王淑雪,鄧靖宇,余龍,羅虎,高曉風(fēng),朱德生
?
CaYAlO4: Tb3+綠色熒光粉的低溫燃燒合成及發(fā)光性能
王淑雪,鄧靖宇,余龍,羅虎,高曉風(fēng),朱德生
(長江大學(xué) 物理與光電工程學(xué)院,荊州 434025)
以尿素為燃料,乙二醇為絡(luò)合劑,采用低溫燃燒法合成CaYAlO4: Tb3+綠色發(fā)光熒光粉。根據(jù)熒光粉的物相組成,確定最佳的合成溫度和尿素用量;對熒光粉的形貌與發(fā)光效果進行觀察與測試,并研究Tb3+摻雜量對熒光粉發(fā)光性能的影響。結(jié)果表明:尿素與基質(zhì)物質(zhì)CaYAlO4的最佳比例(CH4N2O):(Ca)為3:1,最佳合成溫度為800 ℃。合成的CaY0.96AlO4: 0.04Tb3+綠色熒光粉為球形顆粒,直徑約為15 nm。熒光粉的激發(fā)光譜主要由O2?→Y3+和O2?→Tb3+寬帶激發(fā)帶構(gòu)成,激發(fā)峰波長265 nm;發(fā)射光譜由位于490,545,586和620 nm的發(fā)射尖峰構(gòu)成,為Tb3+的5D4→7F(=6,5,4,3)躍遷,545 nm躍遷強度最大,熒光粉發(fā)綠光。Tb3+的最佳摻雜濃度(摩爾分數(shù))為0.06,濃度猝滅是由交換相互作用引起的。在紫外265 nm激發(fā)下,CaY0.96AlO4: 0.06Tb3+熒光粉發(fā)射光譜的色坐標為(0.320,0.363),在CIE1931色度圖上位于綠?黃?白光交界處,是一種潛在的LED用單摻雜綠光發(fā)光材料。
低溫燃燒法;CaYAlO4: Tb3+;熒光粉;激發(fā)光譜;發(fā)射光譜
CaYAlO4(簡稱CYA)屬于K2NiF4型晶體,為層狀鈣鈦礦結(jié)構(gòu),Al3+離子占據(jù)氧八面體中心,Y3+和Ca2+離子占據(jù)氧十二面體中心。K2NiF4型晶體具有良好的熱穩(wěn)定性、化學(xué)穩(wěn)定性和微波介電性能[1],可用作無機發(fā)光材料基質(zhì)[2?4],微波介質(zhì)材料[5],固體激光器基質(zhì)材料[6?7]等。CYA的合成一般需要較高的溫度和較長的保溫時間。其合成方法主要有高溫固相法、浮區(qū)法、提拉法、溶膠–凝膠法等。高溫固相法的燒結(jié)溫度最低為1 400 ℃,保溫時間長達24 h[8];用浮區(qū)法合成CYA:Tm3+時,燒結(jié)溫度為1 450 ℃,保溫20 h[9];提拉法由于對晶體的生長方向要求較高,所以需要比固相法更高的合成溫度,一般高于CYA的熔點(1 810 ℃)[10];溶膠?凝膠法的燒結(jié)溫度為1 000 ℃,保溫3 h[11]。高的合成溫度和長的保溫時間要求苛刻的實驗條件,同時會產(chǎn)生高能耗、產(chǎn)品結(jié)節(jié)等弊端,因此,降低合成溫度、改善產(chǎn)物形貌、增強發(fā)光性能,是熒光粉合成研究的必然發(fā)展方向。綠色光和紅、藍色光混合可獲得白光,同時,作為單色光,綠色發(fā)光在儀器儀表顯示及指示,交通指示、廣告牌顯示等方面有著廣泛的用途。對以Tb3+為發(fā)光中心,鉬酸 鹽[12?15]、鎢酸鹽[15?16]、鈦酸鹽[17]、磷酸鹽[18?21]、鋁酸鹽[22]、硅酸鹽[23?24]等為發(fā)光材料基質(zhì)的熒光粉研究表明,在無機發(fā)光材料基質(zhì)中摻雜Tb3+后,其發(fā)射光譜為Tb3+的5D4→7F(=0~6)躍遷譜線,5D4→7F5躍遷最強,為綠色發(fā)光。ZHOU等[4]研究了提拉法制備Er3+摻雜CYA的晶體生長和發(fā)光性質(zhì),結(jié)果表明,CYA: Er3+是一種用于人眼安全區(qū)域激光操作的有前景的發(fā)光材料。PERRELLA等[25]對CYA進行Er3+/Yb3+共摻雜,材料在可見光的綠光區(qū)和紅光區(qū)具有良好的發(fā)光性能,Er3+–Yb3+之間存在能量傳遞,同時在紅外1 550 nm處存在優(yōu)異的發(fā)光性能。BARTIC等[26]利用高溫固相法合成的CYA: Eu3+熒光粉,在611.5 nm具有良好的紅光發(fā)光特性。Tb+進入晶格中心后占據(jù)Y3+離子位,在電荷遷移帶峰值波長激發(fā)下,具有良好的綠光發(fā)射性質(zhì),在CYA中摻雜 Tb+,有望得到具有良好發(fā)光性質(zhì)的綠色發(fā)光熒光粉。因此本文作者以尿素為燃料,乙二醇為絡(luò)合劑,用低溫燃燒法合成CYA: Tb+熒光粉。低溫燃燒法的燃料通常采用尿素、檸檬酸、氨基乙酸等,尿素和檸檬酸、氨基乙酸在燃燒反應(yīng)中具有相同的效果,但尿素取材簡單、價格低廉,因而被廣泛使用。尿素燃燒發(fā)出的熱量可以提供晶體合成的能量,能有效降低合成溫度,減輕顆粒的團聚;絡(luò)合劑能夠作為溶劑對原料進行分散,在合成過程中隨溫度升高發(fā)生膨脹,使合成產(chǎn)品呈網(wǎng)狀,減小顆粒粒徑。本研究的結(jié)果對于LED用綠光發(fā)光材料的制備與研究提供實驗依據(jù)。
實驗所用原料為:Ca(NO3)2?4H2O(西隴化工股份有限公司,分析純),Al(NO3)3·9H2O(天津市科密歐化學(xué)試劑有限公司,分析純),尿素(CH4N2O,國藥集團化學(xué)試劑有限公司,分析純),乙二醇(C2H6O2,國藥集團化學(xué)試劑有限公司,分析純),質(zhì)量分數(shù)69%的濃硝酸(株洲市星空化玻有限責(zé)任公司,分析純),氨水(天津市致遠化學(xué)試劑有限公司,分析純),Y2O3和Tb4O7(湖南省稀土研究所,純度99.99%)。
按照CaY0.96AlO4: 0.04Tb3+的計量比稱取適量的原料,將Ca(NO3)2?4H2O和Al(NO3)3?9H2O裝入燒杯1,Y2O3和Tb4O7裝入燒杯2。在燒杯1中按(CH4N2O):(Ca)=3:1的比例加入尿素,按(C2H6O2):(CH4N2O)= 4:1的比例加入乙二醇,再加入適量的去離子水。向燒杯2中緩慢滴入濃硝酸至過量,氧化物完全溶解,轉(zhuǎn)變?yōu)橄鄳?yīng)的硝酸鹽,過量濃硝酸用氨水中和,直至溶液pH=4。將燒杯2中的溶液倒入燒杯1,置于電磁攪拌器上攪拌1 h。將攪拌均勻的溶液分為5份,置于不同的剛玉坩堝。取其中1份放入電阻爐,電阻爐溫度設(shè)置為500 ℃,從室溫開始緩慢升溫至500℃,保溫20 min,然后隨爐冷卻。其余4份樣品依次合成,溫度分別設(shè)置為600,700,800和900 ℃,保溫時間均為20 min。對合成產(chǎn)物進行物相分析,以確定最佳合成溫度。
按CaY0.96AlO4: 0.04Tb3+化學(xué)計量比稱取Ca- (NO3)2?4H2O,Al(NO3)3?9H2O,Y2O3和Tb4O7各5份。按(CH4N2O)/(Ca)的值分別為1,2,3,4和5的比例加入尿素,在最佳合成溫度下合成CaY0.96AlO4: 0.04 Tb3+熒光粉,熒光粉樣品編號分別為1n,2n,3n,4n和5n,對合成產(chǎn)物進行物相分析,確定最佳的尿素添加量。
按CaY1?xAlO4:Tb3+(=0.01~0.07,摩爾分數(shù))的化學(xué)計量比稱取原料,用在最佳尿素添加量和最佳合成溫度下合成熒光粉,對合成產(chǎn)物進行物相分析和發(fā)光性能檢測,以確定最佳Tb3+摻雜量。
用Cu靶Kα1輻射的DMAX?2500型X射線衍射儀(XRD)對合成的熒光粉進行物相分析,管電壓40 kV,管電流250 mA,掃描步長0.02°,掃描速度8 (°)/min,范圍10°~80°。通過Tecnai G220 ST型透射電鏡觀察熒光粉的形貌,最高加速電壓200 kV,晶格分辨率0.14 nm,最小束斑尺寸1.5 nm。用日立F-4500型熒光分光光度計測定熒光粉的發(fā)光性能,氙燈光源,電壓為400 V,狹縫寬度為5 nm,掃描速度為240 nm/min。
圖1所示為在不同溫度下合成的CaY0.96AlO4: 0.04Tb3+熒光粉XRD譜。當(dāng)合成溫度為500 ℃時,經(jīng)過較長時間蒸發(fā)水分,溶液膨脹并緩慢燃燒,產(chǎn)物為黑色,由圖1可知合成樣品的XRD譜較復(fù)雜,未見明顯產(chǎn)物生成,最強峰與Y2O3(PDF#41-1105)的(222)晶面衍射譜吻合。合成溫度為600 ℃時,樣品內(nèi)層為黑色,XRD譜與500 ℃下合成的相同;表面層為白色,其主要特征峰與CYA(即CaYAlO4)(PDF#24-0221)的一致,但背景復(fù)雜,包含大量強度較低的第二相衍射峰。合成溫度為700 ℃和800 ℃時,樣品的XRD譜與CYA的標準衍射譜基本一致,含少量Y2O3,但峰強微弱,表明合成產(chǎn)物基質(zhì)為CYA,800 ℃時CYA的衍射峰強度更大。合成溫度為900 ℃時,樣品顆粒增大,出現(xiàn)大量新的第二相。因此認為最佳合成溫度為800 ℃。
圖1 不同溫度下合成CaY0.96AlO4: 0.04Tb3+綠色熒光粉的XRD譜
圖2所示為按照(CH4N2O)/(Ca)的值分別為1,2,3,4和5的比例加入尿素,在800 ℃下燃燒合成的CaY0.96AlO4:0.04Tb3+熒光粉XRD譜(所得熒光粉樣品編號分別為1n,2n,3n,4n和5n)。由圖可見,(CH4N2O)/(Ca)=1時,燃料不足,未生成CYA;(CH4N2O)/(Ca)=2時,產(chǎn)品主相為CYA,但譜線背景復(fù)雜,含大量第二相,且第二相的峰強較大;(CH4N2O)/(Ca)=3時,產(chǎn)品的XRD譜與CYA標準譜相吻合,屬于最佳的尿素添加量;(CH4N2O)/(Ca) =4時,Y2O3的衍射峰強度開始增大,表明尿素已過量;(CH4N2O)/(Ca)=5時,產(chǎn)物除CYA外,出現(xiàn)大量第二相,且第二相的衍射峰強度很高。
圖3所示為在(CH4N2O)/(Ca)=3、溫度為800 ℃條件下合成的不同Tb3+摻雜量的CaY1?xAlO4:Tb3+(= 0.01~0.07)熒光粉XRD譜。由圖可見,所有樣品的XRD譜均與CYA的標準譜線較好地吻合,少量的第二相譜線源于Y2O3的(222)晶面衍射。溶液劇烈燃燒過程中,部分原料在高溫下?lián)]發(fā),硝酸釔由于相對密度較大,揮發(fā)量較小,過量的硝酸釔分解為Y2O3。Tb3+離子進入CYA晶格后,可能占據(jù)Ca2+、Al3+和Y3+位,若Tb3+離子進入了CYA晶格后占據(jù)Ca2+位,其結(jié)果與占據(jù)Y3+位一致,因為在CYA晶體中,Y3+和Ca2+離子具有相同的坐標,Y3+和Ca2+離子被隨機取代;Tb3+,Al3+和Y3+的離子半徑分別為0.092,0.054和0.090 nm,由于Tb3+和Y3+具有相近的離子半徑,Tb3+離子進入了CYA晶格后會占據(jù)Y3+位。XRD譜中沒有出現(xiàn)Tb4O7的衍射峰,表明Tb3+離子進入CYA的晶格中占據(jù) Y3+位。
圖2 不同尿素添加量條件下合成的CaY0.96AlO4: 0.04Tb3+的XRD譜
Note: The numbers 1n, 2n, 3n, 4n and 5n indicate that the values of(CH4N2O)/(Ca) are 1, 2, 3, 4 and 5, respectively
圖3 CaY1?xAlO4: xTb3+的XRD譜
圖4(a)和(b)所示分別為CaY0.94AlO4: 0.06Tb3+的透射電鏡圖(transmission electron microscopy,TEM)和高分辨透射電鏡圖(high resolution transmission electron microscopy,HRTEM)。從TEM圖看出CaY0.94AlO4: 0.06Tb3+熒光粉為球形顆粒,粒徑約為15 nm。尿素和乙二醇在燃燒的過程中釋放大量氣體,因此樣品顆粒疏松,且團聚較輕。納米級粒徑有利于在LED封裝時熒光粉在膠水中的溶解;疏松的顆粒能最大限度保持晶體本身結(jié)構(gòu),從而使粉體的發(fā)光強度最佳。HRTEM圖中清晰的晶格條紋表明該熒光粉具有良好的結(jié)晶性,晶體的(103)晶面間距為0.278 nm。
圖4 CaY0.94AlO4: 0.06Tb3+綠色熒光粉的TEM和HRTEM圖
(a) TEM images; (b) HRTEM images
圖5(a)所示為CaY0.96AlO4: 0.04Tb3+的激發(fā)光譜,監(jiān)測波長為545 nm。由圖5(a)可見,在紫外區(qū)域,CYA: Tb3+的激發(fā)光譜主要由200~300 nm之間的寬帶激發(fā)構(gòu)成,峰值波長為265 nm,屬于基質(zhì)的電荷遷移帶(charge transfer band,CTB),源于O2?→Y3+和O2?→ Tb3+的電荷躍遷。激發(fā)光譜與Tb3+摻雜的鉬酸鹽[12]、鎢酸鹽[16]、磷酸鹽[19]等類似,表明Tb3+摻雜的無機發(fā)光材料在紫外區(qū)域的最佳激發(fā)波長,位于基質(zhì)CTB的峰值。Tb3+摻雜的CYA,其CTB強度很大,是一種潛在的紫外激發(fā)綠光發(fā)光材料。圖5(b)所示為CaY0.96-AlO4: 0.04Tb3+的發(fā)射光譜,激發(fā)波長為265 nm。發(fā)射光譜由位于490,545,586和621 nm處的系列發(fā)射峰構(gòu)成,屬于Tb3+的5D4→7F(=6,5,4,3)躍遷。發(fā)光最強的峰道位于545 nm處,對應(yīng)于Tb3+的5D4→7F5躍遷,屬綠光發(fā)射;490 nm處的峰強次之,發(fā)光在藍光區(qū);分別位于黃光和紅光區(qū)域的586和621 nm發(fā)光依次減弱。由于545 nm處的發(fā)光強度相對較大,因此熒光粉發(fā)綠光。
圖5 CaY0.96AlO4: 0.04Tb3+的激發(fā)光譜和發(fā)射光譜
(a) Excitation spectrum (em=545 nm); (b) Emission spectrum (ex=265 nm)
圖6所示為CaY1?xAlO4:Tb3+(=0.01~0.07)綠色熒光粉的發(fā)射光譜(ex=265 nm)。所有樣品的光譜線型與CaY0.96AlO4: 0.04Tb3+的一致,均由Tb3+的5D4→7F(=6,5,4,3)躍遷構(gòu)成。隨Tb3+摻雜量由0.01逐漸增加到0.06,熒光粉的發(fā)光強度逐漸增強到最大值,此后,隨Tb3+的摻雜量繼續(xù)增大,發(fā)光強度迅速減弱,發(fā)生濃度猝滅[13]。所以,Tb3+的最佳摻雜量為0.06。
圖6 CaY1?xAlO4: xTb3+熒光粉的發(fā)射光譜
熒光粉中稀土離子的濃度決定粉體發(fā)光的強弱,適當(dāng)濃度的稀土離子摻雜可發(fā)揮粉體的最大發(fā)光性能,過量的稀土離子摻雜會產(chǎn)生濃度猝滅。根據(jù)DEXTER關(guān)于發(fā)光材料的濃度猝滅理論[13],稀土離子的摻雜量與發(fā)光強度之間的關(guān)系可表示為:/μ?s/3(式中的為電多極指數(shù))。以摻雜濃度的常用對數(shù)lg為橫坐標,lg()為縱坐標作圖,并作直線擬合,如圖6所示。濃度猝滅部分斜率為?/3。取值為3,6,8,10時,濃度猝滅機制可分別表示為交換相互作用、電偶極—電偶極、電偶極—電四極、電四極—電四極相互作用[27]。根據(jù)圖7中直線的斜率,求得CYA:Tb3+的為2.29,比較接近3,表明濃度猝滅是由交換相互作用引起的。當(dāng)Tb3+離子的摻雜濃度未達到發(fā)生濃度猝滅的臨界濃度時,基質(zhì)晶格吸收能量傳遞給Tb3+離子,使Tb3+離子上升到激發(fā)態(tài)后以輻射形式釋放激發(fā)能量,得到發(fā)射光譜(發(fā)光);Tb3+離子濃度超過發(fā)生濃度猝滅的臨界濃度后,由于Tb3+離子之間的間距變小,處于激發(fā)態(tài)的Tb3+離子通過無輻射弛豫,將能量傳遞給另外一個處于基態(tài)的Tb3+離子,使其處于一個中間激發(fā)態(tài),而不是輻射躍遷,從而降低發(fā)光效率,發(fā)生濃度猝滅。
圖8所示為CaY0.94AlO4:0.06Tb3+熒光粉的CIE1931色度圖(插圖為實際發(fā)光效果圖)。用CIE軟件對CaY0.94AlO4: 0.06Tb3+的發(fā)射光譜進行計算,發(fā)射光譜的色坐標為(0.320,0.363),在CIE1931色度圖的綠—黃交界、靠近白光發(fā)光區(qū)域。在紫外激發(fā)下,熒光粉的實際發(fā)光效果為綠色發(fā)光。熒光粉的發(fā)光效果可用發(fā)射光譜譜線進行解釋,發(fā)射光譜最強發(fā)射峰位于545 nm綠光區(qū),所以熒光粉主發(fā)射顏色為綠光,但在藍光490 nm和紅光586、621 nm處均有強度不可忽略的發(fā)光,因此,熒光粉的發(fā)光靠近白光區(qū)??梢灶A(yù)見,在適當(dāng)?shù)募t光混合下,可以獲得品質(zhì)較高的 白光。
圖7 CaY1?xAlO4: xTb3+的發(fā)光強度I與Tb3+摻雜量x的關(guān)系(lg(I/x)?lgx曲線)
圖8 CaY0.94AlO4: 0.06Tb3+熒光粉的CIE1931色度圖(插圖為實際發(fā)光效果圖)
1) 以尿素為燃料,采用低溫燃燒法合成CaYAlO4: Tb3+綠色發(fā)光材料,最佳合成溫度為800 ℃,尿素的最佳用量為(CH4N2O)/(Ca)=3,所制備的CaYAlO4: Tb3+綠色熒光粉的XRD譜與CaYAlO4的一致。樣品為球形納米顆粒,直徑15 nm,結(jié)晶度高。
2) CaY0.96AlO4: 0.04Tb3+綠色熒光粉的最佳激發(fā)波長為286 nm,屬于基質(zhì)電荷遷移帶,最強發(fā)射峰位于545 nm處。發(fā)射光譜的色坐標為(0.320,0.363)。Tb3+的最佳摻雜濃度為0.06%,濃度過大會產(chǎn)生濃度猝滅,其濃度猝滅是由Tb3+—Tb3+之間的能量交換引起的。
[1] RAO C N R, GANGULY P, SINGH K K, et al. A comparative study of the magnetic and electrical properties of perovskite oxides and the corresponding two-dimensional oxides of K2NiF4structure[J]. Journal of Solid State Chemistry, 1988, 72(1): 14?23.
[2] PAN Yu, WANG Wenjun, ZHU Yuhan, et al. Eu3+/2+co-doping system induced by adjusting Al/Y ratio in Eu doped CaYAlO4: preparation, bond energy, site preference and5D0–7F4transition intensity[J]. RSC Advances, 2018, 8(42): 23981? 23989.
[3] 陳彩花, 楊國輝 , 梁利芳, 等. 溶膠凝膠法合成CaYAlO4: Mn4+紅色熒光粉及其熒光性能研究[J]. 發(fā)光學(xué)報, 2017, 38(5): 567?573. CHEN Caihua, YANG Guohui, LIANG Lifang, et al. Luminescent properties of CaYAlO4: Mn4+red phosphors prepared by sol-gel method[J]. Chinese Journal of Luminescence, 2017, 38(5): 567?573.
[4] ZHOU Dahua, XU Xiaodong, CHEN Xueyuan, et al. Crystal growth and spectroscopic properties of Er3+-doped CaYAlO4[J]. Physica Status Solidi, 2013, 209(4): 730?735.
[5] XIAO Y, CHEN X M, LIU X Q. Microstructures and microwave dielectric characteristics of CaRAlO4(=Nd, Sm, Y) ceramics with tetragonal K2NiF4structure[J]. Journal of the American Ceramic Society, 2004, 87(11): 2143?2146.
[6] 侯曉君, 肖薇, 李永錕, 等. 1 645 nm陶瓷激光共振泵浦Tm: CaYAlO4激光器[J]. 激光與紅外, 2016, 46(1): 44?47. HOU Xiaojun, XIAO Wei, LI Yongkun, et al. 1645 nm ceramic laser resonanuy pumped Tm: CaYAlO4laser [J]. Laser & Infrared, 2016, 46(1): 44?47.
[7] TAN W D, TANG D Y, XU X D, et al. Room temperature diode-pumped Yb: CaYAlO4laser with near quantum limit slope efficiency[J]. Laser Physics Letters, 2011, 8(3): 193?196.
[8] CHEN Qiaoling, Lü Shaozhen. White light emission in Pr3+, Tb3+:CaYAlO4phosphor[J]. Optoelectronics Letters, 2015, 11(5): 370?374.
[9] WANG Wanyan, YAN Xiuli, WU Xing, et al. Study of single-crystal growth of Tm3+: CaYAlO4by the floating-zone method[J]. Journal of Crystal Growth, 2000, 219(1/2): 56?60.
[10] LI Dongzhen, XU Xiaodong, CHENG Yan, et al. Crystal growth and spectroscopic properties of Yb: CaYAlO4single crystal[J]. Journal of Crystal Growth, 2010, 312(14): 2117?2121.
[11] GENG Dongling, LI Guogang, SHANG Mengmeng, et al. Nanocrystalline CaYAlO4: Tb3+/Eu3+as promising phosphors for full-color field emission displays[J]. Dalton Transactions, 2012, 41(10): 3078?3086.
[12] LI Xu,YANG Zhiping, GUAN Li, et al. A new yellowish green luminescent material SrMoO4: Tb3+[J]. Materials Letters, 2009, 63(12): 1096?1098.
[13] 翟永清, 李瑞方, 李璇, 等. SrMoO4: Tb3+綠色發(fā)光材料的微波輻射法合成及發(fā)光性能[J]. 硅酸鹽學(xué)報, 2014, 42(3): 314? 320. ZHAI Yongqing, LI Ruifang, LI Xuan, et al. Synthesis of green-emitting phosphors SrMoO4: Tb3+by microwave radiation method and their luminescent properties[J]. Journal of the Chinese Ceramic Society, 2014, 42(3): 314?320.
[14] 關(guān)麗, 左金改, 劉沖, 等. Tb3+濃度對SrMoO4: Tb3+發(fā)光性能的影響[J]. 發(fā)光學(xué)報, 2011, 32(8): 779?783. GUAN Li, ZUO Jingai, LIU Chong, et al. Influence of Tb3+concentration on the luminescent properties of SrMoO4: Tb3+[J]. Chinese Journal of Luminescence, 2011, 32(8): 779?783.
[15] WU Hongyue, YANG Junfeng, WANG Xiaoxue, et al. Tune color of single-phase LiGd(MoO4)2?x(WO4): Sm3+, Tb3+via adjusting the proportion of matrix and energy transfer to create white-light phosphor[J]. Solid State Sciences, 2018, 77: 20?26.
[16] CHANU T T T, SINGH N R. Investigation on optical band gap, photoluminescence properties and concentration quenching mechanism of Pb1?xTb3+WO4green-emitting phosphors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 191: 539?546.
[17] SUN Haiqin, ZHANG Qiwei, LI Wenxin. (Bi0.5Na0.5)TiO3:Tb3+: A new green emission multifunctional ferroelectric material[J]. Ferroelectrics, 2016, 490(1): 127?135.
[18] ZHAO Ji, ZHAO Dan, CHEN Jun, et al. Synthesis and luminescence properties of novel green-emitting KPb4(PO4)3:Tb3+phosphor[J]. Journal of the Iranian Chemical Society, 2018, 15: 2631?2635.
[19] ZHANG Bingye, YJING Shitian, HAN Lu, et al. Color-tunable phosphor of Sr3YNa(PO4)3F: Tb3+via interionic cross-relaxation energy transfer[J]. RSC Advances, 2018, 8(45): 25378?25386.
[20] LUKAS G, FEDERICA F, BIEKE O, et al. Recovery of rare earths from the green lamp phosphor LaPO4: Ce3+, Tb3+(LAP) by dissolution in concentrated methanesulphonic acid[J]. RSC Advances, 2018, 8(46): 26349?26355.
[21] CHENG Ju, ZHANG Jia, LU Jian, et al. Luminescence and energy transfer properties of color-tunable Sr4La(PO4)3O: Ce3+, Tb3+, Mn2+phosphors for WLEDs [J]. Optical Materials Express, 2018, 8(7): 1850?1862.
[22] MENDHE M S, PUPPALWAR S P, DHOBLE S J. Novel single-component CaLaAlO4: Tb3+, Eu3+phosphor for white light-emission[J]. Optical Materials, 2018, 82: 47?55.
[23] RODRIGUES L C V, BRITO H F, Ho?ls? J, et al. Discovery of the persistent luminescence mechanism of CdSiO3: Tb3+[J]. The Journal of Physical Chemistry C, 2012, 116(20): 11232?11240.
[24] ZHOU Xiao, JIANG Sha, XIANG Guotao, et al. Tunable emission color of Li2SrSiO4: Tb3+due to cross-relaxation process and optical thermometry investigation[J]. Journal of the American Ceramic Society, 2018, 101(7): 3076?3085.
[25] PERRELLA R V, SCHIAVON M A, PECORARO E, et al. Broadened band C-telecom and intense upconversion emission of Er3+/Yb3+co-doped CaYAlO4luminescent material obtained by an easy route[J]. Journal of Luminescence, 2016, 178: 266? 233.
[26] BARTIC M, KOMINAMI H, NAKANISHI Y, et al. Properties of CaYAlO4: Eu3+phosphors[J]. Advanced Materials Research, 2011, 222: 231?234.
[27] LI Xu, GUAN Li, SUN Mingsheng, et al. Luminescent properties of Dy3+doped SrMoO4phosphor[J]. Journal of Luminescence, 2011(131): 1022?1025.
Low temperature combustion synthesis and luminescence properties of CaYAlO4: Tb3+green phosphors
WANG Shuxue, DENG Jingyu, YU Long, LUO Hu, GAO Xiaofeng, ZHU Desheng
(School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China)
The CaYAlO4: Tb3+green luminescent phosphors were synthesized by low temperature combustion using urea as fuel and ethylene glycol as complexing agent. The structures of the phosphors were analyzed by XRD to determine the optimum synthesis temperature and urea dosage. The morphology and luminescent effect of phosphors were observed and tested, the effects of the amount of Tb3+doping on the luminescence properties of the phosphor were investigated. The results show that the optimum ratio of urea to CaYAlO4is(CH4N2O):(Ca)=3:1, and the optimum synthesis temperature is 800 ℃. The synthesized samples are spherical particles with a diameter of about 15 nm. The excitation spectra of the phosphors is mainly composed of a broadband excitation band of O2?→Y3+, O2?→Tb3+, the excitation peak wavelength is 265 nm. The emission spectra consists of excitation peaks at 490, 545, 586 and 620 nm, which are derived from the5D4to7F(=6, 5, 4, 3) transition of Tb3+, respectively. The 545 nm transition intensity is the largest and the phosphor glows green. The optimum doping concentration of Tb3+is 0.06%. The concentration quenching is caused by exchange interaction. Under the excitation of UV 265 nm, the color coordinate of the emission spectrum of CaY0.96AlO4: 0.06Tb3+phosphor is (0.320, 0.363), which is located at the junction of green-yellow-white light on the CIE1931 chromaticity diagram, and it is a potential single-doped green luminescent material for LED.
low temperature combustion method; CaYAlO4: Tb3+; phosphor; excitation spectra; emission spectra
TB34;O482.31
A
1673-0224(2019)03-282-07
長江大學(xué)創(chuàng)新訓(xùn)練計劃資助項目(2018172);湖北省教育廳科研計劃資助項目(B2018027)
2018?11?27;
2018?12?26
朱德生,講師,博士。電話:18986692895;E-mail: dshzhu@csu.edu.cn
(編輯 湯金芝)