李建平,吳 康,何相逸,陳駿煬,季明東,葉章穎,朱松明
?
基于CFD的養(yǎng)殖水體固液旋流分離裝置數(shù)值模擬與驗(yàn)證
李建平1,2,吳 康1,何相逸1,陳駿煬1,季明東1,葉章穎1,2,朱松明1,2
(1. 浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州 310058; 2. 農(nóng)業(yè)部設(shè)施農(nóng)業(yè)裝備與信息化重點(diǎn)實(shí)驗(yàn)室,杭州 310058)
為探究旋流分離裝置對(duì)水產(chǎn)養(yǎng)殖水體的分離效果,采用計(jì)算流體力學(xué)方法對(duì)旋流分離裝置內(nèi)部的流動(dòng)特性進(jìn)行數(shù)值模擬,得到了不同入口流量、不同入口濃度對(duì)固液分離性能的影響,通過(guò)試驗(yàn)數(shù)據(jù)對(duì)模擬結(jié)果進(jìn)行了驗(yàn)證。模擬結(jié)果表明:隨著入口流量的增加,分離裝置內(nèi)部流體速度增大,湍流流動(dòng)增強(qiáng),不利于固體顆粒的沉降。當(dāng)入口濃度增加時(shí),筒內(nèi)流體運(yùn)動(dòng)速度降低,滯留在筒體中的顆粒濃度增加,降低了固液分離效率。入口流量和入口濃度的增加均會(huì)導(dǎo)致不同粒度顆粒分離效率下降,且隨著顆粒粒度的增大,分離效率下降幅度增大。通過(guò)與試驗(yàn)數(shù)據(jù)相比,模擬誤差在10% 以內(nèi),模擬結(jié)果可信。該研究可為旋流分離裝置在水產(chǎn)養(yǎng)殖領(lǐng)域的應(yīng)用提供參考。
水產(chǎn)養(yǎng)殖;流體力學(xué);流場(chǎng);旋流分離;分離效率
中國(guó)是水產(chǎn)品生產(chǎn)大國(guó),2016年,中國(guó)水產(chǎn)品總產(chǎn)量達(dá)6 901.25萬(wàn)t,其中養(yǎng)殖產(chǎn)量為5 142.39萬(wàn)t,占總產(chǎn)量的74.51%,較2015年同比增長(zhǎng)4.14%[1]。隨著養(yǎng)殖規(guī)模的不斷提升,水質(zhì)資源破壞和環(huán)境污染等問(wèn)題的加劇,養(yǎng)殖模式亟待向高效可持續(xù)方向轉(zhuǎn)變[2-3]。工廠化養(yǎng)殖系統(tǒng)由于能有效改善水體環(huán)境,且具有養(yǎng)殖周期短、單位面積產(chǎn)量高等優(yōu)點(diǎn),已成為行業(yè)研究熱點(diǎn)[4-5]。工廠化養(yǎng)殖密度高,產(chǎn)生的固體廢棄物量較多,去除水體中的大顆粒懸浮物是廢棄物處理的首要任務(wù)。目前,大顆粒物去除主要采用離心分離、機(jī)械過(guò)濾等方法,旋流分離器作為一種離心式的分離裝置,已廣泛應(yīng)用在石油化工、污水處理等行業(yè)[6-9]。然而,其在水產(chǎn)養(yǎng)殖領(lǐng)域的研究和應(yīng)用鮮有報(bào)道。
計(jì)算流體力學(xué)(computational fluid dynamics,CFD)是利用計(jì)算機(jī)模擬流體流動(dòng)、傳熱及相關(guān)傳遞現(xiàn)象的技術(shù)[10],其以速度快、成本低、流場(chǎng)信息全面等優(yōu)點(diǎn),逐漸成為研究旋流分離器的重要手段[11-13]。劉新陽(yáng)等[14]采用高濃度混合多相流模型并結(jié)合雷諾應(yīng)力模型和顆粒動(dòng)力學(xué)理論對(duì)滴灌用水力旋流器內(nèi)部顆粒體積濃度分布和分離效率進(jìn)行了數(shù)值模擬。邱元鋒等[15]以高含沙水作為微灌水源,利用CFD模擬分析了離心分離器的內(nèi)部流場(chǎng)特征。史明明等[16]為提高循環(huán)生物絮團(tuán)系統(tǒng)渦旋分離器分離效率,運(yùn)用CFD技術(shù)對(duì)3種不同筒徑比渦旋分離器內(nèi)固液兩相三維流動(dòng)進(jìn)行了數(shù)值模擬。
本文以甲魚養(yǎng)殖水體固體懸浮顆粒物為研究對(duì)象,設(shè)計(jì)了一種旋流分離裝置?;贔luent軟件對(duì)旋流分離裝置內(nèi)部的流動(dòng)特性進(jìn)行模擬分析,探究了不同流量、不同濃度對(duì)水體固液分離性能的影響,以期為旋流分離裝置在水產(chǎn)養(yǎng)殖領(lǐng)域的研究及應(yīng)用提供理論參考。
旋流分離裝置主要由柱段和錐段組成,其結(jié)構(gòu)如圖1a所示。流場(chǎng)模擬的計(jì)算域,即數(shù)值模擬的求解空間是流體存在區(qū)域,根據(jù)旋流分離裝置結(jié)構(gòu),提取數(shù)值模擬的計(jì)算域,如圖1b所示。
甲魚養(yǎng)殖水中含有大量固體顆粒,屬于固液兩相混合,需要利用多相流模型描述流場(chǎng)變化規(guī)律。由于混合液內(nèi)固相顆粒體積分?jǐn)?shù)相對(duì)較大,并且在旋流分離裝置內(nèi)分布相對(duì)廣泛,所以選擇 Mixture多相流模型[17-18]。對(duì)于不可壓縮流體,其相關(guān)控制方程如下[19-20]
1)質(zhì)量守恒方程
式中為空間坐標(biāo);為養(yǎng)殖水密度,kg/m3;為時(shí)間,s;u為速度在方向上的分量,m/s。
圖1 旋流分離裝置圖
2)動(dòng)量守恒方程
式中為養(yǎng)殖水密度,kg/m3;為流體壓強(qiáng),Pa;μ為流體動(dòng)力黏性系數(shù);u為速度在方向上的分量,m/s;x,y為笛卡爾坐標(biāo)分量;為重力加速度,m/s2。
3)湍動(dòng)參數(shù)方程
旋流分離裝置內(nèi)為強(qiáng)旋流流動(dòng),因此本文采用雷諾應(yīng)力模型(RSM模型)作為湍流模型。RSM模型輸運(yùn)方程為:
4)試驗(yàn)分離效率
式中為底流口的顆粒質(zhì)量流率,kg/s;為入口處顆粒的質(zhì)量流率,kg/s。其中=×,為樣品濃度,mg/L;為體積流量,m3/s。
網(wǎng)格劃分的質(zhì)量和數(shù)量直接影響到控制方程離散的精度和速度,所以劃分合適數(shù)量的高質(zhì)量網(wǎng)格是水力旋流裝置數(shù)值研究的關(guān)鍵之一[21]。本文利用Fluent前處理軟件Gambit 2.4.6 對(duì)旋流分離裝置模型進(jìn)行混合網(wǎng)格劃分,為提高模擬的準(zhǔn)確性,對(duì)進(jìn)口、溢流口、底流口進(jìn)行加密處理,網(wǎng)格數(shù)量為278209個(gè),如圖2所示。同時(shí)針對(duì)旋流分離裝置進(jìn)行了網(wǎng)格無(wú)關(guān)性驗(yàn)證,相對(duì)于當(dāng)前網(wǎng)格數(shù)目,網(wǎng)格數(shù)為12萬(wàn)時(shí)的模擬結(jié)果變化較大,當(dāng)網(wǎng)格數(shù)增加到47萬(wàn)時(shí),模擬結(jié)果無(wú)顯著變化,因此當(dāng)前網(wǎng)格數(shù)符合數(shù)值模擬要求。
圖2 旋流分離裝置網(wǎng)格圖
由于旋流分離裝置進(jìn)水流量穩(wěn)定,故將旋流裝置的入口設(shè)為速度入口,速度為0.36 m/s,速度方向垂直于進(jìn)口指向進(jìn)口內(nèi)側(cè)。將底流口和溢流口設(shè)為壓力出口,壓力為101 325 Pa。根據(jù)前期養(yǎng)殖水顆粒物粒徑體積分布測(cè)試結(jié)果,模擬采用3種顆粒相粒徑:50、100和150m,每種粒徑顆粒的體積分?jǐn)?shù)分別為0.03、0.04、0.03。
本文基于ANSYS Fluent 15.0平臺(tái)進(jìn)行旋流分離裝置內(nèi)多相流運(yùn)動(dòng)的模擬計(jì)算,通過(guò)壓力修正法中的半隱式方法來(lái)實(shí)現(xiàn)速度場(chǎng)與壓力場(chǎng)的耦合。擴(kuò)散項(xiàng)、源項(xiàng)和對(duì)流項(xiàng)的插值方式均選擇對(duì)流運(yùn)動(dòng)的一階迎風(fēng)差分格式,在壓強(qiáng)插值方法上選用適用于高度旋流、高壓強(qiáng)梯度的Presto方法,采用標(biāo)準(zhǔn)壁面函數(shù)處理靠壁面區(qū)域。其他物料參數(shù)如表1所示。
表1 物料參數(shù)
為對(duì)比不同參數(shù)下的流場(chǎng)分布特性,設(shè)置溢流管1/2處縱截面=0作為流場(chǎng)監(jiān)測(cè)面,監(jiān)測(cè)面上錐段1/4處橫線和柱段2/3處橫線作為流場(chǎng)監(jiān)測(cè)線,如圖3所示。
入口濃度10%條件下不同入口流量旋流分離裝置內(nèi)的速度云圖如圖4所示。從圖4可以看出,隨著入口流量增加,筒體中部的低速區(qū)域面積減少,外旋流區(qū)域面積增大,整個(gè)筒內(nèi)的流體速度加快,流場(chǎng)的湍流強(qiáng)度增強(qiáng)。圖5給出了不同入口流量旋流分離裝置內(nèi)部流線圖。入口流量增加時(shí),入口流速增大,物料在裝置內(nèi)的速度變化加快,相應(yīng)地流體的跡線較為繁密。結(jié)合圖4和圖5可以看出,入口流量的增加導(dǎo)致旋流分離裝置內(nèi)部流場(chǎng)湍流強(qiáng)度增大,不利于固相顆粒的沉降。
圖3 監(jiān)測(cè)位置示意圖
圖4 不同入口流量旋流分離裝置速度云圖
圖5 不同入口流量旋流分離裝置流線圖
速度分布是衡量旋流分離裝置分離性能的重要因素[22]。圖6和圖7分別為不同入口流量柱段監(jiān)測(cè)線和錐段監(jiān)測(cè)線的速度分布。隨著入口流量的增加,柱段和錐段監(jiān)測(cè)線切向速度均增大。對(duì)于柱段監(jiān)測(cè)線,多數(shù)監(jiān)測(cè)點(diǎn)的軸向速度也隨流量增加而增大,但是在中心位置兩側(cè)會(huì)存在2個(gè)點(diǎn),屬于內(nèi)外旋流臨界點(diǎn),其速度大小接近0,并且方向會(huì)發(fā)生變化;對(duì)于錐段監(jiān)測(cè)線,多數(shù)監(jiān)測(cè)點(diǎn)的軸向速度也隨著增大,并且內(nèi)外旋流的臨界點(diǎn)靠近中心位置。如圖6所示,對(duì)于柱段監(jiān)測(cè)線,在中心處切向速度接近于0,表明顆粒在此處受到的離心力較小,在內(nèi)旋流的作用下,顆粒向上端溢流口處運(yùn)動(dòng),入口流量的增加將導(dǎo)致溢流產(chǎn)率增大。由圖7可知,錐段監(jiān)測(cè)線切向速度和軸向速度均在近壁面區(qū)域附近達(dá)到最大值,表明顆粒在此區(qū)域受到的離心力較大,在一定范圍內(nèi)將提高旋流分離裝置的分離效率,但由于軸向力作用,有部分顆??赡芟蛞缌骺谔庍\(yùn)動(dòng),增大溢流產(chǎn)率。
圖8顯示了入口流量對(duì)旋流分離裝置內(nèi)不同粒度顆粒分離效率的影響。對(duì)于3種粒徑顆粒,不同入口流量分離效率均呈現(xiàn)下降趨勢(shì),這是由于入口流量增加時(shí),分離裝置內(nèi)部速度增大,顆粒受到湍流流場(chǎng)影響,增加了沉降分離難度。從圖中還可以看出,大粒徑的顆粒分離效率高于小粒徑顆粒的分離效率,主要原因是大粒度顆粒受到的離心力大,因此大部分顆粒隨著筒內(nèi)外旋流運(yùn)動(dòng)到底流口,分離效果較好。
圖6 不同入口流量柱段監(jiān)測(cè)線的速度分布
圖7 不同入口流量錐段監(jiān)測(cè)線的速度分布
圖8 入口流量對(duì)不同粒度顆粒分離效率的影響
圖9顯示了入口流量1.6 m3/h時(shí)不同入口濃度旋流分離裝置內(nèi)的速度云圖。速度云圖從上至下分3組,分別表示=0 mm、柱段橫截面=400 mm、錐段橫截面=?90 mm 3個(gè)特征面的速度分布。從圖9中可以看出,隨著入口濃度增大,筒體中部的低速區(qū)域面積相對(duì)增加,外旋流區(qū)域面積減小。原因在于增大入口濃度使筒體內(nèi)顆粒數(shù)目增加,顆粒間相互作用增強(qiáng),物料在裝置內(nèi)的速度減緩,固相顆粒的分離效果降低。此外,由于顆粒在筒體內(nèi)滯留時(shí)間加長(zhǎng),顆粒不能及時(shí)從底流口流出,而在內(nèi)旋流的作用下從溢流口排出,增加了顆粒的溢出,使溢流產(chǎn)率升高。
圖9 不同入口濃度旋流分離裝置速度云圖
不同入口流量柱段監(jiān)測(cè)線和錐段監(jiān)測(cè)線的速度分布如圖10和圖11所示。從圖中可以看出,當(dāng)徑向距離增大時(shí),監(jiān)測(cè)線的切向速度整體趨勢(shì)先增大后減小,且不同入口濃度下切向速度分布趨勢(shì)基本一致。結(jié)合圖10和圖11可知,入口濃度對(duì)錐段監(jiān)測(cè)線的軸向速度分布影響較大,而對(duì)柱段監(jiān)測(cè)線的速度分布影響相對(duì)較小。
圖10 不同入口濃度柱段監(jiān)測(cè)線的速度分布
圖11 不同入口濃度錐段監(jiān)測(cè)線的速度分布
圖12顯示了入口濃度對(duì)旋流分離裝置內(nèi)不同粒度顆粒分離效率的影響。當(dāng)入口濃度増大時(shí),3種粒徑粒度顆粒分離效率均下降。且隨著固體顆粒粒度增大,底流固體顆粒分離效率的下降幅度增大。原因在于大粒度顆粒質(zhì)量體積大,受到的質(zhì)量力大,易發(fā)生顆粒間的相互作用,使沉降分離難度增加。
圖12 入口濃度對(duì)不同粒度顆粒分離效率的影響
在前文設(shè)計(jì)的基礎(chǔ)上,加工了一種旋流分離裝置。為驗(yàn)證模型結(jié)果的準(zhǔn)確性,在杭州唯康農(nóng)業(yè)開發(fā)有限公司甲魚養(yǎng)殖池中采集水樣,利用采集的甲魚養(yǎng)殖池水樣,在旋流分離裝置中進(jìn)行了試驗(yàn)。采用Bettersize3000plus 激光粒度儀(丹東百特儀器有限公司)測(cè)試了水樣中顆粒物粒徑的體積分布,顆粒粒徑主要分布在0~175m,與前期測(cè)試結(jié)果一致。試驗(yàn)系統(tǒng)進(jìn)料速度為0.36 m/s,入口流量設(shè)定為1.6 m3/h,試驗(yàn)現(xiàn)象穩(wěn)定后,同時(shí)在進(jìn)口、底流口與溢流口處取樣,對(duì)顆粒濃度進(jìn)行了測(cè)試。
模擬結(jié)果與試驗(yàn)結(jié)果對(duì)比如圖13所示,從圖13可以看出,各處顆粒濃度模擬值與試驗(yàn)值的比較接近,且整體變化趨勢(shì)一致,誤差在10%以內(nèi),結(jié)果可靠[20,23]。模擬值在逆流口處的數(shù)據(jù)高于試驗(yàn)值,而在入口和底流口處低于試驗(yàn)值,這可能主要是在模擬時(shí)簡(jiǎn)化了水體固相模型,將粒度分布寬廣的顆粒簡(jiǎn)化成只有3個(gè)粒徑的顆粒群。
圖13 顆粒濃度模擬結(jié)果與試驗(yàn)結(jié)果對(duì)比
1)入口流量增加時(shí),分離裝置內(nèi)部流場(chǎng)速度增大,湍流流動(dòng)加劇,不利于固相顆粒的沉降。
2)入口濃度増大,導(dǎo)致流體速度減小,固體顆粒間作用增強(qiáng),顆粒在筒體內(nèi)滯留時(shí)間加長(zhǎng),分離效率降低。
3)入口流量和入口濃度的增加均會(huì)使不同粒度顆粒的分離效率降低,而且隨著粒度的增大,分離效率下降幅度較大。
4)驗(yàn)證試驗(yàn)結(jié)果與模擬結(jié)果誤差在10%以內(nèi),這表明CFD模擬能很好的描述旋流分離裝置內(nèi)部流場(chǎng)變化規(guī)律,為旋流分離裝置的研究及應(yīng)用提供了理論基礎(chǔ)。
[1] 農(nóng)業(yè)部漁業(yè)局. 中國(guó)漁業(yè)年鑒[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2017.
[2] 楊庭歡. 水產(chǎn)養(yǎng)殖環(huán)境的污染現(xiàn)狀及其控制對(duì)策[J]. 南方農(nóng)業(yè),2017,11(14):92-93.
[3] 吳偉,范立民. 水產(chǎn)養(yǎng)殖環(huán)境的污染及其控制對(duì)策[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2014,16(2):26-34.
Wu Wei, Fan Limin. Pollution and control measures of aquaculture environment[J]. Journal of Agricultural Science and Technology, 2014, 16(2): 26-34. (in Chinese with English abstract)
[4] 張正,王清印,王印庚,等. 弧形篩及生物凈化池凈化陸基工廠化海水養(yǎng)殖廢水的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊2):176-181.
Zhang Zheng, Wang Qingyin, Wang Yingeng, et al. Effluent purification effect of system in sieve bend combined with four grade biological cleansing ponds in industrialized mariculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 176-181. (in Chinese with English abstract)
[5] 袁凱,莊保陸,倪琦,等. 室內(nèi)工廠化水產(chǎn)養(yǎng)殖自動(dòng)投飼系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):169-176.
Yuan Kai, Zhuang Baolu, Ni Qi, et al. Design and experiments of automatic feeding system for indoor industrialization aquaculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 169-176. (in Chinese with English abstract)
[6] 王勝,王偉,史仕熒,等. 軸流式旋流油水分離器分離性能影響研究[J]. 石油機(jī)械,2018,46(5):99-104.
Wang Sheng, Wang Wei, Shi Shiying, et al. Study on separation performance of axial-flow hydrocyclone oil-water separator[J]. China Petroleum Machinery, 2018, 46(5): 99-104. (in Chinese with English abstract)
[7] 陳波,邵仕銘,林濤,等. 組合式高效氣液分離器在輕烴深度回收裝置中的應(yīng)用[J]. 現(xiàn)代化工,2018,38(8):180-184.
Chen Bo, Shao Shiming, Lin Tao, et al. Application of combined-type high efficient separator in light hydrocarbon deep-recovery unit[J]. Modern Chemical Industry, 2018, 38(8): 180-184. (in Chinese with English abstract)
[8] Nurhayati Mellon, Azmi M. Shariff. Performance assessment of an inline horizontal swirl tube cyclone for gas-liquid separation at high pressure[J]. Journal of Natural Gas Chemistry, 2011, 20(6): 565-567.
[9] Tetsuya Yamamoto, Takuma Oshikawa, Hideto Yoshida, et al. Improvement of particle separation performance by new type hydro cyclone[J]. Separation and Purification Technology, 2016, 158: 223-229.
[10] 張建文,楊振亞,張政. 流體流動(dòng)與傳熱過(guò)程的數(shù)值模擬基礎(chǔ)與應(yīng)用[M]. 北京:化學(xué)工業(yè)出版社,2008.
[11] Jawarneh A M, Tlilan H, Al-Shyyab A. Strongly swirling flows in a cylindrical separator[J]. Minerals Engineering, 2008, 21(5): 366-372.
[12] Slack M D, Prasad R O, Bakker A, et al. Advances in cyclone modelling using unstructured grids[J]. Chemical Engineering Research and Design, 2000, 78(8): 1098-1104.
[13] 崔寶玉,魏德洲,翟慶祥,等. 水力旋流器內(nèi)部流場(chǎng)的數(shù)值研究[J]. 東北大學(xué)學(xué)報(bào):自然科學(xué)版,2014,35(6):894-897.
Cui Baoyu, Wei Dezhou, Zhai Qingxiang, et al. Numerical study on internal flow field of hydrocyclone[J]. Journal of Northeastern University: Natural Science, 2014, 35(6): 894-897. (in Chinese with English abstract)
[14] 劉新陽(yáng),羅金耀,高傳昌. 滴灌用水力旋流器中顆粒分離的數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):7-11.
Liu Xinyang, Luo Jinyao, Gao Chuanchang. Numerical simulation of particle separation in hydrocyclone for drip irrigation system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 7-11. (in Chinese with English abstract)
[15] 邱元鋒,孟戈,羅金耀. 微灌離心分離器內(nèi)部流場(chǎng)分布數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):61-67.
Qiu Yuanfeng, Meng Ge, Luo Jinyao. Numerical simulation of flow field distribution in centrifugal separator for micro-irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 61-67. (in Chinese with English abstract)
[16] 史明明,朱松明,葉章穎,等. 基于CFD的循環(huán)生物絮團(tuán)系統(tǒng)渦旋分離器結(jié)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):287-294.
Shi Mingming, Zhu Songming, Ye Zhangying, et al. Structural parameter optimization of hydraulic vertox separator in recirculating biofloc technology system based on computational fluid dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 287-294. (in Chinese with English abstract)
[17] 翟之平,楊忠義,高博,等. 基于Mixture模型的葉片式拋送裝置內(nèi)氣固兩相流模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(22):50-58.
Zhai Zhiping, Yang Zhongyi, Gao Bo, et al. Simulation of solid-gas two-phase flow in an impeller blower based on Mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 50-58. (in Chinese with English abstract)
[18] 趙斌娟,袁壽其,劉厚林,等. 基于Mixture多相流模型計(jì)算雙流道泵全流道內(nèi)固液兩相湍流[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(1):7-12.
Zhao Binjuan, Yuan Shouqi, Liu Houlin, et al. Simulation of solid-liquid two-phase turbulent flow in double-channel pump based on mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1): 7-12. (in Chinese with English abstract)
[19] Hamidipour M, Chen J, Larachi F. CFD study on hydrodynamics in three-phase fluidized beds-Application of turbulence models and experimental validation[J]. Chemical Engineering Science, 2012, 78: 16-180.
[20] 史明明,阮贇杰,劉晃,等. 基于CFD 的循環(huán)生物絮團(tuán)系統(tǒng)養(yǎng)殖池固相分布均勻性評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,33(2):252-258.
Shi Mingming, Ruan Yunjie, Liu Huang, et al. Solid phase distribution simulation of culture pond with recirculating biofloc technology based on computational fluid dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 252-258. (in Chinese with English abstract)
[21] 孫赟,林亞玲,劉興靜,等. 渦輪反應(yīng)器氣固兩相流動(dòng)反應(yīng)CFD 模型數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):195-201.
Sun Yun, Lin Yaling, Liu Xingjing, et al. Development of gas-solid two-phase flow-reaction CFD model for vortex reactor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 195-201. (in Chinese with English abstract)
[22] 龐學(xué)詩(shī). 水力旋流器技術(shù)與應(yīng)用[M]. 北京:中國(guó)石化出版社,1997.
[23] Panneerselvam R, Savithr S, Surender G D. CFD simulation of hydrodynamics of gas-liquid-solid fluidized bed reactor[J]. Engineering Science, 2009, 69: 1119-1135.
Numerical simulation and validation of solid-liquid cyclone separation device for aquaculture water based on CFD
Li Jianping1,2, Wu Kang1, He Xiangyi1, Chen Junyang1, Ji Mingdong1, Ye Zhangying1,2, Zhu Songming1,2
(1.310058,; 2.310058,)
With the continuous improvement of the scale of breeding, the deterioration of water resources and environmental pollution, the breeding model needs to be transformed into an efficient and sustainable direction. The industrial farming system has the advantages of short culturing period and high yield per unit area. However, due to the large amount of solid wastes generated with high density of industrial farming, the removal of large particles of suspended solids in water is the primary task of waste treatment. As a centrifugal separation device, the cyclone separator has been widely used in petrochemical, sewage treatment and other industries. In order to explore the separation effect of solid-liquid cyclone separation device on aquaculture water, the computational fluid dynamics (CFD) method was used to simulate the flow characteristics of the cyclone separation device. At first, hybrid meshing of the cyclone separation device model was finished using the pre-processing software Gambit 2.4.6. In order to improve the accuracy of simulation, the mesh of inlet, overflow port and bottom flow port were all encrypted. The grid independent validation was done to choose the acceptable mesh. The inlet of the cyclone device was set as the velocity inlet, and the bottom flow port and the overflow port were set as pressure outlets. At last, the mesh was imported in Fluent software to analyze the effects of different inlet flow rates and different inlet concentrations on solid-liquid separation performance. In this simulation, the coupling of velocity field and pressure field was achieved by a semi-implicit method in the pressure correction method. First-order upwind difference scheme of convection motion was selected for the interpolation method of the diffusion term, the source term and the convection term. And the wall surface region was treated by the standard wall function. In order to compare the flow field distribution characteristics under different parameters,=0 of the longitudinal section at 1/2 of the overflow pipe was set as the flow field monitoring surface, furthermore, 1/4 of the cone section and 2/3 of the column section on the monitoring surface were taken as the flow field monitoring lines. The simulation results show that as the inlet flow rate increases, the low-speed area in the middle of the cylinder reduces, and the area of the outer swirling area increases. Moreover, fluid velocity inside the separation device increases, and the turbulent flow increases, which is detrimental to the sedimentation of solid particles. Increasing the inlet concentration will increase the amount of particles in the cylinder and the interaction between particles is enhanced. In addition, the fluid velocity in the cylinder decreases, and the concentration of particles retained in the cylinder increases, which reduce the solid-liquid separation efficiency. The increase of the inlet flow and the inlet concentration leads to a decrease in separation efficiency of particles with different particle sizes. And the larger the particle size, the more significant the separation efficiency decreases. According to the comparison between simulation results and experimental data, the simulation error is less than 10%, and the simulation results are trustworthy. This study can provide a reference for the application of cyclone separation devices in aquaculture.
aquaculture; fluid mechanics; flow field; cyclone separation; separation efficiency
2018-12-17
2019-05-28
浙江省重大科技專項(xiàng)重點(diǎn)農(nóng)業(yè)項(xiàng)目(2015C02010)和國(guó)家水體污染控制與治理科技重大專項(xiàng)課題(2014ZX07101)聯(lián)合資助
李建平,教授,博導(dǎo),主要從事設(shè)施水產(chǎn)養(yǎng)殖工程技術(shù)與裝備研究。Email:jpli@zju.edu.cn
10.11975/j.issn.1002-6819.2019.11.021
S238
A
1002-6819(2019)-11-0182-06
李建平,吳 康,何相逸,陳駿煬,季明東,葉章穎,朱松明. 基于CFD的養(yǎng)殖水體固液旋流分離裝置數(shù)值模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):182-187. doi:10.11975/j.issn.1002-6819.2019.11.021 http://www.tcsae.org
Li Jianping, Wu Kang, He Xiangyi, Chen Junyang, Ji Mingdong, Ye Zhangying, Zhu Songming. Numerical simulation and validation of solid-liquid cyclone separation device for aquaculture water based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 182-187. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.021 http://www.tcsae.org