陳麗麗 鄒潔 高璐
摘 要:集值映射理論在控制論、優(yōu)化理論、數(shù)理經(jīng)濟等諸多領(lǐng)域都有著廣泛的應(yīng)用,現(xiàn)已成為非線性分析的重要組成部分,因此研究集值映射的有關(guān)問題具有重要的理論意義和應(yīng)用價值。主要研究了一致凸的Banach空間上(α,β)-廣義混合集值映射吸收點的收斂性問題,引入了集值映射意義下的Agarwal迭代格式, 并分別利用I′條件和半緊性質(zhì)給出了一致凸的Banach空間上(α,β)-廣義混合集值映射在該迭代格式下關(guān)于吸收點的收斂性定理。
關(guān)鍵詞:Agarwal迭代格式;(α,β)-廣義混合集值映射;吸收點;一致凸Bananch空間
DOI:10.15938/j.jhust.2019.03.023
中圖分類號: O177.2
文獻標志碼: A
文章編號: 1007-2683(2019)03-0138-05
Abstract:Setvalued mapping theory,which is widely used in control theory, optimization theory, mathematical economics and other fields,has developed rapidly in recent decades and has now become an important component of nonlinear analysis. Therefore, research on related problems of set value mappings has an important theoretical significance and application value. We mainly discuss the convergence problems of attractive points of (α,β)-generalized hybrid setvalued mappings, and we also generalize the Agarwal iteration to the case of setvalued mappings. Consequently, some convergence theorems of attractive points of (α,β)-generalized hybrid setvalued mappings defined on uniformly convex Banach spaces by use of the conditions I′ and the demicompact property are obtained respectively.
Keywords:Agarwal iteration; (α,β)-generalized hybrid setvalued mapping; attractive point; uniformly convex Banach space
3 結(jié) 論
本文主要研究了(α,β)-廣義混合集值映射在Agarwal迭代格式下的吸收點和收斂性問題, 事實上,Agarwal迭代速度在某些條件下比引言中2015年Y.C.Zheng給出的迭代格式收斂速度更快。 我們分別利用I′條件和半緊性質(zhì)給出了一致凸Banach空間上(α,β)-廣義混合集值映射的收斂定理,在此基礎(chǔ)上可以繼續(xù)研究(α,β)-廣義混合集值映射及其它類型的廣義集值映射的吸收點和收斂性問題。
參 考 文 獻:
[1] KOCOUREK P, TAKAHASHI W, YAO J C. Fixed Point Theorems and Weak Convergence Theorems for Generalized Hybrid Mappings in Hilbert Spaces[J]. Taiwanese Journal of Math, 2010, 14(6): 745.
[2] AGARWAL R P, REGAN D O, SAHU D R. Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings[J]. Nonlinear Convex Anal, 2007, 8(1): 61.
[3] TAKAHASHI W, YAO J C. Fixed Point Theorems and Ergodic Theorems for Nonlinear Mappings in Hilbert Spaces[J]. Taiwanese Journal of Math, 2011, 15(2): 67.
[4] KHAN S H, YILDIRIM I. Fixed Points of Multivalued Nonexpansive Mappings in Banach Spaces[J]. Fixed Point Theory Appl, 2012, 2012(1): 1.
[5] ZHENG Y C. Attractive Points and Convergence Theorems of Generalized Hybrid Mapping[J]. Nonlinear Sci. Appl, 2015, 8(4): 354.
[6] CHEN L, GAO L, ZHAO Y. A New Iterative Scheme for Finding Attractive Points of (α,β)-generalized hybrid Setvalued Mappings[J]. Nonlinear Sci, 2017, 10: 1228.
[7] SENTER H F, DOTSON W G. Approximating Fixed Points of Nonexpansive Mappings[J]. Proc. Amer. Math. Soc, 1974, 44(2): 375.
[8] XU H K. Inequality in Banach Spaces with Applications[J]. Nonlinear Anal, 1991, 16(12): 1127.
[9] ALGHAMDI M A, KIRK W A, SHAHZAD N. Metric Fixed Point Theory for Nonexpansive Mappings Defined on Unbounded Sets[J]. Fixed Point Theory Appl., 2014, 2014(1): 1.
[10]BOLIBOK K, GOEBEL K, KIRK W A. Remarks on the Stability of the Fixed Point Property for Non Expansive Mappings[J]. Arabian Journal of Math, 2012, 1(4): 417.
[11]KE Y, MA C. The Generalized Viscosity Implicit Rules of Nonexpansive Mappings in Hilbert Spaces[J]. Fixed Point Theory Appl., 2015, 2015(1): 190.
[12]BETIUKPILARSKA A, BENAVIDES T D, KAEWCHAROEN A, et al. The Fixed Point Property for Some Generalized Nonexpansive Mappings and Renormings[J]. Math. Anal. Appl, 2015, 429(2): 800.
[13]DHOMPONGSA S, INTHAKON W, TAKAHASHI W. A Weak Convergence Theorem for Common Fixed Points of Some Generalized Nonexpansive Mappings and Nonspreading Mappings in a Hilbert Space[J].Optimization, 2011, 60(6): 769.
[14]HOJO M, TAKAHASHI W. Weak and Strong Convergence Theorems for Generalized Hybrid Mappings in Hilbert Space[J]. Nonlinear Anal., 2010, 73(6): 1562.
[15]LAEL F, HEIDARPOUR Z. Fixed Point Theorems for a Class of Generalized Nonexpansive Mappings[J]. Fixed Point Theory Appl., 2016, 2016(1): 82.
[16]DHOMPONGSA S, KAEWKHAO A, PANYANAK B. On Kirks Strong Convergence Theorem for Multivalued Nonexpansive Mappings on CAT(0) Spaces[J]. Optimization, 2012, 75(2): 459.
[17]GARCAFALSET J, LLORENSFUSTER E, SUZUKI T. Fixed Point Theory for a Class of Generalized Nonexpansive Mappings[J]. Math. Anal. Appl., 2011, 375(1): 185.
[18]TAKAHASHI W, Fixed Point Theorems for New Nonlinear Mappings in a Hilbert Spaces[J]. Nolinear Convex Anal., 2010, 11(1): 79.
[19]CHEN L, GAO L, CHEN D. Fixed Point Theorems of Mean Nonexpansive Setvalued Mappings in Banach Spaces[J]. Fixed Point Theory Appl., 2017, 19(3): 1.
[20]THAKUR D, THAKUR B S, POSTOLACHE M.Convergence Theorems for Generalized Nonexpansive Mappings in Uniformly Convex Banach Spaces[J]. Fixed Point Theory Appl., 2015, 2015(1): 1.
[21]ONJAIUEA N,PHUENGRATTANA W. A Hybrid Iterative Method for Common Solutions of Variational Inequality Problems and Fixed Point Problems for Singlevalued and Multivalued Mappings with Applications[J]. Fixed Point Theory Appl., 2015, 2015(1): 1.
(編輯:關(guān) 毅)