空變化及人為污染與潛在生態(tài)風(fēng)險(xiǎn) [J]. 環(huán)境科學(xué), 2017,38(10):4169-4177. Yu Z, Liu E, Zhang E, et al. Spatio-temporal variations, contamination and potential ecological risk of heavy metals in the sediments of Chenghai Lake [J]. Environment Science, 2017,38(10): 4169-4177.
[5] 宋以龍,曾 艷,楊海全,等.貴州草海沉積物重金屬時(shí)空分布特征與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 生態(tài)學(xué)雜志, 2016,35(7):1849-1856. Song Y, Zeng Y, Yang H, et al. Spatiotemporal distribution and potential ecological risk assessment of heavy metals in the sediments of Lake Caohai, Guizhou, China [J]. Chinese Journal of Ecology, 2016, 35(7):1849-1856.
[6] 鐘 敏.攀枝花地區(qū)釩的環(huán)境效應(yīng) [J]. 廣州化工, 2012,40(2):24-25. Zhong M. Environmental effects of vanadium in Panzhihua Area [J]. Guangzhou Chemical Industry, 2012,40(2):24-25.
[7] 滕彥國(guó),矯旭東,左 銳,等.攀枝花礦區(qū)表層土壤中釩的環(huán)境地球化學(xué)研究 [J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2007,37(2):278-283. Teng Y, Jiao X, Zuo R, et al. Environmental geochemistry of vanadium in topsoil in Panzhihua Mining Area [J]. Journal of Jilin University (Earth Science Edition), 2007,37(2):278-283.
[8] World Health Organization (WHO). Vanadium pentoxide and other inorganic vanadium compounds [R]. Concise International Chemical Assessment Document 29. Geneva: World Health Organization, 2001: 1-53.
[9] Crans D C, Smee J J, Gaidamauskas E, et al. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds [J]. Chemical Reviews, 2004,104(2):849-902.
[10] 王 蕾,滕彥國(guó),王金生,等.攀枝花尾礦庫(kù)溪流中釩的分布及化學(xué)形態(tài) [J]. 環(huán)境化學(xué), 2009,28(3):445-448. Wang L, Teng Y, Wang J, et al. Distribution and chemical speciation of vanadium in downstream of Panzhihua tailingdam [J]. Environmental Chemistriy, 2009,28(3):445-448.
[11] 王 云,魏復(fù)盛.土壤環(huán)境元素化學(xué) [M]. 北京:中國(guó)環(huán)境科學(xué)出版社, 1995:231-241. Wang Y, Wei F. Soil environmental element chemistry [M]. Beijing: China Environmental Science Press, 1995:231-241.
[12] Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000,403:853-858.
[13] 張燕妮,張志明,耿宇鵬,等.滇西北地區(qū)優(yōu)先保護(hù)的植物群落類型 [J]. 生物多樣性, 2013,21(3):296-305. Zhang Y, Zhang Z, Geng Y, et al. Priority plant communities for conservation in Northwest Yunnan [J]. Biodiversity Science, 2013,21(3):296-305.
[14] 李寧云,陳玉惠,胡金明,等.滇西北劍湖濕地海菜花()群落物種組成及種群分布格局 [J]. 湖泊科學(xué), 2017, 29(3):687-695. Li N, Chen Y, Hu J, et al. Species composition and distribution patterns ofcommunity in Lake Jianhu, northwestern Yunnan [J]. Journal of Lake Sciences, 2017,29(3):687-695.
[15] 張 奇,喻慶國(guó),王勝龍,等.滇西北劍湖沉積物磷形態(tài)、空間分布及釋放貢獻(xiàn) [J]. 環(huán)境科學(xué)學(xué)報(bào), 2017,37(10):3792-3803. Zhang Q, Yu Q, Wang S, et al. Phosphorus fractions, spatial distribution and release contributions in sediments of Jianhu Lake, Northwestern Yunnan Plateau, China [J]. Acta Scientiae Circumstantiae, 2017,37(10):3792-3803.
[16] 郭玉靜,鄭 毅,王 妍,等.滇西北高原湖泊劍湖演變過(guò)程及其生態(tài)環(huán)境效應(yīng)分析 [J]. 環(huán)境工程, 2017,35(4):45-50. Guo Y, Zheng Y, Wang Y, et al. Evolution of Jianhu Lake and its eco-environmental effects in the northwestern Yunnan province [J]. Environmental Engineering, 2017,35(4):45-50.
[17] 符文超,田 昆,肖德榮,等.滇西北高原入湖河口退化濕地生態(tài)修復(fù)效益分析 [J]. 生態(tài)學(xué)報(bào), 2014,34(9):2187-2194. Fu W, Tian K, Xiao D, et al. The ecological restoration effort of degraded estuarine wetland in Northwest Yunnan Plateau, China [J]. Acta Ecologica Sinica, 2014,34(9):2187-2194.
[18] Wu Z X. Study on vanadium solution dissolved sediment in wastewater from vanadium precipitation [J]. Advanced Materials Research, 2012,581-582:172-175.
[19] 夏 新.土壤和沉積物中有機(jī)物和重金屬監(jiān)測(cè)新方法 [M]. 北京:中國(guó)環(huán)境科學(xué)出版社, 2011:167-177. Xia X. New methods for monitoring organic matter and heavy metals in soils and sediments [M]. Beijing:China Environmental Science Press, 2011:167-177.
[20] Rauret G, López-sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring Jem, 1999,1(1):57-61.
[21] 郭 威,殷淑華,徐建新,等.三峽庫(kù)區(qū)(重慶-宜昌段)沉積物中釩的污染特征及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 環(huán)境科學(xué), 2016,37(9):3333-3339. Guo W, Yin S, Xu J, et al. Pollution characteristics and ecological risk assessment of vanadium in sediments of the Three Gorges Reservoir (Chongqing-Yichang Section) [J]. Environment Science, 2016,37(9): 3333-3339.
[22] 呂文哲,易 亮,付騰飛,等.西南印度洋中脊沉積物粒度特征及不同前處理方法對(duì)粒度特征的影響 [J]. 海洋科學(xué)進(jìn)展, 2017,35(4): 512-523. Lü W, Yi L, Fu T, et al. Grain-size characteristics and environmental significance of abyssal sediments from the southwest Indian Ridge [J]. Advances In Marine Science, 2017,35(4):512-523.
[23] Bárcena J F, Claramunt I, Garcíaalba J, et al. A method to assess the evolution and recovery of heavy metal pollution in estuarine sediments: Past history, present situation and future perspectives [J]. Marine Pollution Bulletin, 2017,124(1):421-434.
[24] 中國(guó)環(huán)境監(jiān)測(cè)總站.中國(guó)土壤元素背景值 [M]. 北京:中國(guó)環(huán)境科學(xué)出版社, 1990:372-377. China National Environmental Monitoring Center. Background values of soil elements in China [M]. Beijing: China Environmental Science Press, 1990:372-377.
[25] Harikrishnan N, Ravisankar R, Chandrasekaran A, et al. Assessment of heavy metal contamination in marine sediments of east coast of Tamil Nadu affected by different pollution sources [J]. Marine Pollution Bulletin, 2017,121(1/2):418-424.
[26] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980,14(8):975-1001.
[27] 侯 千,馬建華,王曉云,等.開(kāi)封市幼兒園土壤重金屬生物活性及潛在生態(tài)風(fēng)險(xiǎn) [J]. 環(huán)境科學(xué), 2011,32(6):1764-1771. Hou Q, Ma J, Wang X, et al. Bioavailability and potential ecological risk of soil heavy metals in kindergartens, Kaifeng City [J]. Environment Science, 2011,32(6):1764-1771.
[28] 徐爭(zhēng)啟,倪師軍,庹先國(guó).等.潛在生態(tài)危害指數(shù)法評(píng)價(jià)中重金屬毒性系數(shù)計(jì)算 [J]. 環(huán)境科學(xué)與技術(shù), 2008,31(2):112-115. Xu Z, Ni S, Tuo X, et al. Calculation of heavy metals’toxicity coefficient in the evaluation of potential ecological risk index [J]. Environmental Science & Technology, 2008,31(2):112-115.
[29] 李天杰,趙 燁,張科利,等.土壤地理學(xué) [M]. 北京:高等教育出版社, 2004:36-37. Li T, Zhao Y, Zhang K, et al. Soil geography [M]. Beijing: Higher Education Press, 2004:36-37.
[30] 喻慶國(guó),董躍宇,楊宇明,等.滇西北高原湖泊劍湖時(shí)空演變規(guī)律及驅(qū)動(dòng)機(jī)制 [J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 2014,34(10):76-83. Yu Q, Dong Y, Yang Y, et al. Spatial-temporal evolutions and driving mechanisms of Alpine Wetland Jianhu Lake in Northwest Yunnan, China [J]. Journal of Central South University of Forestry & Technology, 2014,34(10):76-83.
[31] 陳榮彥,宋學(xué)良,張世濤,等.滇池700年來(lái)氣候變化與人類活動(dòng)的湖泊環(huán)境響應(yīng)研究 [J]. 鹽湖研究, 2008,16(2):7-12. Chen R, Song X, Zhang S, et al. Dianchi Lake sediment records of climate changes and humane activities in the past 700 years [J]. Journal of Salt Lake Research, 2008,16(2):7-12.
[32] 范成新.湖泊沉積物界面過(guò)程與效應(yīng) [M]. 北京:科學(xué)出版社, 2013:238-239. Fan C. Interfacial processes and effects of lake sediments [M]. Beijing: Science Press, 2013:238-239.
[33] 毛志剛,谷孝鴻,陸小明,等.太湖東部不同類型湖區(qū)疏浚后沉積物重金屬污染及潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 環(huán)境科學(xué), 2014,35(1):186-193. Mao Z, Gu X, Lu X, et al. Pollution distribution and potential ecological risk assessment of heavy metals in sediments from the different eastern dredging regions of Lake Taihu [J]. Environment Science, 2014,35(1):186-193.
[34] 李 勇.重金屬的生態(tài)地球化學(xué)與人群健康研究 [M]. 廣州:中山大學(xué)出版社, 2014:18-24,71-73. Li Y. Ecological geochemistry and population health research of heavy metals [M]. Guangzhou: Zhongshan University Press, 2014:18-24, 71-73.
[35] Silva L F O, Oliveira M L S, Sampaio C H, et al. Vanadium and Nickel Speciation in Pulverized Coal and Petroleum Coke Co-combustion [J]. Energy & Fuels, 2013,27(3):1194-1203.
[36] 張智慧,李 寶,梁仁君.南四湖南陽(yáng)湖區(qū)河口與湖心沉積物重金屬形態(tài)對(duì)比研究 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2015,35(5):1408-1416. Zhang Z, Li B, Liang R. Comparison of sediment heavy metal fractions at estuary and center of Nanyang Zone from Nansi Lake, China [J]. Acta Scientiae Circumstantiae, 2015,35(5):1408-1416.
[37] Guven D E, Akinci G. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Iner Bay [J]. Journal of Environmental Sciences, 2013,25(9):221-229.
[38] 吳俊鋒,謝 飛,陳麗娜,等.太湖重污染湖區(qū)底泥沉積物特性 [J]. 水資源保護(hù), 2011,27(4):74-78. Wu J, Xie F, Chen L, et al. Characteristics of bottom sediment in heavily polluted area of Taihu Lake [J]. Water Resources Protection, 2011,27(4):74-78.
[39] 王鳴宇,張 雷,秦延文,等.湘江表層沉積物重金屬的賦存形態(tài)及其環(huán)境影響因子分析 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2011,31(11):2447-2458. Wang M, Zhang L, Qin Y, et al. Speciation of heavy metals in sediments from Xiang River and analysis of their environmental factors [J]. Acta Scientiae Circumstantiae, 2011,31(11):2447-2458.
[40] Vu C T, Lin C, Shern C C, et al. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan [J]. Ecological Indicators, 2017,82: 32-42.
[41] 劉存芳.城市有機(jī)垃圾厭氧消化pH控制動(dòng)力學(xué)研究 [D]. 長(zhǎng)沙:湖南大學(xué), 2006. Liu C. Study on pH control kinetics of anaerobic digestion of urban organic waste [D]. Changsha: Hunan University, 2006.
[42] Idriss A A, Ahmad. Heavy metals nickel and chromiumin sediments in the Juru River, Penang, Malaysia [J]. Journal of Environmental Protection, 2013,4:1245-1250.
[43] 林承奇,胡恭任,于瑞蓮,等.九龍江表層沉積物重金屬賦存形態(tài)及生態(tài)風(fēng)險(xiǎn) [J]. 環(huán)境科學(xué), 2017,38(3):1002-1009. Lin C, Hu G, Yu R, et al. Speciation and ecological risk of heavy metals in surface sediments from Jiulong River [J]. Environment Science, 2017,38(3):1002-1009.
[44] 董世魁,趙 晨,劉世梁,等.水壩建設(shè)影響下瀾滄江中游沉積物重金屬形態(tài)分析及污染指數(shù)研究 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2016,36(2):466- 474. Dong S, Zhao C, Liu S, et al. Speciation and pollution of heavy metals in sediment from middle Lancang-Mekong River influenced by dams [J]. Acta Scientiae Circumstantiae, 2016,36(2):466-474.
[45] 邱敏嫻,胡恭任,于瑞蓮,等.泉州灣洛陽(yáng)江河口潮灘表層沉積物中重金屬賦存形態(tài)分析 [J]. 環(huán)境化學(xué), 2013,32(2):212-218. Qiu M, Hu G, Yu R, et al. Speciation of heavy metals in the tidal-flat surface sediment from Luoyang River estuary of Quanzhou Bay [J]. Environmental Chemistry, 2013,32(2):212-218.
[46] 許國(guó)云,段宗亮,田 昆.滇西北高原主要濕地挺水植物凈化氮、磷效應(yīng)研究 [J]. 山東林業(yè)科技, 2014,44(2):1-6. Xu G, Duan Z, Tian K. A Study on the purification effects of main emergent plants in the Plateau wetland northwestern Yunnan [J]. Shandong Forestry Science and Technology, 2014,44(2):1-6.
[47] 董貫倉(cāng),李秀啟,師吉華,等.南四湖底棲動(dòng)物群落結(jié)構(gòu)特征及其與環(huán)境因子的關(guān)系 [J]. 湖泊科學(xué), 2013,25(1):119-130. Dong G, Li X, Shi J, et al. Community characteristics of macrozoobenthos and its relationship to environmental factors in Lake Nansi [J]. Journal of Lake Sciences, 2013,25(1):119-130.
[48] Hernández-Mendoza H, Ríos-Lugo M J, Romero-Guzmán E.Y, et al. Heavy metals monitoring in sediments from Lerma River in West-Central Mexico [J]. American Journal of Analytical Chemistry, 2018,9:77-87.
[49] 朱耀軍,郭菊蘭,武高潔,等.湛江高橋紅樹(shù)林沉積物理化性質(zhì)與金屬元素的空間分布 [J]. 北京林業(yè)大學(xué)學(xué)報(bào), 2014,36(2):1-9. Zhu Y, Guo J, Wu G, et al. Spatial distribution of physicochemical properties and metal concentration in mangrove sediments from Gaoqiao in Zhanjiang, Guangdong of Southern China [J]. Journal of Beijing Forestry University, 2014,36(2):1-9.
[50] Shrestha N K, Wang J. Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate [J]. Science of the Total Environment, 2018,625:1030-1045.
致謝:非常感謝西南林業(yè)大學(xué)國(guó)家高原濕地研究中心王行研究員對(duì)論文英文部分的修改!
Spatial distribution characteristics and ecological risks of vanadium in sediments from Jianhu Lake, Northwest Yunnan Province, China.
LI Bo1,2, YU Qing-guo1,2*, WEI Feng3, ZHANG Yin-feng1,2, ZHANG Qi4, WANG Sheng-long1,2, LI Li-ping1,2
(1.College of Wetlands, Southwest Forestry University, Kunming 650224, China;2.National Plateau Wetlands Research Center, Kunming 650224, China;3.College of Ecology and Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China;4.College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China)., 2019,39(5):2219~2229
The inductively coupled plasma-optical emission spectrometer (ICP-OES) was used to determine the concentrations of vanadium in surface and columnar sediments from Jianhu Lake. The modified BCR sequential extraction method was used to extract the different fractions of vanadium, and then the characteristics of spatial distribution and ecological risks of vanadium were assessed, the effects of sediment particle size on the concentrations of vanadium and its fractions were also studied. The results showed that the sediment particles in surface and columnar sediments in Jianhu Lake were mainly composed of silt and fine sand, and the concentrations of vanadium in fine particles were higher. The concentration of vanadium in surface sediments from Jianhu Lake was (117.82±63.31)mg/kg, and its horizontal distribution varied substantially. The concentrations of vanadium in exchangeable, reducible, oxidizable, and residual fraction were (8.91±8.91), (18.36±10.53), (7.67±7.67), (80.22±58.71) mg/kg, respectively. This indicated that vanadium mainly presented in the form of residual fraction. Furthermore, the clay and silt in sediments had a great influence on the reducible and residual fractions of vanadium. The vertical distribution of vanadium also varied greatly, and the concentration of vanadium in bottom sediments was higher than that in surface layer. In addition, the concentrations of vanadium were affected by clay and silt in some areas of Jianhu Lake. The degree of vanadium pollution was mild in sediments from Jianhu Lake, and the potential ecological risks of vanadium were low in most areas. The contamination levels and the potential ecological risks of vanadium in the bottom sediments were higher than those in surface layer.
vanadium;sediment;granularity;spatial distribution;fraction;ecological risk
X131
A
1000-6923(2019)05-2219-11
李 波(1992-),男,重慶長(zhǎng)壽人,西南林業(yè)大學(xué)碩士研究生,主要從事濕地沉積物和水體重金屬污染研究.發(fā)表論文1篇.
2018-10-23
*責(zé)任作者, 教授, 1170548030@qq.com