趙立英 王敏珍
摘 ?要: 采用人工方式監(jiān)測輸電線路桿塔接地狀態(tài)時(shí),存在測量時(shí)間較長,無法及時(shí)監(jiān)測故障點(diǎn)的弊端,因此研究一種輸電線路桿塔接地狀態(tài)在線監(jiān)測方法。分析輸電線路桿塔接地在線監(jiān)測原理,獲取故障發(fā)生時(shí)接地電位與入地電流,修正不同形狀接地裝置,利用平均電位求出輸電線路桿塔接地電阻,再計(jì)算加入埋深與降阻劑的輸電線路桿塔接地裝置電阻,以及考慮4個(gè)基礎(chǔ)接地電阻并聯(lián)得到的最終接地電阻;故障檢測器中設(shè)定電流數(shù)值,若通過該輸電線路桿塔工頻接地電流比設(shè)定電流大,則故障指示器提示故障,接地電流短路時(shí),依據(jù)差動電路原理通過傳感器確認(rèn)故障桿塔位置。實(shí)驗(yàn)結(jié)果表明,該方法可準(zhǔn)確檢測出輸電線路桿塔接地電阻與故障點(diǎn)準(zhǔn)確位置,監(jiān)測電阻誤差均低于0.1 Ω,監(jiān)測效率高。
關(guān)鍵詞: 輸電線路; 桿塔; 接地狀態(tài); 在線檢測; 故障監(jiān)測; 接地電阻
中圖分類號: TN931+.3?34; TM45 ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)12?0100?04
Abstract: In allusion to the disadvantages of long measurement time and inability to monitor the fault points in time when the manual mode is adopted for grounding state monitoring of the power transmission line tower, a grounding state online monitoring method is researched for the power transmission line tower. The principle of grounding online monitoring is analyzed for the power transmission line tower. The grounding potential and grounding current at fault occurrence are obtained. The grounding devices of different shapes are modified. The grounding resistance of the power transmission line tower is solved by using the average potential. The resistance of the grounding device with buried depth and resistance reducing agent added is calculated for the power transmission line tower. The final grounding resistance is obtained by considering the parallel value of four basic grounding resistors. The current value of the fault detector is set. The fault indicator indicates the fault if the power frequency grounding current passing through the power transmission line tower is larger than the set current. The location of the fault tower is determined by the sensor according to the principle of the differential circuit if the grounding current is short?circuited. The experimental results show that the method can accurately detect the grounding resistance of the power transmission line tower and the accurate location of the fault point, and the resistance monitoring errors are all lower than 0.1 Ω, which indicates that the method has a high monitoring efficiency.
Keywords: power transmission line; tower; grounding state; online detection; fault monitoring; grounding resistance
0 ?引 ?言
社會與科技的高速發(fā)展大大增加了用電負(fù)荷,用電安全逐漸引起人們的重視[1]。輸電線路桿塔的接地電阻直接影響著供電系統(tǒng)安全,輸電線路桿塔接地電阻越小,抗雷擊效果越好,電路受雷擊損害致使跳閘的可能性就越小,因此有效的輸電線路桿塔接地狀態(tài)在線監(jiān)測方法就顯得尤為重要[2]。利用在線監(jiān)測方法時(shí)刻監(jiān)視接地電阻,發(fā)現(xiàn)不合格接地電阻應(yīng)立刻采取應(yīng)對措施,可極大地增強(qiáng)輸電線路供電安全性[3];并且有效輸電線路桿塔接地狀態(tài)在線監(jiān)測方法可準(zhǔn)確快速檢測出接地短路點(diǎn),為電路搶修提供寬裕時(shí)間[4]。但是當(dāng)前通常采用人工方式檢測輸電線路桿塔接地狀態(tài),存在測量時(shí)間長、無法及時(shí)監(jiān)測到故障點(diǎn)的弊端。因此,本文提出新的輸電線路桿塔接地狀態(tài)在線監(jiān)測方法。
1 ?輸電線路桿塔接地狀態(tài)在線監(jiān)測
1.1 ?輸電線路桿塔接地在線監(jiān)測原理
輸電線路桿塔接地出現(xiàn)故障情況,流向輸電線路桿塔接地裝置短路電流形成接地電位,公式為:
接地電阻與埋深有一定關(guān)系,需要將地表影響考慮進(jìn)計(jì)算內(nèi),通過鏡像法將接地裝置地面鏡像設(shè)為空間中電阻率等于[ρ]的電流源,具體如圖1所示。
1.2 ?輸電線路桿塔接地故障檢測
輸電線路桿塔接地故障檢測基本原理為,在故障檢測器中設(shè)定電流數(shù)值,若通過該輸電線路桿塔工頻接地電流比設(shè)定電流大,則故障指示器提示故障[13]。在實(shí)際應(yīng)用中若僅以電流閾值判斷故障,容易出現(xiàn)誤檢導(dǎo)致檢測結(jié)果不準(zhǔn)確,應(yīng)先研究輸電線路各桿塔電流方向[14],故障接地電路圖如圖2所示。圖2中,[I3I1=1+1+4k2k],當(dāng)輸電線路桿塔工頻接地電流出現(xiàn)故障時(shí),多數(shù)電流流向輸電線路接地故障桿塔兩側(cè)的避雷線,少數(shù)流向故障桿塔[15]。[k]取值較大時(shí),故障桿塔電流與臨近桿塔電流相比結(jié)果約等于1。
接地電流短路時(shí),依據(jù)差動電路原理通過傳感器確認(rèn)輸電線路故障桿塔位置,接地故障指示器工作原理見圖3。
避雷線電流值大小會受兩側(cè)電參數(shù)影響,兩側(cè)傳感器輸出信號合為幅值相同的波形,桿塔正常情況時(shí),桿塔兩側(cè)信號為方向相反的同樣大小電流。因此輸入指示器大小接近零,指示器不受影響。桿塔出現(xiàn)故障時(shí)桿塔兩側(cè)信號為方向相同的同樣大小電流,因此電流增加1倍,指示器發(fā)出故障提示。
2 ?實(shí)驗(yàn)分析
為驗(yàn)證本文方法監(jiān)測輸電線路桿塔接地狀態(tài)情況,將本文方法與三極相位法和鉗表法進(jìn)行監(jiān)測對比。選取某供電局10個(gè)輸電線路桿塔進(jìn)行測試。20個(gè)輸電線路桿塔基本情況見表1。
測試3種測量方法監(jiān)測20個(gè)輸電線路桿塔接地電阻監(jiān)測結(jié)果見表2。
3種方法監(jiān)測輸電線路桿塔接地電阻誤差結(jié)果見表3。分析表3得出,本文方法監(jiān)測輸電線路桿塔接地電阻誤差均低于0.1 Ω,而三極相位法與鉗表法監(jiān)測電阻結(jié)果誤差均大于1 Ω,鉗表法監(jiān)測誤差甚至高于6 Ω。因此可知本文方法監(jiān)測輸電線路桿塔接地狀態(tài)準(zhǔn)確,可用在實(shí)際桿塔接地狀態(tài)在線監(jiān)測中。
3 ?結(jié) ?論
本文研究的輸電線路桿塔接地狀態(tài)在線監(jiān)測方法可準(zhǔn)確監(jiān)測出輸電線路桿塔接地電阻與故障點(diǎn),并可以快速反饋給指示器。本文技術(shù)不僅適用于普通場所,也適用于出現(xiàn)故障損失巨大的超高壓輸電線路以及人工不方便檢測的各種地質(zhì)的偏遠(yuǎn)山區(qū)。經(jīng)大量實(shí)驗(yàn)結(jié)果可知,采用本文方法可以實(shí)時(shí)準(zhǔn)確地監(jiān)測輸電線路桿塔接地電阻及故障點(diǎn),減少因雷擊等故障導(dǎo)致輸電線路桿塔跳閘情況,確保輸電線路的正常運(yùn)行。
注:本文通訊作者為王敏珍。
參考文獻(xiàn)
[1] 黃瑞瑩,黃道春,周軍,等.±400 kV直流輸電線路桿塔涉鳥故障風(fēng)險(xiǎn)區(qū)域研究[J].電工電能新技術(shù),2017,36(2):68?73.
HUANG Ruiying, HUANG Daochun, ZHOU Jun, et al. Research on bird damage risk region of 400 kV DC transmission line [J]. Advanced technology of electrical engineering and energy, 2017, 36(2): 68?73.
[2] 俞越中,朱海峰,張子陽,等.輸電線路桿塔接地體選材研究[J].材料科學(xué)與工藝,2017,25(5):25?31.
YU Yuezhong, ZHU Haifeng, ZHANG Ziyang, et al. Research on material selection of transmission tower grounding body [J]. Materials science and technology, 2017, 25(5): 25?31.
[3] 李臻奇,蔡翔,易浩,等.考慮接地電阻特性影響的差異性桿塔接地設(shè)計(jì)[J].電力科學(xué)與技術(shù)學(xué)報(bào),2016,31(4):168?174.
LI Zhenqi, CAI Xiang, YI Hao, et al. Study on difference tower grounding considering the characteristics of the grounding resistance [J]. Journal of electric power science and technology, 2016, 31(4): 168?174.
[4] 齊鄭,饒志,楊琳琳.OPGW架空輸電系統(tǒng)任一點(diǎn)接地短路電流分布的研究[J].電力系統(tǒng)保護(hù)與控制,2016,44(2):86?94.
QI Zheng, RAO Zhi, YANG Linlin. Research of current distribution between OPGWs in overhead transmission system with grounding fault at any point [J]. Power system protection and control, 2016, 44(2): 86?94.
[5] 成林,孔志戰(zhàn),王森,等.雷電流對桿塔接地裝置沖擊特性影響規(guī)律的研究[J].西安交通大學(xué)學(xué)報(bào),2017,51(4):53?58.
CHENG Lin, KONG Zhizhan, WANG Sen, et al. Influence of lightning current on impulse characteristic of ground device of pole and tower [J]. Journal of Xian Jiaotong University, 2017, 51(4): 53?58.
[6] 肖微,胡元潮,阮江軍,等.柔性石墨復(fù)合接地材料及其接地特性[J].電工技術(shù)學(xué)報(bào),2017,32(2):85?94.
XIAO Wei, HU Yuanchao, RUAN Jiangjun, et al. Flexible graphite composite electrical grounding material and its grounding application features [J]. Transactions of China Electrotechnical Society, 2017, 32(2): 85?94.
[7] 馬御棠,陳奎,易志興,等.超高壓交流輸電線路融冰避雷線絕緣架設(shè)對桿塔接地安全的影響[J].高電壓技術(shù),2016,42(2):650?656.
MA Yutang, CHEN Kui, YI Zhixing, et al. Effect of ice?melting ground wire insulation erection of EHV AC transmission lines on grounding safety of tower [J]. High voltage engineering, 2016, 42(2): 650?656.
[8] 李偉,向常圓,文習(xí)山,等.特高壓輸電線路桿塔雷電流分布的仿真[J].高電壓技術(shù),2016,42(8):2642?2650.
LI Wei, XIANG Changyuan, WEN Xishan, et al. Simulation of lightning current distribution in UHV transmission line towers [J]. High voltage engineering, 2016, 42(8): 2642?2650.
[9] 甘艷,鄒建明,張昌,等.柔性石墨接地體在山區(qū)桿塔接地網(wǎng)中的應(yīng)用[J].科學(xué)技術(shù)與工程,2017,17(10):198?201.
GAN Yan, ZOU Jianming, ZHANG Chang, et al. The application of flexible graphite composite electrical grounding material in mountain grounding grid [J]. Science technology and engineering, 2017, 17(10): 198?201.
[10] 張福軒,萬建成,程更生,等.架空輸電線路鐵塔組立施工技術(shù)標(biāo)準(zhǔn)體系優(yōu)化研究與建議[J].中國電力,2017,50(11):59?64.
ZHANG Fuxuan, WAN Jiancheng, CHENG Gengsheng, et al. Optimization research on technical standard system for assembly and erection construction of the steel towers of overhead transmission line [J]. Electric power, 2017, 50(11): 59?64.
[11] 黃新波,廖明進(jìn),徐冠華,等.采用光纖光柵傳感器的輸電線路鐵塔應(yīng)力監(jiān)測方法[J].電力自動化設(shè)備,2016,36(4):68?72.
HUANG Xinbo, LIAO Mingjin, XU Guanhua, et al. Stress monitoring method applying FBG sensor for transmission line towers [J]. Electric power automation equipment, 2016, 36(4): 68?72.