国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

延遲Gompertz模型的數(shù)值分支和混合控制

2019-06-11 08:27宋繼志王媛媛
河北科技大學(xué)學(xué)報 2019年2期

宋繼志 王媛媛

摘要:為了研究物種的穩(wěn)定性問題,要求縮小或者擴(kuò)大生物系統(tǒng)的穩(wěn)定區(qū)域,通過混合控制歐拉法研究了一個時滯Gompertz模型,運(yùn)用狀態(tài)反饋和參數(shù)擾動控制得到了Neimark-Sacker分支的理想結(jié)果。根據(jù)Hopf分支理論得到了連續(xù)系統(tǒng)平衡點(diǎn)的穩(wěn)定性,通過混合控制歐拉算法得到了離散系統(tǒng)在要求的分支點(diǎn)所產(chǎn)生的Neimark-Sacker分支,利用中心流形定理和正規(guī)形方法,給出了確定分支周期解的分支方向與穩(wěn)定性的計算公式。采用數(shù)值模擬驗證了所得結(jié)果的正確性。研究結(jié)果表明,對于延遲Gompertz模型系統(tǒng),如果選擇合適的控制參數(shù),就能夠使分支點(diǎn)提前或者延遲。研究方法在理論和數(shù)值模擬方面都得到了良好的預(yù)期結(jié)果,為解決相關(guān)的控制問題提供了新的方法,對其他領(lǐng)域的控制問題研究具有一定的借鑒意義。

關(guān)鍵詞:常微分方程數(shù)值解; Gompertz模型; 混合控制; 歐拉法; 延遲; Neimark-Sacker分支

中圖分類號:O1891文獻(xiàn)標(biāo)志碼:A

Abstract: In order to study the stability of species, the biological systems are required to reduce or expand the stable region. For a Gompertz model with time delay, a hybrid control Euler method is proposed in which state feedback and parameter perturbation are used to control the Neimark-Sacker bifurcation. The local stability of the equilibria is discussed according to Hopf bifurcation theory. For controlling Neimark-Sacker bifurcation, the hybrid control numerical algorithm is introduced to generate the Neimark-Sacker bifurcation at a desired bifurcation point. The explicit algorithms for determining the direction of the bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form method and center manifold theorem. Numerical examples are provided to illustrate the theoretical results. The research results show that the branch point can be in advance or delay for the delay Gompertz model system through choosing appropriate control parameters. The algorithm has obtained good results both in theory and numerical performance, which provides a new method and has certain theoretical significance for its application in many control problems.

Keywords:numerical solution of ordinary differential equation; Gompertz model; hybrid control; Euler method; delay; Neimark-Sacker bifurcation

5結(jié)論

為了擴(kuò)大或者縮小控制區(qū)域,給出了應(yīng)用狀態(tài)反饋和參數(shù)擾動的混合控制數(shù)值歐拉法得到了Neimark-Sacker分支。對Gompertz連續(xù)系統(tǒng)實(shí)施混合控制得到了Hopf分支;通過選擇合適的控制參數(shù),實(shí)施混合控制數(shù)值算法延遲了原來分支點(diǎn)的出現(xiàn),應(yīng)用混合控制歐拉法,對充分小的步長給出了保持分支的結(jié)果。通過理論和數(shù)值模擬驗證了所得結(jié)果,得到了延遲Gompertz模型系統(tǒng)通過選擇合適的控制參數(shù),分支點(diǎn)可能提前或者延遲。在將來的研究計劃中,筆者將設(shè)計更好的數(shù)值控制方法,達(dá)到更好的控制效果。

參考文獻(xiàn)/References:

[1]LOPEZ-GOMEZ J, ORTEGA R, TINEO A. The periodic predator-prey Lotka-Volterra model[J]. Advances in Differential Equations, 1996,1(3): 403-423.

[2]PIOTROWSKA M J, FORYS U. Analysis of the Hopf bifurcation for the family of angiogenesis models[J].Journal of Mathematical Analysis Applications,2011,382(1):180-203.

[3]JIA Jianwen, LI Chunhua. A Predator-Prey Gompertz model with time delay and impulsive perturbations on the prey[J]. Discrete Dynamics in Nature Society, 2009(1026):332-337.

[4]DONG Lingzhen, CHEN Lansun, SUN Lihua. Optimal harvesting policies for periodic Gompertz systems[J]. Nonlinear Analysis Real World Applications,2007,8(2):572-578.

[5]沈啟宏,魏俊杰. 具時滯的人類呼吸系統(tǒng)模型的穩(wěn)定性與分支[J].應(yīng)用數(shù)學(xué)和力學(xué), 2004,25(11):1169-1181.

SHENG Qihong, WEI Junjie. Stability and bifurcation of a human respiratory system model with time delay[J]. Applied Mathematics and Mechanics, 2004,25(11):1169-1181.

[6]魏俊杰,張春蕊,李秀玲.具時滯的二維神經(jīng)網(wǎng)絡(luò)模型的分支[J].應(yīng)用數(shù)學(xué)和力學(xué),2005,26(2):193-200.

WEI Junjie, ZHENG Chunrui, LI Xiuling. Bifurcation in a two-dimensional neural network model with delay[J]. Applied Mathematics and Mechanics, 2005,26(2):193-200.

[7]YU Pei, CHEN Guanrong. Hopf bifurcation control using nonlinear feedback with polynomial functions[J]. International Journal of Bifurcation Chaos, 2004,14(5): 1683-1704.

[8]YU Pei. Bifurcation control for a class of Lorenze-like systems[J].International Journal of Bifurcation Chaos,2011,21(9): 2647-2664.

[9]CHEN G, MOIOLA J L, WANG H O. Bifurcation control: theories, methods, and applications[J]. International Journal of Bifurcation Chaos,2000,10(3): 511-548.

[10]HILL D J, HISKENS I A, WANG Y. Robust, adaptive or nonlinear control for modern power systems[C]// Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio:IEEE Xplore,1993:2335-2340.

[11]CHEN Z, YU P. Hopf bifurcation control for an internet congestion model[J]. International Journal of Bifurcation Chaos, 2005,15(8):2643-2651.

[12]LIU Zengrong, CHUNG K W. Hybrid control of bifurcation in continuous nonlinear dynamical systems[J]. International Journal of Bifurcation Chaos, 2005,15(12): 3895-3903.

[13]CHENG Zunshui, CAO Jinde. Hybrid control of Hopf bifurcation in complex networks with delays[J]. Neuro Computing,2014,131:164-170.

[14]SU Huan, DING Xiaohua. Dynamics of a nonstandard finite-difference scheme for Mackey-Glass system[J]. Journal of Mathematical Analysis and Applications, 2008,344(2): 932-941.

[15]DING Xiaohua, FAN Dejun, LIU Mingzhu. Stability and bifurcation of a numerical discretization Mackey-Glass system[J]. Chaos, Solitons, Fractals, 2007,34(2): 383-393.

[16]張春蕊,劉明珠.雙時滯神經(jīng)網(wǎng)絡(luò)模型分支性的數(shù)值逼近[J]. 系統(tǒng)仿真學(xué)報,2004,16,(4):797-799.

ZHANG Chunrui, LIU Mingzhu. Hopf bifurcations in numerical approximation for neural network model with two delays[J]. Journal of System Simulation, 2004,16(4):797-799.

[17]WANG Yuanyuan. Dynamics of a nonstandard finite-difference scheme for delay differential equations with unimodal feedback[J]. Communications in Nonlinear Science Numerical Simulation, 2012,17(10): 3967-3978.

[18]SU Huan, MAO Xuerong, LI Wenxue. Hopf bifurcation control for a class of delay differential systems with discrete-time delayed feedback controller[J]. Chaos, 2016, 26(11): 113120.

[19]WULF V, FORD N. J. Numerical Hopf bifurcation for a class of delay differential equation[J]. Journal of Computational and Applied Mathematics. 2000,115(1): 601-616.

[20]RUAN Shigui, WEI Junjie. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J]. Dynamics of Continuous Discrete Impulsive Systems, 2003,10(6): 863-874.

[21]YURI A K. Elements of Applied Bifurcation Theory[M]. New York:Springer-Verlag, 1995.

[22]KUZNETSOV Y. Elements of Applied Bifurcation Theory[M]. New York:Springer-Verlag, 1995.

[23]HALE J. Theory of Functional Differential Equations[M]. New York:Springer-Verlag, 1977.

[24]WULF V. Numerical Analysis of Delay Differential Equations Undergoing a Hopf Bifurcation[D].Liverpool: University of Liverpool, 1999.

[25]WIGGINS S. Introduction to Applied Nonlinear Dynamical System and Chaos[M]. New York:Springer-Verlag, 1990.第40卷第2期河北科技大學(xué)學(xué)報Vol.40,No.2

2019年4月Journal of Hebei University of Science and TechnologyApr. ?2019

永和县| 武城县| 桓仁| 屏边| 桓台县| 山阴县| 项城市| 津南区| 永嘉县| 潜山县| 安仁县| 左贡县| 邮箱| 津南区| 米林县| 吴忠市| 乐亭县| 玉屏| 越西县| 昌都县| 华坪县| 修文县| 大悟县| 临猗县| 上思县| 永吉县| 布尔津县| 苍溪县| 安阳县| 南江县| 漳州市| 青海省| 青神县| 武邑县| 肥西县| 金川县| 德阳市| 宜兰县| 东乡族自治县| 常州市| 黄骅市|