国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

以HKUST-1為前驅(qū)體的Cu@Pt/C催化劑的結(jié)構(gòu)及對甲醇的催化氧化性能研究

2019-06-27 06:54:54龍翔宇雷霆王坤嬋詹振翔
關(guān)鍵詞:核殼伏安電流密度

龍翔宇,雷霆,王坤嬋,詹振翔

?

以HKUST-1為前驅(qū)體的Cu@Pt/C催化劑的結(jié)構(gòu)及對甲醇的催化氧化性能研究

龍翔宇,雷霆,王坤嬋,詹振翔

(中南大學(xué) 粉末冶金國家重點(diǎn)實(shí)驗(yàn)室,長沙 410083)

以硝酸銅和均苯三甲酸為原料,水熱合成八面體結(jié)構(gòu)的金屬有機(jī)物框架(HKUST-1)前驅(qū)體,前驅(qū)體在Ar保護(hù)下煅燒發(fā)生熱分解和碳熱還原,得到Cu/C納米顆粒,再與氯鉑酸鉀通過置換反應(yīng)得到Cu@Pt/C催化劑。利用掃描電鏡、X射線衍射儀以及X射線光電子能譜儀對Cu@Pt/C催化劑的形貌與結(jié)構(gòu)進(jìn)行表征,并測試其對甲醇溶液的電催化氧化性能。結(jié)果表明,Cu@Pt/C催化劑保留了前驅(qū)體HKUST-1的八面體結(jié)構(gòu),Pt包覆在Cu表面形成核殼結(jié)構(gòu)。根據(jù)Cu@Pt/C催化劑在H2SO4溶液中的循環(huán)伏安曲線,計(jì)算出其電化學(xué)活性面積為74.3 m2/g,約為商業(yè)Pt/C的1.47倍,并且Cu@Pt/C催化電極在H2SO4與甲醇混合溶液中的循環(huán)伏安掃描曲線的正掃過程中的峰值電流密度(f)與負(fù)掃過程中的峰值電流密度(b)的比值(f/b)為2.18,遠(yuǎn)高于商業(yè)Pt/C電極,表現(xiàn)出優(yōu)異的對甲醇的電催化氧化活性和抗CO中毒性能。

核殼結(jié)構(gòu);甲醇氧化;電催化;金屬有機(jī)框架;置換反應(yīng)

直接甲醇燃料電池(direct methanol fuel cell,DMFC)的功率密度大,轉(zhuǎn)換效率高,在移動(dòng)設(shè)備電池尤其是汽車動(dòng)力電池領(lǐng)域具有廣闊的發(fā)展前景,成為新能源領(lǐng)域的研究熱點(diǎn)。然而目前直接甲醇燃料電池最常用的催化劑金屬Pt因?yàn)檫^高的價(jià)格和稀缺性,限制了其商業(yè)應(yīng)用[1]。同時(shí),在催化甲醇氧化的過程中,甲醇分解產(chǎn)生的CO吸附在Pt的表面,阻礙反應(yīng)進(jìn)一步進(jìn)行,嚴(yán)重影響Pt的催化性能和穩(wěn)定性[2]。為了降低Pt的用量并提升其催化活性,一個(gè)有效的方法是將非貴金屬元素作為合金元素,與Pt形成合金催化 劑[3?7]。在眾多鉑基雙金屬催化劑中,核殼結(jié)構(gòu)的鉑基催化劑由于具有更高的催化活性及穩(wěn)定性而受到關(guān)注。置換法是一種制備核殼結(jié)構(gòu)的鉑基催化劑的簡便方法,即以一種非貴金屬作為核,通過置換反應(yīng)在其表面包覆一層金屬Pt[8]。銅是一種低成本的過渡金屬元素,具有優(yōu)良的導(dǎo)電性能及電催化性能[9],ADZIC等[10]首次采用Pt,Pd 或者 Ag置換單原子層Cu來制備核殼結(jié)構(gòu)催化劑。KOKKIDINIS等[11]通過電化學(xué)沉積制備Cu或者Pd納米顆粒,然后通過置換反應(yīng)在其表面包覆一層Pt,得到具有核殼結(jié)構(gòu)的鉑基催化劑。SOTIROPOULOS等[12]以Cu/C粉末為前驅(qū)體,通過置換反應(yīng)得到核殼結(jié)構(gòu)的Cu-Pt催化劑,其催化甲醇氧化的性能優(yōu)于商業(yè)20%Pt/C催化劑。El-Khatib等[13]制備了核殼結(jié)構(gòu)的Cu@Pt催化劑并將其負(fù)載于XC-72R炭黑上,對甲醇具有良好的催化氧化活性,這是由于Cu的引入改變了Pt的電子結(jié)構(gòu)[14?15]?,F(xiàn)有的核殼結(jié)構(gòu)Cu@Pt催化劑的大量文獻(xiàn)報(bào)道,均采用炭黑、碳納米管或普通碳粉作為載體,具有特殊幾何結(jié)構(gòu)的多孔碳材料載體的應(yīng)用還不多見。金屬有機(jī)物框架(HKUST-1)是一種新型的多孔材料,由金屬離子與提供電子的有機(jī)配體構(gòu)建而成,具有大的比表面積和特殊的幾何構(gòu)型,可以為反應(yīng)提供更多的活性位點(diǎn),提高催化劑的活性面積[16]。因此,本文以硝酸銅和均苯三甲酸為原料,通過水熱法制得金屬有機(jī)物框架化合物(HKUST-1),并將其作為碳源和銅源前驅(qū)體,在高溫下煅燒發(fā)生熱分解和碳熱還原,再與氯鉑酸鉀溶液發(fā)生置換反應(yīng),制備以C為載體的Cu@Pt催化劑,并對Cu@Pt/C催化劑的結(jié)構(gòu)及其對甲醇的電催化氧化性能進(jìn)行測試,對于降低直接甲醇燃料電池的成本以及擴(kuò)大其應(yīng)用具有重要意義。

1 實(shí)驗(yàn)

1.1 Cu@Pt/C催化劑的制備

所用原料為:三水合硝酸銅(Cu(NO3)2?3H2O),國藥集團(tuán)化學(xué)試劑有限公司,純度≥99%;均苯三甲酸(H3BTC),國藥集團(tuán)化學(xué)試劑有限公司,純度≥99%;聚乙烯吡咯烷酮(PVP),國藥集團(tuán)化學(xué)試劑有限公司,純度≥99%;氯鉑酸鉀(K2PtCl6),阿拉丁試劑(上海)有限公司,純度≥99%。

取1.305 g Cu(NO3)2·3H2O溶于18 mL蒸餾水中,取0.630 g H3BTC溶于18 mL乙醇溶液中。將這2種溶液混合均勻,再加入0.360 g PVP,超聲攪拌30 min,然后倒入容積為50 mL的聚四氟乙烯反應(yīng)釜中,置于烘箱內(nèi)于120 ℃水熱反應(yīng)12 h,室溫冷卻后,用蒸餾水洗滌4次,最后于60 ℃下真空干燥,得到HKUST-1粉末,作為Cu/C的前驅(qū)體。將HKUST-1粉末置于管式燒結(jié)爐中,在600 ℃Ar氣氛中保溫2 h,發(fā)生熱分解和碳熱還原反應(yīng),得到Cu/C粉末。取少量Cu/C粉末,在磁力攪拌下加入到K2PtCl6與H2SO4的混合溶液中(混合液中K2PtCl6與H2SO4的濃度分別為4 mmol/L和0.5 mol/L),反應(yīng)時(shí)間為30 min。反應(yīng)結(jié)束后,將溶液離心并用蒸餾水洗滌、干燥,得到Cu@Pt/C粉末。

1.2 測試與表征

取3 mg Cu@Pt/C粉末加入到1 mL乙醇與水的混合溶液中(乙醇與水的體積比為1:4),再加入80 μL的Nafion溶液配制成漿料,超聲分散30 min。取5 μL漿料滴于玻碳電極表面并干燥,即制得Cu@Pt/C工作電極。

用上海華辰CHI 660D電化學(xué)工作站測定Cu@ Pt/C電極的循環(huán)伏安曲線和計(jì)時(shí)電流曲線。采用三電極體系,分別用石墨電極和飽和甘汞電極(saturated calomel electrode, SCE)作為對電極和參比電極,以N2飽和的濃度為0.5 mol/L的 H2SO4溶液作為電解液,測定循環(huán)伏安曲線。以N2飽和的0.5 mol/L H2SO4+ 1 mol/L CH3OH溶液作為電解液,測定電極對甲醇的催化氧化活性。在進(jìn)行電化學(xué)性能檢測之前,將工作電極置于濃度為0.5 mol/L的 H2SO4溶液中,以100 mV/s的掃描速率循環(huán)伏安掃描25圈進(jìn)行電極活化。另外,采用商業(yè)20%Pt/C進(jìn)行對比試驗(yàn)。

2 結(jié)果與討論

2.1 形貌與結(jié)構(gòu)

圖1所示為HKUST-1,Cu/C和Cu@Pt/C的SEM與TEM形貌。從圖1(a)看出,Cu(NO3)2·3H2O與有機(jī)物H3BTC水熱反應(yīng)后,得到由銅離子和有機(jī)物配體構(gòu)成的金屬有機(jī)物框架化合物HKUST-1為八面體結(jié)構(gòu),且表面光滑,粒徑均一,約為1 μm左右,與文獻(xiàn)報(bào)道一致[17?19]。HKUST-1經(jīng)過600 ℃高溫處理后得到的Cu/C依舊保留前驅(qū)體的八面體結(jié)構(gòu),但其表面變得粗糙(如圖1(b)所示),能譜分析結(jié)果表明其由C,Cu,O三種元素組成,這表明HKUST-1中的有機(jī)物在高溫下分解,同時(shí)Cu2+離子被碳熱還原為金屬Cu。O元素的存在可能是由于Cu/C在空氣中發(fā)生了部分氧化[19]。圖1(c)所示為Cu/C在氯鉑酸鉀溶液中發(fā)生置換反應(yīng)得到的Cu@Pt/C顆粒形貌。與Cu/C相比,Cu@Pt/C顆粒的形貌沒有大的變化,Cu@Pt納米顆粒均勻分散于八面體碳骨架表面。通過能譜分析得出C,Cu與Pt的原子分?jǐn)?shù)分別為79.37%,12.54%和8.09%,這表明Pt與Cu顆粒表面的Cu發(fā)生了置換反應(yīng),形成Pt包覆在Cu表面的核殼結(jié)構(gòu)。圖1(d)和(e)所示為Cu@Pt/C顆粒的TEM形貌,可看出碳骨架保留完好,Cu@Pt納米顆粒均勻分布,粒徑約為2 nm。圖1(f)為Cu@Pt/C顆粒的HR-TEM圖,可得出其晶面間距為0.22 nm,介于Pt(111)晶面間距與Cu(111)晶面間距之間,這可能是由于Pt在Cu表面生長時(shí)導(dǎo)致Cu發(fā)生了晶格畸變[20]。

圖1 HKUST-1, Cu/C和 Cu@Pt/C的組織結(jié)構(gòu)與形貌

(a), (b), (c) Surface SEM images of HKUST-1, Cu/C and Cu@Pt/C, respectively; (d), (e), (f) TEM image and HRTEM images of Cu@Pt/C catalyst, respectively

圖2所示為HKUST-1,Cu/C和Cu@Pt/C的XRD譜,圖中的豎線為面心立方Pt的標(biāo)準(zhǔn)衍射峰。由圖可見,HKUST-1的衍射峰與文獻(xiàn)[19, 21]報(bào)道的完全一致。Cu/C在2為42.30°,50.40°和73.50°位置的衍射峰分別對應(yīng)Cu的(111),(200)和(220)晶面[22]。Cu@Pt/C的衍射譜中只出現(xiàn)面心立方Pt的衍射峰,沒有Cu的衍射峰,同時(shí)Pt的衍射峰向高角度偏移,根據(jù)文獻(xiàn)報(bào)道[23?24],這是因?yàn)镻t將Cu包覆在內(nèi)構(gòu)成核殼結(jié)構(gòu)所致。另外,與面心立方Pt的標(biāo)準(zhǔn)卡片(JCPDS#04-0802)相比,Cu@Pt/C衍射譜中Pt的衍射峰發(fā)生了寬化,結(jié)合TEM分析結(jié)果中Cu@Pt/C顆粒的晶面間距減小和謝樂方程[25]得知,這可能是由于Cu@Pt/C的晶粒尺寸減小造成的。

圖2 HKUST-1, Cu/C和Cu@Pt/C的XRD譜

(The vertical lines represent the reference patterns of face-centered cubic structure of pure Pt)

圖3(a)所示為Cu/C的XPS分析,可以看出在結(jié)合能為932.8 eV和952.7 eV處出現(xiàn)了Cu單質(zhì)的光電子峰,而在933.9以及953.6 eV處出現(xiàn)CuO的光電子峰(938~945 eV和960~967 eV處為衛(wèi)星峰)。圖3(b)和(c)為Cu@Pt/C的Cu 2p 和Pt 4f的XPS譜,由圖可知Cu@Pt/C中的Cu和Pt均為金屬單質(zhì)。值得注意的是,Cu的XPS圖譜中不存在二價(jià)銅的光電子峰,這一方面是因?yàn)镃u/C粉末在空氣中發(fā)生輕微氧化而生成少量銅的氧化物在氯鉑酸鉀酸性溶液中溶解,另一方面是由于形成核殼結(jié)構(gòu)后,Pt對Cu核起到一定的保護(hù)作用,防止其氧化。因此,通過XRD和XPS的分析結(jié)果進(jìn)一步推斷,Cu@Pt/C催化劑具有以Cu為核,Pt為外殼的核殼結(jié)構(gòu)。

圖3 Cu/C和Cu@Pt/C的XPS分析

2.2 催化活性

圖4所示為Cu@Pt/C和商用Pt/C在N2飽和的濃度為0.5 mol/L的H2SO4溶液中的循環(huán)伏安曲線。從圖中可見,Cu@Pt/C和Pt/C均在?0.2~0 V間出現(xiàn)了典型的氫吸附與脫附峰,這與多晶Pt的循環(huán)伏安曲線一致,表明Cu顆粒的表層確實(shí)被Pt原子置換,得到了具有核殼結(jié)構(gòu)的Cu@Pt/C催化劑。在0.50~0.55 V左右形成的還原峰為之前正向掃描過程中Pt表面形成的氧化物發(fā)生了還原反應(yīng)所致。

圖5所示為Cu@Pt/C和Pt/C在CH3OH與 H2SO4的混合溶液中的循環(huán)伏安曲線。由圖5可知,Cu@Pt/C和Pt/C的正掃過程中的峰值電流密度(f)均出現(xiàn)在0.65 V左右,負(fù)掃過程的峰值電流密度(b)出現(xiàn)在0.4~ 0.5 V左右。正掃描過程表示甲醇分解產(chǎn)生CO,峰電流密度(f)可表征催化劑對甲醇催化氧化的活性,f越大,表明催化劑催化甲醇氧化的活性越高;負(fù)掃描過程為吸附在催化劑表面的CO發(fā)生氧化,fb比值可表征催化劑抗CO中毒的能力[26?27],一般f/b的值越大,CO在催化劑表面的吸附越少,抗CO中毒性能越強(qiáng)。從圖中可知,Cu@Pt/C和Pt/C正掃峰值電流密度分別為631.2 mA/mg和163.5 mA/mg,并且Cu@Pt/C的f/b值為2.18,遠(yuǎn)遠(yuǎn)超過商業(yè)Pt/C的0.74,說明Cu@Pt/C具有更高的催化活性及抗CO中毒性能[28]。

圖4 Cu@Pt/C和Pt/C在0.5 mol/L濃度的 H2SO4溶液中的循環(huán)伏安曲線

圖5 Pt/C和Cu@Pt/C在CH3OH+H2SO4混合溶液中的甲醇氧化曲線

電極的電化學(xué)活性面積(electrochemically active surface areas, ECSA)可用下式計(jì)算[29]:

式中:H為在電極表面氫吸附的庫倫電量或者氫脫附的庫倫電量,通過對氫的吸附峰積分并扣除雙電層得到;[Pt]為電極上鉑的負(fù)載量,0.21表示在光滑的Pt電極表面氧化單分子層H2所需的電量。通過電感耦合等離子光譜分析(inductively coupled plasma spectro- metry, ICP)可得Cu@Pt/C和商業(yè)Pt/C的Pt負(fù)載量分別為1.0 g/m2和1.4 g/m2,通過式(1)計(jì)算出Cu@Pt/C和Pt/C的活性面積分別為74.3 m2/g和50.4 m2/g,Cu@Pt/C的活性面積大約是Pt/C的1.47倍。Cu@Pt/C具有很高的活性面積可能是由于其繼承了Cu-有機(jī)物的八面體多孔骨架結(jié)構(gòu),能提供更多的活性位點(diǎn),所以活性面積大,催化活性高。

甲醇的氧化過程通常包括甲醇分解產(chǎn)生CO,CO吸附于催化劑表面以及CO氧化這幾個(gè)主要步驟。Cu@Pt/C催化劑在催化甲醇氧化過程中表現(xiàn)出相對于傳統(tǒng)商業(yè)Pt/C更高的催化活性以及更優(yōu)異的抗CO中毒性能,表明Cu的作用不容忽視。核殼結(jié)構(gòu)的Cu@Pt/C催化劑中的Cu原子能改變Pt的d軌道電子狀態(tài),降低其費(fèi)米能級,使得Pt與CO之間的相互作用降低,減少CO在Pt表面的吸附,從而提高催化劑的抗CO中毒性能[30?32]。另外,Cu可在較低電勢下促使Pt表面形成OHads,CO被OHads氧化為CO2而脫離金屬Pt表面,從而將Pt表面的催化活性位點(diǎn)再次釋放出來用于甲醇氧化[33]??傊?,電子效應(yīng)、雙功能機(jī)理以及大的活性面積是促成Cu@Pt/C催化劑具有更高的催化活性以及抗CO中毒性能的重要原因。

通過計(jì)時(shí)電流法來檢測催化劑的穩(wěn)定性。首先將電極在?200 mV電壓下保持60 s,然后階躍到600 mV下保持1 200 s,圖6所示為Cu@Pt/C和Pt/C電極的電流密度隨時(shí)間的變化曲線,可見二者的電流變化具有相同的趨勢,在剛開始的一段時(shí)間內(nèi)電流密度都急劇下降,隨后趨于平緩,最終保持穩(wěn)定。但與Pt/C相比,Cu@Pt/C的電流密度下降較慢,并且1 200 s時(shí)的電流密度72.9 mA/mg遠(yuǎn)遠(yuǎn)高于Pt/C的7.1 mA/mg。這表明Cu@Pt/C在催化甲醇氧化過程中具有更優(yōu)異的穩(wěn)定性。

圖6 Pt/C和Cu@Pt/C在CH3OH+H2SO4混合溶液中的計(jì)時(shí)電流曲線

3 結(jié)論

1) 以硝酸銅和均苯三甲酸為原料,通過水熱合成、碳熱還原和置換反應(yīng)可制備用于直接甲醇燃料電池的Cu@Pt/C催化劑。Cu@Pt/C為八面體結(jié)構(gòu),Pt包覆在Cu顆粒表面形成核殼結(jié)構(gòu)。

2) Cu@Pt/C催化劑的活性面積大約是商用Pt/C的1.47倍,表現(xiàn)出更優(yōu)異的對甲醇的電催化氧化活性和抗CO中毒性能以及更好的催化穩(wěn)定性。

[1] IWASITA T. Electrocatalysis of methanol oxidation[J]. Electrochimica Acta, 2002, 47(22): 3663?3674.

[2] YANG L, YANG W, CAI Q. Well-Dispersed ptau nanoparticles loaded into anodic titania nanotubes: A high antipoison and stable catalyst system for methanol oxidation in alkaline media[J]. Journal of Physical Chemistry C, 2010, 111(44): 16613?16617.

[3] AMMAM M, EASTON E B. Oxygen reduction activity of binary PtMn/C, ternary PtMnX/C (X=Fe, Co, Ni, Cu, Mo and, Sn) and quaternary PtMnCuX/C (X=Fe, Co, Ni, and Sn) and PtMnMoX/C (X=Fe, Co, Ni, Cu and Sn) alloy catalysts[J]. Journal of Power Sources, 2013, 236(236): 311?320.

[4] MA X, LUO L, ZHU L, et al. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation[J]. Journal of Power Sources, 2013, 241(6): 274?280.

[5] MIN K J, YUAN Z, MCGINN P J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction[J]. Electrochimica Acta, 2010, 55(19): 5318?5325.

[6] WANG M, ZHANG W, WANG J, et al. Mesoporous hollow PtCu nanoparticles for electrocatalytic oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2013, 1(7): 2391?2394.

[7] CUI C H, LI H H, YU S H. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst[J]. Chemical Science, 2011, 2(8): 1611?1614.

[8] YU Z, CHAO M, ZHU Y, et al. Hollow core supported Pt monolayer catalysts for oxygen reduction[J]. Catalysis Today, 2013, 202(1): 50?54.

[9] HUSSAIN N, GOGOI P, AZHAGANAND V K, et al. Correction: Green synthesis of stable Cu(0) nanoparticles onto reduced graphene oxide nanosheets: a reusable catalyst for the synthesis of symmetrical biaryls from arylboronic acids under base-free conditions[J]. Catalysis Science & Technology, 2015, 5(2): 1251?1260.

[10] BRANKOVIC S R, WANG J X, AD?I? R R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces[J]. Surface Science, 2001, 474(1): L173?L179.

[11] BRUSSEL M V, KOKKINIDIS G, VANDENDAEL I, et al. High performance gold-supported platinum electrocatalyst for oxygen reduction[J]. Electrochemistry Communications, 2002, 4(10): 808?813.

[12] MINTSOULI, GEORGIEVA, ARMYANOV, et al. Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors[J]. Applied Catalysis B Environmental, 2013, 136/137(21): 160? 167.

[13] EL-KHATIB K M, HAMEED R M A, AMIN R S, et al. Core–shell structured Cu@Pt nanoparticles as effective electro catalyst for ethanol oxidation in alkaline medium[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14680?14696.

[14] PODLOVCHENKO B I, KRIVCHENKO V A, MAKSIMOV Y M, et al. Specific features of the formation of Pt(Cu) catalysts by galvanic displacement with carbon nanowalls used as support[J]. Electrochimica Acta, 2012, 76(8): 137?144.

[15] POOCHAI C. Highly active dealloyed Cu@Pt core-shell electro catalyst towards 2-propanol electro oxidation in acidic solution[J]. Applied Surface Science, 2017, 396(396): 1793? 1801.

[16] ROWSELL J L C, YAGHI O M. Metal–organic frameworks: a new class of porous materials[J]. Microporous & Mesoporous Materials, 2004, 73(1): 3?14.

[17] SCHLICHTE K, KRATZKE T, KASKEL S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous & Mesoporous Materials, 2004, 73(1): 81?88.

[18] KUMAR R S, KUMAR S S, KULANDAINATHAN M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction[J]. Microporous & Mesoporous Materials, 2013, 168(3): 57?64.

[19] ZHANG R, LIN H, BAO S, et al. Surface polarization enhancement: high catalytic performance of Cu/CuO/C nanocomposites derived from Cu-BTC for CO oxidation[J]. Journal of Materials Chemistry A, 2016, 4(21): 8412?8420.

[20] ZHU H, LI X, WANG F. Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell[J]. Fuel and Energy Abstracts, 2011, 36(15): 9151?9154.

[21] AMELOOT R, PANDEY L, VAN d A M, et al. Patterned film growth of metal-organic frameworks based on galvanic displacement[J]. Chemical Communications, 2010, 46(21): 3735?3737.

[22] CHENG W H. Reaction and XRD studies on Cu based methanol decomposition catalysts: Role of constituents and development of high-activity multicomponent catalysts[J]. Applied Catalysis A General, 1995, 130(1): 13?30.

[23] El-KHATIB K M, HAMEED R M A, AMIN R S, et al. Core–shell structured Cu@Pt nanoparticles as effective electrocatalyst for ethanol oxidation in alkaline medium[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14680?14696.

[24] MINTSOULI I, GEORGIEVA J, ARMYANOV S, et al. Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors[J]. Applied Catalysis B: Environmental, 2013, 136/137(Complete): 160?167.

[25] Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation[J]. Electrochimica Acta, 2015, 177: S0013468615006489.

[26] LIU Z, Hong L. Electrochemical characterization of the electrooxidation of methanol, ethanol and formic acid on Pt/C and PtRu/C electrodes[J]. Journal of Applied Electrochemistry, 2007, 37(4): 505?510.

[27] BEDEN B, KADIRGAN F, LAMY C, et al. Oxidation of methanol on a platinum electrode in alkaline medium: Effect of metal ad-atoms on the electrocatalytic activity[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1982, 142(1): 171?190.

[28] SHEN J, HU Y, CHEN L, et al. Pt-Co supported on single-walled carbon nanotubes as an anode catalyst for direct methanol fuel cells[J]. Electrochimica Acta, 2008, 53(24): 7276? 7280.

[29] TRASATTI S, PETRII O A. Real surface area measurements in electrochemistry[J]. Pure & Applied Chemistry, 1991, 63(5): 711?734.

[30] ZHANG J, VUKMIROVIC M B, SASAKI K, et al. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J]. Journal of the American Chemical Society, 2005, 127(36): 12480?12481.

[31] RUBAN A, HAMMER B, STOLTZE P, et al. Surface electronic structure and reactivity of transition and noble metals 1[J]. Journal of Molecular Catalysis A Chemical, 1997, 115(3): 421?429.

[32] KITCHIN J R, N?RSKOV J K, BARTEAU M A, et al. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3D transition metals[J]. Journal of Chemical Physics, 2004, 120(21): 10240?10246.

[33] TSIAKARAS P E. PtM/C (M=Sn, Ru, Pd, W) based anode direct ethanol–PEMFCs: Structural characteristics and cell performance[J]. Journal of Power Sources, 2007, 171(1): 107? 112.

Structure of Cu@Pt/C catalyst derived from HKUST-1 and its catalytic activity for methanol oxidation

LONG Xiangyu, LEI Ting, WANG Kunchan, ZHAN Zhenxiang

(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)

Copper nitrate and trimesic acid were used as raw materials to fabricate octahedral HKUST-1 by hydrothermal method. HKUST-1 was calcined in Ar protective atmosphere and Cu/C nanoparticles were derived through carbothermal reduction reaction. The Cu@Pt/C catalyst was obtained by soaking Cu/C in potassium chloroplatinic acid solution by galvanic displacement. The morphology and microstructure of Cu@Pt/C catalyst as well as its electrocatalytic activity towards methanol were further characterized by SEM, XRD, XPS and cyclic voltammetry (CV). The results show that the as-prepared Cu@Pt/C catalyst retains special octahedral structure of HKUST-1 and has a core-shell structure formed by Pt coating on the surface of Cu. The electrochemically active surface areas (ECSA) measured by cyclic voltammetry curves in H2SO4solution is 74.3 m2/g, about 1.47 times as much as that of commercial Pt/C. The cyclic voltammetry curves in H2SO4+CH3OH solution shows the ratio of positive sweep peak current density to reverse sweep peak current densityf/bis 2.18, which is much higher than that of commercial Pt/C. Thus Cu@Pt/C catalyst has better electrocatalytic activity to methanol oxidation and better CO tolerance.

core-shell structure; methanol oxidation; electrocatalysis; metal-organic framework; galvanic replacement

TB333

A

1673-0224(2019)03-289-07

國家自然科學(xué)基金資助項(xiàng)目(21673297)

2018?12?18;

2019?01?08

雷霆,教授,博士。電話:15974242599;E-mail: tlei@csu.edu.cn

(編輯 湯金芝)

猜你喜歡
核殼伏安電流密度
用伏安法測電阻
核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
基于WIA-PA 無線網(wǎng)絡(luò)的鍍鋅電流密度監(jiān)測系統(tǒng)設(shè)計(jì)
滾鍍過程中電流密度在線監(jiān)控系統(tǒng)的設(shè)計(jì)
電流密度對鍍錳層結(jié)構(gòu)及性能的影響
電流密度對Fe-Cr合金鍍層耐蝕性的影響
核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
基于LABVIEW的光電池伏安特性研究
電子制作(2016年23期)2016-05-17 03:53:41
通過伏安特性理解半導(dǎo)體器件的開關(guān)特性
雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
邯郸市| 汽车| 达尔| 和静县| 滁州市| 西畴县| 普兰店市| 收藏| 浙江省| 保靖县| 景泰县| 汾阳市| 洛宁县| 冕宁县| 台北市| 襄垣县| 井陉县| 阿荣旗| 手游| 大方县| 广丰县| 庆元县| 浮山县| 观塘区| 镇沅| 保康县| 呼和浩特市| 东城区| 内江市| 呼玛县| 澄迈县| 壶关县| 桓台县| 灵武市| 金山区| 青神县| 邯郸市| 普兰店市| 南城县| 尚志市| 太仓市|