韓志平,張海霞,張 巽,梁艷花
水分脅迫對(duì)黍子幼苗生長(zhǎng)和生理特性的影響*
韓志平1,張海霞2,張 巽1,梁艷花1
(1.山西大同大學(xué)生命科學(xué)學(xué)院/設(shè)施農(nóng)業(yè)技術(shù)研發(fā)中心,大同 037009;2.山西大同大學(xué)后勤管理處,大同 037009)
以“晉黍8號(hào)”黍子幼苗為材料,在大棚內(nèi)采用盆栽砂培法澆灌營(yíng)養(yǎng)液,設(shè)置重旱、輕旱、正常灌溉、輕澇和重澇5個(gè)處理,植株二葉一心時(shí)開始脅迫處理,于處理后20d測(cè)定植株形態(tài)指標(biāo)、生物量和含水量、葉片質(zhì)膜透性、光合色素、丙二醛、抗壞血酸、脯氨酸、可溶性糖和可溶性蛋白含量等指標(biāo),研究水分脅迫對(duì)黍子幼苗生長(zhǎng)、膜脂過氧化和滲透調(diào)節(jié)的影響。結(jié)果表明,正常灌溉下黍子幼苗生長(zhǎng)最好,株高、莖粗、莖節(jié)數(shù)、葉片數(shù)、最大葉面積及根系、莖葉、穗的鮮質(zhì)量、干質(zhì)量均最大,干旱和澇害下幼苗各形態(tài)指標(biāo)和生物量均明顯降低,且重旱和重澇下比輕旱和輕澇下降低更明顯;根系、莖葉和穗的含水量在干旱下均明顯降低,澇害下表現(xiàn)各不相同。葉片光合色素含量在干旱下顯著降低而澇害下無明顯變化,質(zhì)膜透性、丙二醛、抗壞血酸和脯氨酸含量在干旱和澇害下明顯增加,且重旱和重澇下比輕旱和輕澇下增加更明顯;可溶性糖含量在干旱下明顯增加而在澇害下明顯降低,可溶性蛋白含量在干旱下顯著降低而在澇害下無顯著變化。研究說明,干旱和澇害均對(duì)黍子幼苗造成過氧化傷害,抗氧化物質(zhì)和滲透調(diào)節(jié)物質(zhì)含量隨之增加,但是抗氧化物質(zhì)的增加并不能完全消除脅迫導(dǎo)致的過氧化傷害,加上光合能力降低,使黍子植株生長(zhǎng)顯著抑制。在本試驗(yàn)條件下,干旱脅迫對(duì)黍子幼苗的傷害比澇害嚴(yán)重。
黍子;水分脅迫;生長(zhǎng);膜脂過氧化;滲透調(diào)節(jié)物質(zhì)
中國(guó)季風(fēng)氣候顯著,干旱和澇害經(jīng)常發(fā)生,且分布地區(qū)廣,是限制農(nóng)業(yè)生產(chǎn)的主要因素[1]。近幾十年來,氣候不斷惡化,旱澇災(zāi)害更加頻繁,危害程度不斷增強(qiáng),對(duì)農(nóng)作物生長(zhǎng)發(fā)育的影響更加嚴(yán)重[2]。黍子(L.)為單子葉禾本科植物,籽粒脫殼后營(yíng)養(yǎng)價(jià)值極高,可用于炸油糕和釀米酒[3]。大同、朔州、忻州、呂梁等市是山西省黍子種植和消費(fèi)的主要地區(qū),但這些地區(qū)均為干旱或半干旱地區(qū)[4?5],水資源缺乏,年降水量?jī)H402~533mm,是華北地區(qū)缺水最嚴(yán)重的區(qū)域之一,每年夏秋雨季,還可能有突發(fā)性暴雨洪澇災(zāi)害發(fā)生[6?7]。雖然黍子較耐貧瘠和干旱,但降雨量不足和洪澇災(zāi)害都會(huì)嚴(yán)重影響黍子的生長(zhǎng)發(fā)育、產(chǎn)量和品質(zhì)。
然而,國(guó)內(nèi)外對(duì)黍子水分脅迫抗性及其機(jī)理的研究很少。張美俊等[8]利用PEG-6000溶液模擬干旱脅迫,并采用隸屬函數(shù)法對(duì)16個(gè)黍子品種萌發(fā)期的抗旱性進(jìn)行了綜合評(píng)價(jià)。王綸等[9]通過測(cè)定光合氣體交換參數(shù)和離體葉片含水量,驗(yàn)證了反復(fù)干旱法鑒定和篩選黍子抗旱種質(zhì)的準(zhǔn)確性和可行性。張永清等[10]研究表明,拔節(jié)期或抽穗期干旱脅迫顯著抑制黍子根系的生長(zhǎng),施肥可提高土壤水分利用效率,緩解干旱脅迫對(duì)根系生長(zhǎng)的抑制。還有學(xué)者研究了黍子在干旱脅迫下生理生態(tài)特征的變化[11?12]。但以往研究并未完全闡明黍子的抗旱生理機(jī)制,澇害對(duì)黍子的影響更未見報(bào)道。為此,本研究以“晉黍8號(hào)”為材料,采用盆栽砂培澆灌營(yíng)養(yǎng)液方法,研究干旱脅迫和澇害對(duì)黍子幼苗生長(zhǎng)和生理指標(biāo)的影響,以期為闡明黍子植株對(duì)水分脅迫的生理響應(yīng)奠定基礎(chǔ),為同朔地區(qū)黍子的抗旱和抗?jié)吃耘嗵峁﹨⒖肌?/p>
實(shí)驗(yàn)于2017年5?7月在山西大同大學(xué)生命科學(xué)實(shí)驗(yàn)基地大棚內(nèi)進(jìn)行。供試品種“晉黍8號(hào)”由山西省農(nóng)業(yè)科學(xué)院高寒區(qū)作物研究所提供。
選取飽滿、無病的種子,用清水浸種后播于以砂子:蛭石體積比3:1為基質(zhì)的塑料盆中育苗,盆上口直徑25cm,深20cm,盆下墊托盤。每盆播約180粒種子,每天澆水保持基質(zhì)濕潤(rùn)。幼苗一葉一心后,每2d澆一次1/2劑量Hoagland配方營(yíng)養(yǎng)液,逐漸使基質(zhì)含水量保持在最大持水量的65%~70%,以充分澆水并自然滲漏2h后測(cè)得的基質(zhì)含水量為最大持水量。植株二葉一心時(shí)開始脅迫處理,每日18:00按照基質(zhì)最大持水量的百分比進(jìn)行水分控制。共設(shè)5個(gè)處理:基質(zhì)含水量65%~70%(正常灌溉,W3),通過稱重法補(bǔ)充水分;干旱脅迫設(shè)2個(gè)水平,通過控制澆水和稱重法使基質(zhì)含水量降至15%~20%(重旱,W1)、40%~45%(輕旱,W2);澇害設(shè)2個(gè)水平,通過增加澆水和稱重法使基質(zhì)含水量達(dá)到90%~95%(輕澇,W4)、115%~120%(重澇,W5)。脅迫期間每5d按重旱脅迫灌水量澆一次1/2劑量Hoagland配方營(yíng)養(yǎng)液,其它處理用清水補(bǔ)足灌水量,其余時(shí)間各處理僅澆清水。重澇脅迫處理將栽培盆置于水深5cm的盆中,每天澆水多次以保證基質(zhì)含水量。處理前1d每盆定苗60株,實(shí)驗(yàn)重復(fù)3次,每重復(fù)3盆,隨機(jī)排列。
水分脅迫20d時(shí)每盆取10株幼苗測(cè)量相關(guān)生長(zhǎng)指標(biāo),另取20株幼苗的葉片測(cè)定相關(guān)生理指標(biāo)。
1.3.1 生長(zhǎng)指標(biāo)
用直尺測(cè)量基部到植株最高處的長(zhǎng)度為株高,游標(biāo)卡尺測(cè)量基部以上2cm處莖的直徑為莖粗,并統(tǒng)計(jì)地上部莖節(jié)數(shù);以葉片完全展開及葉長(zhǎng)超過5cm為標(biāo)準(zhǔn)統(tǒng)計(jì)葉片數(shù),用Yaxin-1242葉面儀測(cè)量最大葉片的葉面積。取植株洗凈并擦干后剪斷分為根系、莖葉、穗3部分,分別稱鮮質(zhì)量;在105℃下殺青15min后降溫至75℃下烘干到恒重,稱干質(zhì)量。
1.3.2 生理指標(biāo)
參考沈偉其方法配制提取液,打孔取葉圓片提取后測(cè)定葉綠素a(Chla)、葉綠素b(Chlb)和類胡蘿卜素(Car)含量[13];丙二醛(MDA)含量采用硫代巴比妥酸法[14],質(zhì)膜透性采用電導(dǎo)儀法[15],以相對(duì)電導(dǎo)率表示,抗壞血酸(AsA)含量采用紅菲羅啉法[16];脯氨酸含量采用水浴浸提法,可溶性糖含量采用蒽酮比色法[17],可溶性蛋白含量采用考馬斯亮藍(lán)染色法[18]。
數(shù)據(jù)用DPS7.5軟件進(jìn)行方差分析,Duncan's新復(fù)極差法進(jìn)行多重比較,Excel軟件作圖。
2.1.1 形態(tài)指標(biāo)
由表1可見,控水處理20d后,所測(cè)幼苗各形態(tài)指標(biāo)包括株高、莖粗、節(jié)數(shù)、葉片數(shù)、最大葉面積均表現(xiàn)出相同的變化特點(diǎn),即:正常灌溉(W3,65%~70%)下植株形態(tài)生長(zhǎng)最好,各項(xiàng)指標(biāo)均最高;輕旱(W2,40%~45%)和輕澇(W4,90%~95%)處理下株高、莖粗、最大葉面積比正常灌溉下顯著減小,對(duì)節(jié)數(shù)和葉片數(shù)影響不顯著;重旱(W1,15%~20%)和重澇(W5,115%~120%)脅迫下株高、莖粗、最大葉面積比輕旱和輕澇下進(jìn)一步顯著減小,節(jié)數(shù)和葉片數(shù)減小不顯著。除葉片數(shù)在重澇下減少不顯著外,與正常灌溉下相比,重旱和重澇下各形態(tài)指標(biāo)均顯著降低,且重旱下降低幅度明顯大于重澇下??梢?,基質(zhì)灌水量過多(澇害)或過少(干旱)均會(huì)抑制黍子植株的形態(tài)生長(zhǎng),導(dǎo)致幼苗弱小。
2.1.2 生物量和含水量
由表2可知,水分脅迫20d后,幼苗根系、莖葉、穗的鮮質(zhì)量和干質(zhì)量均在正常灌溉(W3)下最高,生長(zhǎng)最好;輕旱(W2)和輕澇(W4)下各部分生物量比正常灌溉下均有不同程度降低,其中輕旱下穗鮮質(zhì)量和干質(zhì)量、輕澇下根系干質(zhì)量降低達(dá)顯著水平;重旱(W1)下所測(cè)各部分的鮮質(zhì)量和干質(zhì)量均比輕旱下進(jìn)一步顯著降低,重澇(W5)下僅莖葉鮮質(zhì)量和干質(zhì)量比輕澇下顯著降低,根系和穗的鮮質(zhì)量和干質(zhì)量降低不顯著。根系含水量隨各處理的變化規(guī)律與生物量基本一致;莖葉含水量則在干旱下低于正常灌溉下,重旱下降低達(dá)顯著水平,在澇害下高于正常灌溉下,重澇下升高達(dá)顯著水平;穗含水量在干旱下低于正常灌溉下,重旱下降低達(dá)顯著水平,澇害下與正常灌溉下基本一致。與正常灌溉下相比,重旱、輕旱、輕澇、重澇條件下,根系鮮質(zhì)量和干質(zhì)量分別降低69.89%、5.89%、5.63%、12.83%和47.77%、3.00%、7.48%、8.22%;莖葉鮮質(zhì)量和干質(zhì)量分別降低67.62%、5.16%、5.01%、30.63%和57.90%、4.06%、10.69%、39.74%;穗鮮質(zhì)量和干質(zhì)量分別降低65.63%、22.55%、6.53%、9.49%和60.80%、18.19%、6.26%、10.23%。結(jié)合形態(tài)指標(biāo)結(jié)果可知,基質(zhì)干旱或澇害均會(huì)明顯抑制黍子幼苗的生長(zhǎng),且干旱對(duì)生長(zhǎng)的抑制程度比澇害更大,其中重旱對(duì)幼苗生長(zhǎng)的傷害最嚴(yán)重。
表1 不同水分處理20d時(shí)黍子幼苗形態(tài)指標(biāo)的比較
注:W1、W2、W3、W4、W5分別表示重旱、輕旱、正常、輕澇、重澇5種水分處理,數(shù)據(jù)后小寫字母表示處理間在0.05水平上的差異顯著性,數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差。下同。
Note:W1, W2, W3, W4, W5 indicate severe drought, slight drought, normal irrigation, slight flooding, severe flooding, respectively. Lowercase after data indicates the difference significance among treatments at 0.05 level. Data are mean±SD. The same as below.
表2 不同水分處理20d時(shí)黍子幼苗生物量和含水量的比較
由圖1可知,水分處理20d時(shí),與正常灌溉(W3)下相比,干旱脅迫下幼苗的葉片光合色素含量顯著降低,重旱(W1)比輕旱(W2)脅迫下降低幅度更大;澇害下葉片光合色素含量略有增加,但輕澇(W4)和重澇(W5)脅迫下均與正常灌溉下無顯著差異。與正常灌溉條件下相比,重旱、輕旱處理下葉片葉綠素a、葉綠素b和類胡蘿卜素含量分別降低30.02%、27.69%、23.62%和23.90%、21.20%、18.78%。結(jié)果說明,干旱脅迫使黍子幼苗葉片光合色素合成減少而分解加速,導(dǎo)致光合色素含量顯著降低,澇害則對(duì)葉片光合色素的代謝無顯著影響。
圖2顯示,水分脅迫20d后,幼苗葉片質(zhì)膜透性、MDA和AsA含量均以正常灌溉(W3)下最低;輕旱(W2)和輕澇(W4)處理下質(zhì)膜透性和MDA含量比正常灌溉下顯著增加,AsA含量在輕旱下顯著增加而輕澇下增加不顯著;重旱(W1)和重澇(W5)脅迫下質(zhì)膜透性和MDA含量比輕旱和輕澇處理下進(jìn)一步顯著增加,AsA含量增加不顯著。與正常灌溉下相比,重旱、輕旱、輕澇、重澇下,質(zhì)膜透性、MDA和AsA含量分別增加80.79%、58.25%、21.94%,44.67%、31.90%、14.79%,31.98%、17.35%、10.72%和51.08%、44.19%、18.82%。說明基質(zhì)干旱或澇害均會(huì)導(dǎo)致黍子幼苗膜脂過氧化傷害,使細(xì)胞膜透性增大,且干旱脅迫造成的過氧化傷害比澇害更嚴(yán)重,同時(shí)水分脅迫誘導(dǎo)幼苗體內(nèi)AsA含量增加,有利于部分減輕脅迫造成的過氧化傷害,正常灌溉則有利于維持細(xì)胞膜的穩(wěn)定性和完整性。
圖1 不同水分處理20d時(shí)黍子幼苗葉片光合色素含量的比較
注:短線表示標(biāo)準(zhǔn)差。下同。
Note:The short bar is mean deviation. The same as below.
圖2 不同水分處理20d時(shí)黍子幼苗葉片膜脂過氧化的比較
圖3表明,水分處理20d后,幼苗葉片脯氨酸含量在正常灌溉(W3)下最低,輕旱(W2)和輕澇(W4)處理下略有增加,重旱(W1)和重澇(W5)脅迫下顯著增加;與正常灌溉下相比,可溶性糖含量在干旱脅迫下增加,其中重旱脅迫下增加達(dá)顯著水平,澇害下降低,但輕澇和重澇下降低均不顯著;可溶性蛋白含量在干旱脅迫下比正常灌溉下顯著降低,澇害下則無顯著變化。說明在干旱脅迫和澇害下,黍子幼苗可以通過促進(jìn)脯氨酸的合成以調(diào)節(jié)植株體內(nèi)的細(xì)胞滲透勢(shì),減輕脅迫造成的細(xì)胞水分虧缺;可溶性糖在干旱脅迫下可作為滲透調(diào)節(jié)物質(zhì)起作用,在澇害下則被大量消耗,可溶性蛋白在干旱脅迫下被降解而在澇害下不起作用。
圖3 不同水分處理20d時(shí)黍子幼苗葉片滲透調(diào)節(jié)物質(zhì)含量的比較
中國(guó)水資源分布極不均勻,西北和華北部分地區(qū)缺水嚴(yán)重,華中及華南地區(qū)降雨過多,因此作物的水分脅迫是農(nóng)學(xué)和植物生理學(xué)研究的熱點(diǎn)問題[19?21]。研究表明,水分脅迫下作物的生長(zhǎng)發(fā)育顯著抑制,產(chǎn)量品質(zhì)明顯降低,嚴(yán)重時(shí)導(dǎo)致植株死亡[22?24]。本研究中,黍子幼苗在正常灌溉下生長(zhǎng)最好,干旱脅迫和澇害使黍子生長(zhǎng)顯著降低,且干旱脅迫對(duì)生長(zhǎng)的抑制程度比澇害更大,這可能與實(shí)驗(yàn)所用栽培基質(zhì)的持水性較弱、黍子根系吸收和運(yùn)輸水分的能力較強(qiáng)[25]有關(guān),澇害下植株通過促進(jìn)根系吸水使莖葉含水量增加而穗含水量穩(wěn)定,有效減輕了澇害的影響。
光合作用是植物生長(zhǎng)發(fā)育的基礎(chǔ),光合色素負(fù)責(zé)光合作用中光能的吸收、傳遞和轉(zhuǎn)化,其含量直接反映植物的光合能力[21, 26]。水分脅迫不僅影響植物光合色素的合成,還會(huì)加速原有光合色素的分解[1, 27],同時(shí)抑制葉片生長(zhǎng)、影響氣孔開閉、損傷葉肉細(xì)胞、降低光合酶活性,使光合速率降低[28?30],最終使植物生長(zhǎng)發(fā)育受阻,產(chǎn)量降低。本研究中,黍子葉片各光合色素含量均在干旱脅迫下顯著降低而在澇害下略有增加,說明干旱脅迫促使葉片光合色素分解,抑制其合成,從而使植株的光合能力減弱,這是黍子植株對(duì)干旱的適應(yīng)性反應(yīng),也是干旱脅迫下黍子生長(zhǎng)降低的主要原因之一,與前人的研究結(jié)果[31?34]一致。澇害對(duì)黍子葉片光合色素的代謝幾乎沒有影響,可能是因?yàn)楸緦?shí)驗(yàn)所用基質(zhì)的最大持水量較低(僅約30%),即使在重澇下基質(zhì)含水量也僅為基質(zhì)干重的39%~41%,雖然水分超過了基質(zhì)的最大持水量,但基質(zhì)表面并沒有積水,仍具有一定的通氣性,因此葉片光合色素仍能正常合成。
研究表明,水分脅迫下,細(xì)胞內(nèi)自由基大量產(chǎn)生,導(dǎo)致膜脂中不飽和脂肪酸過氧化,使細(xì)胞膜結(jié)構(gòu)破壞,質(zhì)膜透性增加,電解質(zhì)大量滲漏,膜脂過氧化的最終產(chǎn)物MDA含量增加[20, 24, 34?35]。AsA是植物體內(nèi)的非酶自由基清除劑,能夠減輕或消除膜脂過氧化對(duì)細(xì)胞造成的傷害[36]。本研究中,除AsA在輕澇下增加不顯著外,黍子幼苗葉片質(zhì)膜透性、MDA和AsA含量在干旱脅迫和澇害下均顯著增加,說明根際水分狀況與質(zhì)膜的結(jié)構(gòu)和功能關(guān)系密切,干旱脅迫和澇害均會(huì)引起活性氧大量產(chǎn)生,造成膜脂過氧化傷害,這與劉佳等[37?38]的研究結(jié)果一致。植株可通過促進(jìn)AsA的合成來增強(qiáng)抗氧化能力,清除活性氧,緩解自由基大量產(chǎn)生造成的過氧化傷害,適應(yīng)水分脅迫環(huán)境。但是水分脅迫下活性氧產(chǎn)生與清除的平衡已經(jīng)破壞,AsA的增加并不能及時(shí)清除自由基,使膜脂過氧化傷害仍隨脅迫程度增加而加重[39]。同時(shí)干旱脅迫對(duì)黍子的過氧化傷害比澇害更嚴(yán)重,這可能與本實(shí)驗(yàn)采用砂培并以基質(zhì)最大持水量的百分比設(shè)置處理水平有關(guān)。正常灌溉下黍子細(xì)胞膜結(jié)構(gòu)穩(wěn)定,有利于細(xì)胞內(nèi)生理生化代謝的正常進(jìn)行。
脯氨酸、可溶性糖和可溶性蛋白等植物體內(nèi)重要的有機(jī)滲透調(diào)節(jié)物質(zhì),在環(huán)境脅迫下可迅速積累[24, 40?42],從而降低細(xì)胞滲透勢(shì),提高細(xì)胞吸水能力,保護(hù)代謝酶活性,維持細(xì)胞膜的完整性等[21, 43?45]。脯氨酸的積累還可以減輕氨毒害和保護(hù)生物大分子[46]。本研究中,黍子葉片脯氨酸含量在干旱脅迫和澇害下均明顯增加,可溶性糖含量在干旱下增加而在澇害下降低,可溶性蛋白含量在干旱下顯著降低而在澇害下無明顯變化,說明干旱脅迫和澇害均可造成黍子幼苗滲透脅迫,干旱脅迫下植株可通過合成和積累脯氨酸和可溶性糖調(diào)節(jié)細(xì)胞滲透勢(shì),促進(jìn)細(xì)胞吸水,維持細(xì)胞水分平衡,減輕水分虧缺,這與杜磊等[47]的研究結(jié)果一致。澇害下黍子幼苗主要利用脯氨酸進(jìn)行滲透調(diào)節(jié),可溶性糖可能由于無氧呼吸加強(qiáng)及同化產(chǎn)物運(yùn)輸受阻,為了維持生長(zhǎng)被大量消耗,這有利于植株適應(yīng)脅迫環(huán)境[24]。黍子幼苗可溶性蛋白質(zhì)在干旱脅迫下被分解,這與水稻在臭氧脅迫下[48]、番茄在高溫脅迫下[49]的變化相似,對(duì)澇害下的滲透調(diào)節(jié)則無貢獻(xiàn)。
基質(zhì)干旱和澇害均會(huì)對(duì)幼苗造成過氧化傷害和滲透脅迫,使黍子生長(zhǎng)被明顯抑制,表現(xiàn)為株高降低、莖節(jié)數(shù)減少、葉面積減小、生物量降低。植株可通過提高抗氧化能力、積累有機(jī)滲透調(diào)節(jié)物質(zhì)部分適應(yīng)水分脅迫,但這種自我調(diào)節(jié)無法完全消除水分脅迫造成的傷害,特別是在干旱脅迫下植株的光合色素合成受阻、分解加快,光合能力降低,使黍子生長(zhǎng)的抑制更加嚴(yán)重。在本研究條件下,干旱脅迫對(duì)黍子的影響比澇害更為嚴(yán)重,但幼苗即使在重旱下也未出現(xiàn)死亡,說明黍子植株的耐旱性很強(qiáng),這可能與黍子根系較發(fā)達(dá)、吸水能力強(qiáng)、角質(zhì)層較厚、蒸騰阻力大等形態(tài)結(jié)構(gòu)特征有關(guān)[11],具體原因有待進(jìn)一步研究。黍子對(duì)干旱和澇害的耐性和生理響應(yīng),特別是在光合色素代謝和滲透調(diào)節(jié)方面存在明顯差異,有必要深入研究其生理和分子機(jī)制。
[1] 蔡慶生.植物生理學(xué)[M].北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2014: 306-313.
Cai Q S.Plant physiology[M].Beijing:China Agricultural University Press,2014:306-313.(in Chinese)
[2] 董杰,賈學(xué)峰.全球氣候變化對(duì)中國(guó)自然災(zāi)害的可能影響[J].聊城大學(xué)學(xué)報(bào),2004,17(2):58-62.
Dong J,Jia X F.Possible impacts of global climate change on natural disasters of China[J].Journal of Liaocheng University, 2004,17(2):58-62.(in Chinese)
[3] 王綸,王星玉,溫琪汾,等.中國(guó)黍稷種質(zhì)資源研究與利用[J].植物遺傳資源學(xué)報(bào),2005,6(4):474-477.
Wang L,Wang X Y,Wen Q F,et al.Research and utilization of prosomillet germplasm resource in China[J].Journal of Plant Genetic Resources,2005,6(4):474-477.(in Chinese)
[4] 穆志新,郝曉鵬,秦慧彬,等.山西省干旱地區(qū)農(nóng)作物種質(zhì)資源普查與分析[J].植物遺傳資源學(xué)報(bào),2016,17(4):637-648.
Mu Z X,Hao X P,Qing H B,et al.General survey and analysis of crop germplasm resources in drought area of Shanxi province[J].Journal of Plant Genetic Resources,2016, 17(4): 637-648.(in Chinese)
[5] 周晉紅.山西省干旱時(shí)空分布特征及形成機(jī)理研究[D].南京:南京信息工程大學(xué),2010.
Zhou J H.Study on temporal and spatial distribution feature of drought and its formation mechanism in Shanxi province [D]. Nanjing:Nanjing University of Information Science & Technology,2010.(in Chinese)
[6] 龐鑫.山西省農(nóng)業(yè)干旱時(shí)空變化特征及其與氣象因子的響應(yīng)研究[D].太原:太原理工大學(xué),2017.
Pang X.Spatial and temporal variation characteristics of agricultural drought and its response to meteorological factors in Shanxi province[D].Taiyuan:Taiyuan University of Technology, 2017.(in Chinese)
[7] 袁瑞強(qiáng),龍西亭,王鵬,等.山西省降水量時(shí)空變化及預(yù)測(cè)[J].自然資源學(xué)報(bào),2015,30(4):651-663. Yuan R Q,Long X T,Wang P,et al.Tempo-spatial variation and forecast of precipitation in Shanxi province[J].Journal of Natural Resources,2015,30(4):651-663.(in Chinese)
[8] 張美俊, 楊武德, 喬治軍, 等.不同糜子品種萌發(fā)期對(duì)干旱脅迫的響應(yīng)及抗旱性評(píng)價(jià)[J].草地學(xué)報(bào),2013,21(2): 302-307.
Zhang M J,Yang W D,Qiao Z J,et al.Resistance evaluation and response of 16 millet varieties at germination stage to drought stress[J].Acta Agrestia Sinaca,2013,21(2):302-307. (in Chinese)
[9] 王綸,溫琪汾,曹厲萍,等.黍稷抗旱種質(zhì)篩選及抗旱機(jī)理研究[J].山西農(nóng)業(yè)科學(xué),2007,35(4):31-34.
Wang L,Wen Q F,Cao L P,et al.Drought-resistant germplasm screening and drought-resistance mechanism in proso millet[J].Journal of Shanxi Agricultural Sciences,2007,35(4): 31-34.(in Chinese)
[10] 張永清,苗果園.不同施肥水平下黍子根系對(duì)干旱脅迫的反應(yīng)[J].作物學(xué)報(bào),2006,32(4):601-606.
Zhang Y Q,Miao G Y.The biological response of broom corn millet root to drought stress with different fertilization levels[J].Acta Agronomica Sinica,2006,32(4):601-606.(in Chinese)
[11] 馮曉敏.不同黍稷品種耐旱性差異及生理生態(tài)特性研究[D].臨汾:山西師范大學(xué),2012.
Feng X M.Study on drought tolerance diversity and physiological characteristics of different prosoes[D].Linfen: Shanxi Normal University,2012.(in Chinese)
[12] 閆江艷,張永清,馮曉敏,等.干旱脅迫及復(fù)水對(duì)不同黍稷品種根系生理特性的影響[J].西北植物學(xué)報(bào),2012,32(2): 348-354.
Yan J Y,Zhang Y Q,Feng X M,et al.Effect of drought stress and rewatering on physiological characteristics of roots in different prosomillet varieties[J].Acta Bot Boreal-Occident Sin,2012,32(2):348-354.(in Chinese)
[13] 王素平,郭世榮,胡曉輝,等.鹽脅迫對(duì)黃瓜幼苗葉片光合色素含量的影響[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,28(2):32-38.
Wang S P,Guo S R,Hu X H,et al.Effects of NaCl stress on the content of photosynthetic pigments in the leaves of cucumber(L.)seedlings[J].Acta Agriculturae Universitatis Jiangxiensis,2006,28(2):32-38.(in Chinese)
[14] Madhava R K V,Sresty T V S.Antioxidative parameters in the seedlings of pigeonpea (L.) in response to Zn and Ni stresses[J].Plant Science,2000,157: 113-128.
[15] 湯紹虎,羅充.植物生理學(xué)實(shí)驗(yàn)教程[M].重慶:西南師范大學(xué)出版社,2012:199-202.
Tang S H,Luo C.Plant physiology experiment course[M]. Chongqing:Southwest Normal University Press, 2012: 199-202. (in Chinese)
[16] 中科院上海植物生理研究所、上海市植物生理學(xué)會(huì).現(xiàn)代植物生理學(xué)實(shí)驗(yàn)指南[M].北京:科學(xué)出版社,1999:315-316.
Shanghai Institute of Plant Physiology,Chinese Academy of Sciences,Shanghai Society of Plant Physiology.Guidelines for modern plant physiology experiments[M].Beijing: Science Press,1999:315-316.(in Chinese)
[17] 李合生.植物生理生化實(shí)驗(yàn)原理與技術(shù)[M].北京:高等教育出版社,2002:195-197,258-260.
Li H S.Principle and technology of plant physiological and biochemical experiments[M].Beijing:Higher Education Press, 2002:195-197,258-260.(in Chinese)
[18] 王孝平,邢樹禮.考馬斯亮藍(lán)法測(cè)定蛋白質(zhì)含量的研究[J].天津化工,2009,23(3):88-90.
Wang X P,Xing S L.Determination of protein quantitation using the method of coomassie brilliant blue[J].Tianjin Chemical Industry,2009,23(3):88-90.(in Chinese)
[19] 閆瑞,錢春.無患子幼苗對(duì)水分脅迫的生理響應(yīng)[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,36(4):29-33.
Yan R,Qian C.Physiological response ofGaertn.seedlings to water stress[J].Journal of Southwest University (Nat Sci Ed),2014,36(4):29-33.(in Chinese)
[20] 王三根,宗學(xué)鳳.植物抗性生物學(xué)[M].重慶:西南師范大學(xué)出版社,2015:123-140.
Wang S G,Zong X F.Plant resistance biology[M].Chongqing: Southwest Normal University Press,2015:123-140.(in Chinese)
[21] 武維華.植物生理學(xué)(第三版)[M].北京:科學(xué)出版社,2018: 110-119,385-391.
Wu W H.Plant physiology(3rd Ed)[M].Beijing:Science Press, 2018:110-119,385-391.(in Chinese)
[22] Sharma M,Gupta S K,Majumder B,et al.Salicylic acid mediated growth,physiological and proteomic responses in two wheat varieties under drought stress[J].Journal of Proteomics,2017,163:28-51.
[23] 朱雨晴,楊再?gòu)?qiáng).不同品種葡萄葉片光合特性對(duì)干旱脅迫的響應(yīng)及旱后恢復(fù)過程[J].中國(guó)農(nóng)業(yè)氣象,2018,39(11): 739-750.
Zhu Y Q,Yang Z Q.Photosynthetic responses of different grape cultivars to drought stress and their recovery after drought[J].Chinese Journal of Agrometeorology,2018,39 (11):739-750.(in Chinese)
[24] 張立軍,劉新.植物生理學(xué)(第二版)[M].北京:科學(xué)出版社,2011:307-315.
Zhang L J,Liu X.Plant physiology(2nd Ed)[M].Beijing: Science Press,2011:307-315.(in Chinese)
[25] 裴榮信.黍子的高產(chǎn)抗災(zāi)優(yōu)勢(shì)[J].山西農(nóng)業(yè),1998,(6):9-10.
Pei R X.High yield and disaster resistance advantages of millet[J].Shanxi Agriculture,1998,(6):9-10.(in Chinese)
[26] Nijs I,Ferris R,Blum H.Stomatal regulation in a changing climate:field study using free air temperature increase(FATI) and free air CO2enrichment[J].Plant Cell and Environment, 1997,42:1041-1050.
[27] 王嘉楠,李小艷,魏石美,等.5-ALA對(duì)干旱脅迫下小麥幼苗光合作用及D1蛋白的調(diào)節(jié)作用[J].作物雜志,2018,(5): 121-126.
Wang J N,Li X Y,Wei S M,et al.Regulation of exogenous 5-aminolevulinic acid on photosynthesis and D1 protein of wheat seedlings under drought stress[J].Crops,2018,(5): 121-126. (in Chinese)
[28] Lawlor D W,Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J].Plant,Cell and Environment,2002,25:275-294.
[29] 韓瑞宏,盧欣石,高桂娟,等.紫花苜蓿()對(duì)干旱脅迫的光合生理響應(yīng)[J].生態(tài)學(xué)報(bào),2007,27(12): 5230-5236.
Han R H,Lu X S,Gao G J,et al.Photosynthetic physiological response of alfalfa () to drought stress[J]. Acta Ecologica Sinica,2007,27(12):5230-5236.(in Chinese)
[30] 鄭海,陳小華,黎健龍,等.水分脅迫對(duì)皇竹草形態(tài)及葉片光合特性的影響[J].廣東農(nóng)業(yè)科學(xué),2014,(13):33-36.
Zheng H,Chen X H,Li J L,et al.Effects of water stress on morphology and photosynthetic characteristics of hybrid giant napier()[J].Guangdong Agricultural Sciences,2014,(13):33-36.(in Chinese)
[31] Zhang H T,Li J J,Yoo J H,et al.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J].Plant Molecular Biology,2006,62(3):325-337.
[32] 李倩,王明,王雯雯,等.華山新麥草光合特性對(duì)干旱脅迫的響應(yīng)[J].生態(tài)學(xué)報(bào),2013,32(13):4278-4284.
Li Q,Wang M,Wang W W,et al.Response of photosynthetic characteristic ofHuashanica Keng to drought stress[J].Acta Ecologica Sinica,2013,32(13): 4278-4284.(in Chinese)
[33] Ghotbi-Ravandi A A,Shahbazi M,Shariati M,et al.Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley(L) genotypes[J].Journal of Agronomy and Crop Science,2014, 200(6):403-415.
[34] 張曼義,楊再?gòu)?qiáng),侯夢(mèng)媛.土壤水分脅迫對(duì)設(shè)施黃瓜葉片光合及抗氧化酶系統(tǒng)的影響[J].中國(guó)農(nóng)業(yè)氣象,2017,38(1): 21-30.
Zhang M Y,Yang Z Q,Hou M Y.Effects of soil water stress on photosynthetic characteristics and antioxidant enzyme system of cucumber leaves in greenhouse[J].Chinese Journal of Agrometeorology,2017,38(1):21-30.(in Chinese)
[35] 閻秀峰,李晶,祖元?jiǎng)?干旱脅迫對(duì)紅松幼苗保護(hù)酶活性及脂質(zhì)過氧化作用的影響[J].生態(tài)學(xué)報(bào),1999,19(6):850-854.
Yan X F,Li J,Zu Y G.Effect of drought stress on activity of cell defense enzymes and lipid peroxidation inpine seedlings[J].Acta Ecologica Sinica,1999,19(6):850-854.(in Chinese)
[36] 劉旻霞,馬建組.逆境脅迫下加工番茄種子萌發(fā)及抗氧化酶系統(tǒng)的影響[J].石河子大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,28 (4): 422-426.
Liu M X,Ma J Z.Effects of stress on germination and antioxidant enzyme system of processing tomato seeds[J]. Journal of Shihezi University (Nat.Sci.Ed.),2010,28(4): 422-426.(in Chinese)
[37] 劉佳,郁繼華,徐秉良,等.干旱氣候條件下水分脅迫對(duì)辣椒葉片生理特性的影響[J].核農(nóng)學(xué)報(bào),2012,26(8):1197-1203.
Liu J,Yu J H,Xu B L,et al.Effects of water stress on the physiological characteristics of pepper leaves in arid climates[J].Journal of Nuclear Agricultural Sciences,2012, 26(8):1197-1203.(in Chinese)
[38] 楊再?gòu)?qiáng),劉朝霞,韓秀君,等.水分脅迫對(duì)番茄保護(hù)酶活性及果實(shí)產(chǎn)量的影響[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,45(3):40-45.
Yang Z Q,Liu Z X,Han X J,et al.Effects of water stress on protective enzyme activity and yield of tomato[J].Journal of Northeast Agricultural University,2014,45(3):40-45.(in Chinese)
[39] 張旭東,王智威,韓清芳,等.玉米早期根系構(gòu)型及其生理特性對(duì)土壤水分的響應(yīng)[J].生態(tài)學(xué)報(bào),2016,36(10):2969-2977.
Zhang X D,Wang Z W,Han Q F,et al.Effects of water stress on the root structure and physiological characteristics of early-stage maize[J].Acta Ecologica Sinica,2016,36(10): 2969-2977.(in Chinese)
[40] 趙坤.干旱脅迫條件下春大豆生理生化特性研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2011.
Zhao K.Research on physiological and biochemical characteristics of spring soybean under drought stress [D]. Harbin:Northeast Agricultural University,2011.(in Chinese)
[41] Azymi S,Sofalian O,Jahanbakhsh G S,et al.Effect of chilling stress on soluble protein,sugar and proline accumulation in cotton (L.) genotypes[J].Intl J Agri Crop Sci,2011,4:825-830.
[42] 李錢峰,魯軍,余佳雯,等.油菜素內(nèi)酯與脫落酸互作調(diào)控植物生長(zhǎng)與抗逆的分子機(jī)制研究進(jìn)展[J].植物生理學(xué)報(bào), 2018,54(3):370-378.
Li Q F,Lu J,Yu J W,et al.Advances in molecular mechanisms of brassinosteroid-abscisic acid crosstalk coordinating plant growth and stress tolerances[J].Plant Physiology Journal, 2018,54(3):370-378.(in Chinese)
[43] Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety, 2005,60:324-349.
[44] 劉景輝,趙海超,任永峰,等.土壤水分脅迫對(duì)燕麥葉片滲透調(diào)節(jié)物質(zhì)含量的影響[J].西北植物學(xué)報(bào),2009,29(7): 1432-1436.
Liu J H,Zhao H C,Ren Y F,et al.Change of osmotica in oat leaf under soil moisture stress[J].Acta Bot Boreal-Occident Sin,2009,29(7):1432-1436.(in Chinese)
[45] 張保青,楊麗濤,李楊瑞.自然條件下甘蔗品種抗寒生理生化特性的比較[J].作物學(xué)報(bào),2011,37(3):496-505.
Zhang B Q,Yang L T,Li Y R.Comparison of physiological and biochemical characteristics related to cold resistance in sugarcane under field conditions[J].Acta Agronomica Sinica,2011,37(3):496-505.(in Chinese)
[46] Sonja D,Pignocchi C,Noctor G,et al.Low ascorbic acid in themutant of arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system[J].Plant Physiology,2001,127:426-435.
[47] 杜磊,趙尊練,鞏振輝,等.水分脅迫對(duì)線辣椒葉片滲透調(diào)節(jié)作用的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2010,28(3):188-198.
Du L,Zhao Z L,Gong Z H,et al.Effects of water stress on the osmotic regulation of pepper leaves[J].Agricultural Research in Arid Regions,2010,28(3):188-198.(in Chinese)
[48] 張巍巍,鄭飛翔,王效科,等.臭氧對(duì)水稻根系活力、可溶性蛋白含量與抗氧化系統(tǒng)的影響[J].植物生態(tài)學(xué)報(bào),2009, 33(3):425-432.
Zhang W W,Zheng F X,Wang X K,et al.Effects of ozone on root viability,soluble protein content and antioxidant system in rice[J].Chinese Journal of Plant Ecology,2009,33(3): 425-432.(in Chinese)
[49] 王琳,楊再?gòu)?qiáng),王明田,等.空氣相對(duì)濕度對(duì)高溫下番茄幼苗營(yíng)養(yǎng)物質(zhì)含量及干物質(zhì)分配的影響[J].中國(guó)農(nóng)業(yè)氣象, 2018,39(5):304-313.
Wang L,Yang Z Q,Wang M T,et al.Effect of air humidity on nutrient content and dry matter distribution of tomato seedlings under high temperature[J].Chinese Journal of Agrometeorology,2018,39(5):304-313.(in Chinese)
Effects of Water Stress on Growth and Physiological Properties of Millet Seedlings
HAN Zhi-ping1, ZHANG Hai-xia2, ZHANG Xun1, LIANG Yan-hua1
(1. School of Life Science/Protected Agricultural Technology Development Center, Shanxi Datong University, Datong 037009, China; 2. Department of Logistics, Shanxi Datong University, Datong 037009)
In order to study the effects of water stress on the growth, membrane lipid peroxidation and osmotic adjustment of broom corn millet seedlings, the experiment was conducted 5 treatments: severe drought, slight drought, normal irrigation control, slight flooding and severe flooding. ‘Jinshu No. 8’ millet as material was grown in sand culture and irrigated with nutrient solution, and indicators including the morphological indicators, biomass, water content of plant, and the membrane permeability, the contents of photosynthetic pigments, MDA, AsA, proline, soluble sugar and soluble protein in leaves were determined on 20th day after treatment. The results showed that the millet seedling grew best under normal irrigation condition, with the largest values of plant height, stem diameter, nodule number, leaf number, maximum leaf area, fresh mass and dry mass of root, stem and leaf, and panicle. All morphological indicators and biomasses were obviously decreased under drought and flooding treatments, and the extent of decrease under severe drought and severe flooding were more obvious than those under slight drought and slight flooding. The water contents of root, stem and leaf, panicle were clearly decreased under drought, but showed different tendency under flooding treatments. The contents of photosynthetic pigments were significantly decreased under drought, while relatively stable under flooding. The membrane permeability, the contents of MDA, AsA and proline were obviously increased under drought and flooding, and the extents of increase under severe drought and severe flooding were more obvious than those under slight drought and slight flooding. The soluble sugar content was clearly increased under drought and was clearly decreased under flooding, the soluble protein content was significantly reduced under drought and was relatively stable under flooding. The research illustrated that the drought and flooding caused the peroxidation injury to the millet seedlings, and the contents of antioxidants and osmotic adjusting materials were increased. But the increase of antioxidants could not completely eliminate the peroxidation injury caused by stress. In addition, the photosynthetic ability was decreased under stress, which caused the inhibition of the growth of millet seedlings. Under the experimental condition, drought stress caused more serious damage to millet seedlings than flooding.
Millet; Water stress; Growth; Lipid peroxidation; Osmotic adjustment substances
10.3969/j.issn.1000-6362.2019.08.003
韓志平,張海霞,張巽,等.水分脅迫對(duì)黍子幼苗生長(zhǎng)和生理特性的影響[J].中國(guó)農(nóng)業(yè)氣象,2019,40(8):502-511
2019?01?03
山西省農(nóng)業(yè)科技攻關(guān)項(xiàng)目(20150311010-1);大同市農(nóng)業(yè)科技攻關(guān)項(xiàng)目(201468-2)
韓志平(1976?),博士,副教授,主要從事植物逆境生理研究。E-mail:13620629501@163.com