任艷 桑彥彬
摘要:為了研究一類帶有Hardy項(xiàng)和多臨界Sobolev-Hardy指數(shù)的擬線性p-重調(diào)和方程解的存在性,借助于Ekeland變分原理,給出上述問(wèn)題解的存在性定理。首先,將方程對(duì)應(yīng)的變分泛函定義在約束集Mη(通常稱為Nehari流形)上,使得該泛函下方有界。其次,利用纖維映射將上述集合Mη劃分為M+η,M0η和M-η等3部分,并分別研究每部分的性質(zhì),證明了M+η和M-η中泛函極小值的存在性。最后,利用隱函數(shù)定理,得到在參數(shù)滿足一定條件下,存在極小化序列{un},滿足(PS)c條件,從而完成了該方程解的存在性的證明。所得結(jié)論可為判定解的結(jié)構(gòu)和性質(zhì)提供理論依據(jù)。
關(guān)鍵詞:非線性泛函分析;臨界Sobolev-Hardy項(xiàng);擬線性p-重調(diào)和方程;Ekeland變分原理;解的存在性
中圖分類號(hào):O175.25文獻(xiàn)標(biāo)志碼:A
Abstract:In order to study a class of quasilinear p-biharmonic equations with Hardy terms and multi-critical Sobolev-Hardy exponents, the existence theorem of the solutions to the above problem is established by means of the Ekeland variational principle. Firstly, to guarantee the variational functional is bounded from below, it is restricted on a set ?Mη (usually called Nehari manifold). Secondly, the set Mη ?is divided into three parts ?M+η, M0η ?and M-η ?by using fibering maps. Moreover, the existence of minimum in ?M+η and M-η ?is proved by studying the properties of the two subsets. Finally, by using implicit function theorem, it is found that there exists a minimizing sequence {un} ?making the (PS)c ?conditions hold when the parameters satisfy certain conditions. Therefore, the existence of the solutions to the problem is proved. The conclusions provide a theoretical basis for judging the structure and properties of the solutions.
Keywords:nonlinear functional analysis; critical Sobolev-Hardy terms; quasilinear p-biharmonic equations; Ekeland's variational principle; existence of the solution
3結(jié)論
本文討論了一類具有臨界指數(shù)的p-重調(diào)和方程,運(yùn)用變分方法和Ekeland變分原理,建立了其解的存在性定理,可為判定解的結(jié)構(gòu)和性質(zhì)提供理論依據(jù)。
參考文獻(xiàn)/References:
[1]TSING-SAN H, HUE-LI L. Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev-Hardy exponents[J]. Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 2010, 140(3):617-633.
[2]WANG Li, WEI Qiaoling, KANG Dongsheng. Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term [J]. Nonlinear Analysis, 2011, 74(2): 626-638.
[3]MUSINA R. Optimal Rellich-Sobolev constants and their extremals[J]. Differential and Integral Equations, 2014, 27(5):579-600.
[4]LI Yuanyuan. Nonexistence of p-Laplace equations with multiple critical Sobolev-Hardy terms[J]. Applied Mathematics Letters, 2016, 60:56-60.
[5]GHOUSSOUB N, YUAN C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J]. Transactions of the American Mathematical Society, 2000, 352(12):5703-5743.
[6]GAO Wenjie, LI Yuanxiao. Existence of multiple solutions for quasilinear elliptic equation with critical Sobolev-Hardy terms [J]. Mathematical Methods in the Applied Sciences, 2015, 38(1):145-154.
[7]LI Yuanyuan, GUO Qianqiao, NIU Pengcheng. The existence of solutions for quasilinear elliptic problems with combined critical Sobolev-Hardy terms[J]. Journal Mathematical Analysis and Applications, 2012,388:525-538.
[8]GAO Wenliang, PENG Shuangjie. An elliptic equation with combined critical Sobolev-Hardy terms[J]. Nonlinear Analysis, 2006, 65(8):1595-1612.
[9]呂登峰. 一類含Sobolev-Hardy臨界指數(shù)橢圓方程非平凡解的存在性[J]. 石河子大學(xué)學(xué)報(bào)(自科版), 2007, 25(4):525-528.LYU Dengfeng. Existence of nontrivial solutions for an elliptic equations with critical Sobolev-Hardy exponents [J]. Journal of Shihezi University (Natural Science Edition), 2007, 25(4):525-528.
[10]BHAKTA M. Entire solutions for a class of elliptic equations involving p-biharmonic operator and Rellich potentials[J]. Journal of Mathematical Analysis and Applications, 2015, 423(2):1570-1579.
[11]NYAMORADI N, JAVIDI M. Solutions of the quasilinear elliptic systems with combined critical Sobolev-Hardy terms[J]. Ukrainian Mathematical Journal, 2015, 67(6):1-25.
[12]朱玉, 商彥英. 帶有加權(quán)Hardy-Sobolev臨界指數(shù)的擬線性橢圓方程正解的存在性和多重性[J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 40(2):56-63.ZHU Yu, SHANG Yanying. Existence and multiplicity of positive solutions for a quasilinear elliptic equation with weighted Hardy-Sobolev exponents[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(2):56-63.
[13]PENG Zhen, CHEN Guanwei. Existence and multiplicity of positive solutions for p-Laplacian elliptic equations[J]. Boundary Value Problems, 2016, 2016:125.
[14]劉海燕, 廖家鋒, 唐春雷. 帶Hardy-Sobolev臨界指數(shù)的半線性橢圓方程正解的存在性[J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 37(6):60-65.LIU Haiyan, LIAO Jiafeng, TANG Chunlei. Existence of positive solutions for semilinear elliptic equations with critical Hardy-Sobolev exponents [J]. Journal of Southwest University (Natural Science Edition), 2015, 37(6):60-65.
[15]CALDIROLI P. Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on RN[J]. Communications on Pure and Applied Analysis, 2014, 13(2):811-821.
[16]BUENO H, PAES-LEME L, RODRIGUES H. Multiplicity of solutions for p-biharmonic problems with critical growth [J]. Rocky Mountain Journal of Mathematics, 2018, 48(2):425-442.
[17]杜剛. 全空間上帶Hardy-Sobolev臨界指數(shù)的擬線性橢圓方程變號(hào)解的存在性[J]. 西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 39(9):11-16.DU Gang. On existence of sign-changing solutions for quasilinear elliptic equation involving Hardy-Sobolev exponents in RN[J]. Journal of Southwest China Normal University (Natural Science Edition), 2014, 39(9):11-16.
[18]DAVIES E B, HINZ A M. Explicit constants for Rellich inequalities [J]. Mathematische Zeitschrift, 1998, 227(3):511-523.
[19]MICHEL W. Minimax Theorem [M].Boston: Birkhuser, 1996.
[20]TARANTELLO G. On nonhomogeneous elliptic equations involving critical Sobolev exponent [J]. Annales de Linstitut Henri Poincaré, 1992, 9(3):281-304.
[21]CHEN Yaoping, CHEN Jianqing. Multiple positive solutions for a semilinear equation with critical exponent and prescribed singularity[J]. Nonlinear Analysis Theory Methods and Applications, 2016, 130(6):121-137.