国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于堆積試驗(yàn)的黏壤土仿真物理參數(shù)標(biāo)定

2019-08-19 02:36吳明亮呂江南劉佳杰
關(guān)鍵詞:恢復(fù)系數(shù)壤土因數(shù)

向 偉,吳明亮,呂江南,全 偉,馬 蘭,劉佳杰

基于堆積試驗(yàn)的黏壤土仿真物理參數(shù)標(biāo)定

向 偉1,2,吳明亮1※,呂江南2,全 偉1,馬 蘭2,劉佳杰2

(1. 湖南農(nóng)業(yè)大學(xué)工學(xué)院,長沙 410128;2. 中國農(nóng)業(yè)科學(xué)院麻類研究所,長沙 410205)

為獲取南方黏壤土的離散元仿真模型精準(zhǔn)接觸參數(shù),構(gòu)建土壤離散元仿真模型,基于土壤堆積試驗(yàn),結(jié)合試驗(yàn)測(cè)定和EDEM軟件推薦的參數(shù)構(gòu)建土壤仿真模型,以休止角為響應(yīng)值,采用Design Expert軟件依次設(shè)計(jì)Plackett-Burman試驗(yàn)、最陡爬坡試驗(yàn)和Box-Behnken試驗(yàn)完成土壤仿真物理參數(shù)標(biāo)定及優(yōu)化。進(jìn)一步通過成穴裝置成穴的仿真試驗(yàn)與土槽試驗(yàn)的對(duì)比分析,驗(yàn)證黏壤土仿真模型的精準(zhǔn)性。成穴試驗(yàn)的仿真與土槽試驗(yàn)結(jié)果表明,裝置在仿真土壤中運(yùn)動(dòng)規(guī)律與土槽試驗(yàn)中差異較小,成型穴孔的開口縱長和有效深度的誤差分別為3.98%和1.87%,模擬仿真土壤的物理力學(xué)特性與實(shí)際土壤一致,表明黏壤土的離散元仿真參數(shù)系統(tǒng)標(biāo)定研究的方法準(zhǔn)確可行。研究構(gòu)建了南方黏壤土精準(zhǔn)的離散元仿真模型,為該類型土壤與觸土部件相互作用的動(dòng)力學(xué)研究提供技術(shù)支持。

模型;離散元;黏壤土;參數(shù)標(biāo)定;休止角;仿真參數(shù);JKR接觸模型

0 引 言

采用實(shí)測(cè)試驗(yàn)與仿真模擬相結(jié)合的方法研究觸土機(jī)具與土壤相互作用規(guī)律,可從細(xì)觀上研究受機(jī)具作用下土壤顆粒的動(dòng)態(tài)行為,直觀量化分析土壤在機(jī)具作用下的運(yùn)動(dòng)規(guī)律,為農(nóng)機(jī)具的優(yōu)化提供技術(shù)支持[1-3]。土壤顆粒具有典型的離散性[4],且與觸土部件作用時(shí)土壤顆粒呈現(xiàn)動(dòng)態(tài)變化,離散元法分析中將土壤看作由一系列離散的獨(dú)立運(yùn)動(dòng)的顆粒單元組成,整個(gè)土壤的運(yùn)動(dòng)和變形由各顆粒單元的運(yùn)動(dòng)和相互位置來描述,因而選擇離散元法進(jìn)行土壤數(shù)值模擬更為精準(zhǔn)[5-7]。

構(gòu)建散粒體的離散元仿真模型,其核心技術(shù)為仿真參數(shù)的確定,主要包括本征參數(shù)和物理參數(shù)[8-10],大部分參數(shù)可通過試驗(yàn)測(cè)定得出,而部分參數(shù)(尤其是物理接觸參數(shù))很難通過試驗(yàn)獲取,因而許多學(xué)者提出采用實(shí)測(cè)試驗(yàn)結(jié)合虛擬標(biāo)定實(shí)現(xiàn)仿真參數(shù)的精準(zhǔn)標(biāo)定[11-15]。Coetzee等采用剪切和側(cè)限壓縮試驗(yàn)對(duì)玉米顆粒的摩擦系數(shù)和剛度系數(shù)進(jìn)行標(biāo)定,并進(jìn)行了試驗(yàn)驗(yàn)證[16]。Grima等基于崩塌試驗(yàn)中顆粒堆休止角分別對(duì)干、濕顆粒在離散元仿真中所需滾動(dòng)摩擦系數(shù)進(jìn)行了標(biāo)定[17]。劉凡一等基于堆積試驗(yàn),采用模擬仿真與響應(yīng)面法相結(jié)合完成小麥離散元仿真參數(shù)的標(biāo)定[18-19]。在土壤離散元仿真模型參數(shù)標(biāo)定研究方面,Ucgul等通過結(jié)合Hertze-Mindlin及Hysteretic spring接觸模型,完成土壤粘結(jié)力及無粘結(jié)力土壤仿真參數(shù)標(biāo)定,解決了其受力塑性形變等問題[20-21]。張銳等應(yīng)用Hertz-Mindlin接觸模型,對(duì)標(biāo)準(zhǔn)球和非標(biāo)準(zhǔn)球的無黏性沙土顆粒的碰撞恢復(fù)系數(shù)與摩擦因數(shù)進(jìn)行了標(biāo)定,建立了沙土接觸模型[22]。王憲良等采用EDEM軟件外置編譯ECM接觸模型,以休止角等因素為目標(biāo)值對(duì)砂壤土的顆粒半徑和摩擦因素等進(jìn)行標(biāo)定,并進(jìn)行了輪胎-土壤壓實(shí)接觸仿真驗(yàn)證[23]。武濤等基于土壤休止角物理試驗(yàn)結(jié)果,采用JKR接觸模型借助GEMM數(shù)據(jù)庫獲得離散元模型關(guān)鍵參數(shù)初始范圍,運(yùn)用Box-Behnken試驗(yàn)方法進(jìn)行休止角仿真模擬,通過回歸分析求取砂壤土仿真模型參數(shù)的最優(yōu)值[24]。

應(yīng)用離散元法研究散粒體動(dòng)力學(xué)問題已成為一種發(fā)展趨勢(shì)[25-28]。利用離散元法建立土壤仿真模型,本征參數(shù)可通過試驗(yàn)實(shí)測(cè)得出,在離散元軟件數(shù)據(jù)庫中,多數(shù)土壤顆粒的物理參數(shù)的推薦值與真實(shí)數(shù)值相近,但由于顆粒間接觸特性復(fù)雜,部分參數(shù)需要進(jìn)行精準(zhǔn)標(biāo)定及優(yōu)化,在土壤的離散元仿真參數(shù)標(biāo)定研究方面,尤其是砂土及砂壤土等類型土壤的仿真參數(shù)標(biāo)定研究,各國學(xué)者已經(jīng)做了許多的探索[29-30],針對(duì)中國南方地區(qū)種植土壤黏壤土的仿真參數(shù)系統(tǒng)標(biāo)定研究卻少見報(bào)導(dǎo)。本研究采用實(shí)測(cè)試驗(yàn)與仿真模擬相結(jié)合,提出一種顯著性分析和響應(yīng)面法相結(jié)合的方法,對(duì)中國南方地區(qū)黏壤土的離散元仿真參數(shù)進(jìn)行系統(tǒng)的標(biāo)定研究;通過篩分試驗(yàn)、三軸剪切試驗(yàn)等測(cè)定樣品土壤的本征物理力學(xué)特性參數(shù),基于土壤堆積試驗(yàn),結(jié)合試驗(yàn)測(cè)定和EDEM軟件的GEMM數(shù)據(jù)庫推薦的參數(shù)構(gòu)建土壤仿真模型,以休止角為響應(yīng)值,采用Design Expert軟件依次設(shè)計(jì)Plackett-Burman試驗(yàn)、最陡爬坡試驗(yàn)和Box-Behnken試驗(yàn)完成土壤仿真參數(shù)標(biāo)定及優(yōu)化;進(jìn)一步通過穴孔成型裝置的仿真試驗(yàn)與土槽試驗(yàn)的對(duì)比分析,驗(yàn)證黏壤土離散元仿真模型反映土壤物理力學(xué)特性的準(zhǔn)確性,以期構(gòu)建中國南方地區(qū)種植土壤黏壤土精準(zhǔn)的離散元仿真模型。

1 黏壤土本征參數(shù)測(cè)定

1.1 土壤原型及粒徑分布

土壤樣品為中國南方種植土壤黏壤土,采自湖南農(nóng)業(yè)大學(xué)農(nóng)業(yè)機(jī)械化工程實(shí)訓(xùn)中心試驗(yàn)土槽,含水率為15.8%,采用比重瓶法測(cè)得土壤密度為2 680 kg/m3。如圖1所示,采用篩分法測(cè)定土壤粒徑分布及百分含量,土壤粒徑為>5、5~2.5、2.5~1和<1 mm的質(zhì)量和質(zhì)量分?jǐn)?shù)分別為93.12 g、11.64%,194.96 g、24.38%,343.68 g、42.89%和168.24 g、21.09%。

圖1 土壤粒徑篩分試驗(yàn)

1.2 土壤直剪試驗(yàn)

采用SJ-1A型應(yīng)變控制式三軸剪力儀,可測(cè)得試驗(yàn)土壤的彈性模量,確定泊松比,進(jìn)一步分析得出試驗(yàn)土壤的剪切模量[22]。試驗(yàn)過程中加載3種不同圍壓,每組試驗(yàn)重復(fù)4次,分別取平均值記為試驗(yàn)土壤的指標(biāo)參數(shù),并計(jì)算出其標(biāo)準(zhǔn)偏差。

根據(jù)試驗(yàn)數(shù)據(jù)繪制圖2所示的主應(yīng)力差—軸向應(yīng)變關(guān)系曲線圖,主應(yīng)力差與軸向應(yīng)變的比值,即圖中曲線線性變化段的斜率為土壤的彈性模量。

圖2 主應(yīng)力差-軸向應(yīng)變關(guān)系曲線

彈性模量的計(jì)算公式為

泊松比為土壤本征參數(shù),南方黏壤土的泊松比一般為0.25~0.45,根據(jù)樣品黏壤土的特性與相關(guān)文獻(xiàn),選用泊松比n為0.38[31]。剪切模量的計(jì)算公式為

得出試驗(yàn)土壤的剪切模量1.2×103kPa,標(biāo)準(zhǔn)偏差0.099 kPa。

1.3 土壤堆積試驗(yàn)

采用漏斗法測(cè)定土壤的休止角,其實(shí)測(cè)試驗(yàn)裝置如圖3a所示,主要由三角鐵架、漏斗和接土盤組成。試驗(yàn)后,采用Matlab讀取土壤堆單側(cè)圖像,對(duì)圖像分別進(jìn)行去噪、灰度、二值化處理,最終提取圖像邊界點(diǎn),對(duì)邊界點(diǎn)進(jìn)行線性擬合,得出擬合直線的斜率即為土壤休止角的正切值。

圖3b所示為土壤堆積仿真模擬試驗(yàn)裝置。仿真模擬試驗(yàn)中,漏斗下端落料口一直處于打開狀態(tài),隨著仿真土壤顆粒的不斷生成,落料口下端一直落料,直至所有土壤顆粒停止運(yùn)動(dòng)則模擬結(jié)束,采用EDEM軟件自帶的量角器功能測(cè)定土壤休止角。

圖3 休止角測(cè)定試驗(yàn)裝置

土壤堆積實(shí)測(cè)試驗(yàn)重復(fù)4次,取平均值記為試驗(yàn)土壤的休止角,其結(jié)果為42.4°,標(biāo)準(zhǔn)偏差0.45°。

2 土壤仿真參數(shù)模擬標(biāo)定

2.1 土壤仿真模型

中國南方地區(qū)種植土壤黏壤土具有較強(qiáng)的粘結(jié)性和彈塑性,EDEM軟件中內(nèi)置的Hertz-Mindlin with JKR模型(簡稱JKR模型)能模擬顆粒受力條件下土壤應(yīng)力-應(yīng)變特征,該模型不僅能體現(xiàn)顆粒的彈塑性,且能體現(xiàn)顆粒的粘結(jié)性[32],本文采用EDEM 2017版開展仿真模擬試驗(yàn),選擇JKR模型為土壤顆粒接觸模型。

堆積試驗(yàn)的離散元仿真模型參數(shù)主要為:本征參數(shù)和物理參數(shù)。

(1)前文已完成土壤本征參數(shù)的測(cè)取。根據(jù)實(shí)測(cè)的土壤粒徑及百分含量測(cè)定數(shù)值,設(shè)定模擬土壤的粒徑及質(zhì)量百分比分別為:5 mm,11.64%;3 mm,24.38%;1 mm,63.98%。土壤堆積仿真試驗(yàn)中,試驗(yàn)裝置材料為鋼材,其本征參數(shù)為:密度7.85×103kg/m3,泊松比0.3,剪切模量7.0×107kPa[22]。

(2)將土壤及鋼材的本征參數(shù)和仿真規(guī)模輸入到EDEM軟件中,從GEMM數(shù)據(jù)庫獲取仿真參數(shù)的范圍值和推薦數(shù)值分別為:土壤-鋼材恢復(fù)系數(shù)0.2~0.5,0.3;土壤-鋼材靜摩擦因數(shù)0.5~1.2,0.6;土壤-鋼材滾動(dòng)摩擦因數(shù)0.05~0.2,0.1;土壤泊松比0.25~0.45,0.38;土壤JKR表面能7.5~14.5 J/m2,12.5 J/m2;土壤-土壤恢復(fù)系數(shù)0.15~0.75,0.6;土壤-土壤靜摩擦因數(shù)0.44~1.16,0.85;土壤-土壤滾動(dòng)摩擦因數(shù)0.05~0.2,0.1。

2.2 仿真參數(shù)標(biāo)定方法

EDEM軟件的GEMM數(shù)據(jù)庫對(duì)土壤仿真參數(shù)的推薦并非基于土壤不同類型和不同物理特性條件下的精準(zhǔn)數(shù)值,由于土壤的多樣性,導(dǎo)致不同土壤的物理參數(shù)差異性較大,因而需基于推薦范圍值對(duì)試驗(yàn)土壤的仿真參數(shù)進(jìn)行精準(zhǔn)標(biāo)定及優(yōu)化。

(1)應(yīng)用Design Expert 軟件設(shè)計(jì)Plackett-Burman試驗(yàn),以土壤休止角為響應(yīng)值,篩選出影響顯著的物理參數(shù)。仿真模擬試驗(yàn)中共8個(gè)真實(shí)參數(shù)1~8,設(shè)計(jì)3個(gè)虛擬參數(shù)9~11,每個(gè)參數(shù)按照推薦范圍值均取低、高2個(gè)水平,分別以編碼?1和+1表示,如表1所示。仿真試驗(yàn)中設(shè)定1個(gè)中心點(diǎn),共進(jìn)行12 組試驗(yàn),每組仿真模擬試驗(yàn)重復(fù)4次,取平均值記為單組試驗(yàn)的休止角。

表1 Plackett-Burman 試驗(yàn)參數(shù)列表

(2)基于Plackett-Burman 試驗(yàn)篩選出的顯著性參數(shù),設(shè)計(jì)最陡爬坡試驗(yàn),進(jìn)一步縮小顯著性參數(shù)的范圍值,以準(zhǔn)確地進(jìn)入到最優(yōu)值的附近區(qū)域。仿真模擬試驗(yàn)時(shí),非顯著性參數(shù)取GEMM數(shù)據(jù)庫的推薦數(shù)值,顯著性參數(shù)按照設(shè)計(jì)的步長逐步增加,記錄并分析仿真試驗(yàn)的休止角,分別計(jì)算仿真試驗(yàn)結(jié)果與實(shí)測(cè)試驗(yàn)結(jié)果的相對(duì)誤差。

(3)基于最陡爬坡試驗(yàn)結(jié)果,根據(jù)Box-Behnken試驗(yàn)設(shè)計(jì),顯著性參數(shù)取高、中和低3個(gè)水平設(shè)計(jì)試驗(yàn),分別以編碼+1、0和?1形式表示,非顯著性參數(shù)取值同最陡爬坡試驗(yàn),記錄每組仿真試驗(yàn)的休止角。此外,試驗(yàn)中采用5個(gè)中心點(diǎn)進(jìn)行誤差估計(jì),共進(jìn)行17組試驗(yàn),每組仿真模擬試驗(yàn)重復(fù)4次,取平均值記為單組仿真試驗(yàn)的數(shù)值結(jié)果。

2.3 結(jié)果與分析

2.3.1 Plackett-Burman試驗(yàn)

表2所示為Plackett-Burman試驗(yàn)的設(shè)計(jì)方案及仿真模擬結(jié)果,采用Design Expert軟件對(duì)該模擬試驗(yàn)結(jié)果進(jìn)行方差分析,得出各參數(shù)的影響效果如表3所示。

表2 Plackett-Burman 試驗(yàn)方案設(shè)計(jì)及結(jié)果

注:變量1-11含義同表1。

Note: The variables1-11are equal to those in table 1.

表3 Plackett-Burman 試驗(yàn)參數(shù)顯著性分析

表3結(jié)果顯示:仿真參數(shù)5—土壤JKR表面能()、6—土壤-土壤恢復(fù)系數(shù)()、7—土壤-土壤靜摩擦因數(shù)()對(duì)土壤顆粒休止角影響顯著,其余參數(shù)影響較小,并不顯著。因此,在后續(xù)的最陡爬坡試驗(yàn)以及Box-Behnken試驗(yàn)中開展、、共3個(gè)影響顯著的物理參數(shù)的標(biāo)定及優(yōu)化。

2.3.2 最陡爬坡試驗(yàn)

表4所示為最陡爬坡試驗(yàn)設(shè)計(jì)方案及結(jié)果,結(jié)果表明:隨著、、數(shù)值的增加,仿真試驗(yàn)得出的休止角逐漸增大,而仿真與實(shí)測(cè)試驗(yàn)得出的土壤顆粒休止角的相對(duì)誤差呈現(xiàn)先減小后增加的趨勢(shì);在4號(hào)試驗(yàn)水平時(shí),休止角的相對(duì)誤差達(dá)到最小值,由此可知,試驗(yàn)變量的最優(yōu)區(qū)間在4號(hào)試驗(yàn)水平附近。因此,選取4號(hào)水平為中心點(diǎn),設(shè)為中水平,選取3號(hào)、5號(hào)水平分別為低、高水平進(jìn)行后續(xù)的Box-Behnken試驗(yàn)和回歸模型分析;物理參數(shù)、、的低、中、高水平分別為10.3 J/m2、11.7 J/m2、13.1 J/m2,0.39、0.51、0.63和0.73、0.87、1.02。

表4 最陡爬坡試驗(yàn)設(shè)計(jì)方案及結(jié)果

注:參數(shù)、、指參數(shù)5、6、7,下同。

Note: Parameter,andare equal to parameter5,6,7, reopectively. The same below.

2.3.3 Box-Behnken試驗(yàn)和回歸模型

表5所示為Box-Behnken 試驗(yàn)設(shè)計(jì)方案及結(jié)果,根據(jù)試驗(yàn)結(jié)果,采用Design-Expert軟件建立土壤顆粒休止角與3個(gè)自變量(編碼值)的二階回歸模型,其二次多項(xiàng)式方程為

表5 Box-Behnken 試驗(yàn)設(shè)計(jì)方案及結(jié)果

對(duì)表5的試驗(yàn)?zāi)P瓦M(jìn)行方差分析,得到結(jié)果如表6所示,結(jié)果表明:方程模型值為0.000 2,呈現(xiàn)極顯著性(<0.01),在統(tǒng)計(jì)學(xué)上是有意義的,表明該模型因變量(休止角)與所有自變量之間均呈現(xiàn)極顯著性;失擬項(xiàng)不顯著(=0.118 6>0.05)表明,采用此模型進(jìn)行結(jié)果分析,雖存在一定的失誤概率,但該方程的模擬可信;決定系數(shù)2=0.967 6、校正決定系數(shù)2adj=0.926 0,二者均接近1,表明擬合方程有意義,其可靠度高;變異系數(shù)=2.41%、精密度Adeq precision達(dá)到16.305,表明該模型具有良好的可信度和精確度。

表6結(jié)果表明:模擬的一次項(xiàng)、、對(duì)休止角影響極顯著,交互作用項(xiàng)和二次項(xiàng)2對(duì)休止角影響顯著。從單因素水平分析,各因素對(duì)休止角的影響順序:(土壤-土壤靜摩擦因數(shù))>(土壤JKR表面能)>(土壤-土壤恢復(fù)系數(shù));交互作用存在下,交互作用項(xiàng)對(duì)休止角影響順序:>>。

表6 Box-Behnken 試驗(yàn)二次多項(xiàng)式模型方差分析

注:**表示該項(xiàng)極顯著(<0.01),*表示該項(xiàng)顯著(<0.05)。

Note: ** and * indicated significance at 0.01 and 0.05 levels, respectively.

2.3.4 回歸模型交互效應(yīng)分析

本試驗(yàn)以土壤休止角作為土壤仿真模型參數(shù)標(biāo)定的評(píng)價(jià)指標(biāo),采用Design Expert軟件對(duì)模型數(shù)據(jù)進(jìn)行二次多元回歸擬合,得出圖4所示的影響目標(biāo)函數(shù)休止角的參數(shù)間相互作用的響應(yīng)面和等高線分布圖,分別為土壤JKR表面能和土壤-土壤恢復(fù)系數(shù)交互作用、土壤JKR表面能和土壤-土壤靜摩擦因數(shù)、土壤-土壤恢復(fù)系數(shù)和土壤-土壤靜摩擦因數(shù)交互作用。

圖4 影響休止角的參數(shù)間的交互作用

圖4a可看出,土壤JKR表面能和土壤-土壤恢復(fù)系數(shù)變化引起的休止角變化較小,同時(shí)等高線呈現(xiàn)較大曲率的橢圓形表明,土壤JKR表面能和土壤-土壤恢復(fù)系數(shù)交互影響顯著;圖4b、圖4c的響應(yīng)面的坡度較大,表明土壤JKR表面能和土壤-土壤靜摩擦因數(shù)、土壤-土壤恢復(fù)系數(shù)和土壤-土壤靜摩擦因數(shù)對(duì)休止角的影響較大;圖4b、圖4c的等高線的曲率平緩,表明土壤JKR表面能和土壤-土壤靜摩擦因數(shù)、土壤-土壤恢復(fù)系數(shù)和土壤-土壤靜摩擦因數(shù)交互影響不顯著。

2.4 最優(yōu)參數(shù)組及仿真驗(yàn)證

利用Design-Expert軟件的優(yōu)化功能,以實(shí)測(cè)休止角42.4°為目標(biāo)對(duì)回歸模型進(jìn)行尋優(yōu),所得出的優(yōu)化解并非唯一解,而是若干組解。分別采用這些優(yōu)化解進(jìn)行土壤堆積仿真試驗(yàn)驗(yàn)證,選取與土壤實(shí)測(cè)堆數(shù)據(jù)最為近似的一組最優(yōu)解:土壤JKR表面能為12.73 J/m2、土壤-土壤恢復(fù)系數(shù)為0.55、土壤-土壤靜摩擦因數(shù)為0.84,其余非顯著性參數(shù)取GEMM數(shù)據(jù)庫的推薦值。

優(yōu)化解下休止角仿真試驗(yàn)結(jié)果與實(shí)測(cè)試驗(yàn)結(jié)果對(duì)比如圖5所示,仿真與實(shí)測(cè)試驗(yàn)得到的土壤顆粒在形狀和相關(guān)數(shù)值上均無明顯差異(>0.05),4次重復(fù)仿真試驗(yàn)得到土壤休止角為43.5°、41.8°、43.9°、42.3°,均值為42.9°,標(biāo)準(zhǔn)偏差為0.87°,與實(shí)測(cè)試休止角的相對(duì)誤差(實(shí)測(cè)休止角為標(biāo)準(zhǔn)值)僅為1.2%,結(jié)果表明應(yīng)用顯著性分析和響應(yīng)曲面法相結(jié)合的方法優(yōu)化土壤顆粒仿真物理參數(shù)是可行的。

圖5 堆積試驗(yàn)結(jié)果

3 穴孔成型試驗(yàn)驗(yàn)證

3.1 試驗(yàn)?zāi)康?/h3>

為驗(yàn)證經(jīng)過參數(shù)標(biāo)定優(yōu)化后構(gòu)建的黏壤土離散元仿真模型是否能夠準(zhǔn)確反映土壤的物理力學(xué)特性,結(jié)合土槽試驗(yàn)和離散元仿真試驗(yàn)進(jìn)行穴孔成型試驗(yàn),以成型穴孔的開口縱長和有效深度為響應(yīng)值,將實(shí)測(cè)值與仿真值進(jìn)行對(duì)比分析,利用相對(duì)誤差值判斷離散元仿真模型的精準(zhǔn)性。

3.2 試驗(yàn)方法與指標(biāo)

3.2.1 穴孔成型土槽試驗(yàn)

土槽試驗(yàn)在湖南農(nóng)業(yè)大學(xué)農(nóng)業(yè)機(jī)械化工程實(shí)訓(xùn)中心試驗(yàn)土槽開展,為保障多次試驗(yàn)中土槽土壤條件的一致性,每次試驗(yàn)前對(duì)土槽土壤依次進(jìn)行:刮土板刮平、旋耕機(jī)旋耕、刮土板刮平、噴淋系統(tǒng)灑水、鎮(zhèn)壓輥壓實(shí)等處理。測(cè)定土壤參數(shù):土壤較平整,土壤比重2 680 kg/m3,含水率為15.8%,0~160 mm深度土壤堅(jiān)實(shí)度為185.6 kPa、土壤孔隙度為48.7%。

試制圖6a所示成穴裝置試驗(yàn)樣機(jī),樣機(jī)作業(yè)參數(shù)如下:滾動(dòng)半徑260 mm,穴刺直徑35 mm,錐尖倒角65°,入土深度68 mm。

圖6 土槽試驗(yàn)

土槽試驗(yàn)進(jìn)行4次平行試驗(yàn),每次試驗(yàn)設(shè)定機(jī)具的前進(jìn)速度為1.68 km/h,單次試驗(yàn)機(jī)具前進(jìn)30 m,測(cè)定單次試驗(yàn)運(yùn)行的中間段5 m內(nèi)的穴孔的開口縱長和有效深度,記為單次試驗(yàn)的數(shù)值結(jié)果,取4次平行試驗(yàn)均值記為最終的數(shù)值結(jié)果,并計(jì)算其標(biāo)準(zhǔn)偏差。

開口縱長:測(cè)定成型穴孔上部端面沿著裝置前進(jìn)方向的長度,記為開口縱長。

有效深度:沿著成型穴孔端面到穴孔內(nèi)部縱長為35 mm位置平面的垂直高度,記為有效深度。

相對(duì)誤差:土槽試驗(yàn)和仿真試驗(yàn)結(jié)果的相對(duì)誤差,以仿真模擬得出的數(shù)值為標(biāo)準(zhǔn)值,相對(duì)誤差均取絕對(duì)值。

3.2.2 穴孔成型仿真試驗(yàn)

采用Pro/E 5.0軟件按照1∶1比例建立成穴裝置三維模型,簡化模型并導(dǎo)入EDEM軟件,試驗(yàn)裝置的材料為鋼材,本征參數(shù)為:密度7.85×103kg/m3,泊松比0.3,剪切模量7.0×107kPa。

a. 穴孔成型仿真裝置

a. Simulation device of hole forming

b. 仿真成型穴孔

在EDEM軟件中建立土槽模型,其尺寸(長′寬′高)為350 mm′250 mm′180 mm,按照標(biāo)定優(yōu)化后的土壤物理參數(shù)在土槽模型中模擬生成高度為160 mm的土壤(土壤生成過程中,采用一定程度壓實(shí)以實(shí)現(xiàn)土壤孔隙度48.7%)。EDEM仿真模型初始狀態(tài)如圖7a所示,成穴裝置位于土槽左上端。

設(shè)定成穴裝置以2 rad/s進(jìn)行順時(shí)針轉(zhuǎn)動(dòng),其水平前進(jìn)(向右平動(dòng))速度為0.468 m/s。進(jìn)行4次仿真穴孔成型平行試驗(yàn),測(cè)定成型穴孔的開口縱長和有效深度,取4次平行試驗(yàn)數(shù)值的均值記為仿真試驗(yàn)結(jié)果,并計(jì)算其標(biāo)準(zhǔn)偏差。

3.3 試驗(yàn)結(jié)果與分析

土槽試驗(yàn)成型穴孔如圖6b所示,仿真試驗(yàn)成型穴孔如圖7b所示。成穴裝置成穴的土槽試驗(yàn)與仿真試驗(yàn)的結(jié)果對(duì)比如表7所示,結(jié)果表明:基于JKR接觸模型,結(jié)合EDEM軟件的GEMM數(shù)據(jù)庫推薦的物理參數(shù)范圍值,利用代理模型進(jìn)行黏壤土離散元仿真模型參數(shù)標(biāo)定及優(yōu)化后,觸土部件在仿真土壤模型中運(yùn)動(dòng)規(guī)律與土槽試驗(yàn)中差異較小,成型穴孔的開口縱長和有效深度的誤差分別為3.98%和1.87%,仿真土壤的物理力學(xué)特性與實(shí)際土壤一致,從而表明黏壤土的離散元仿真參數(shù)系統(tǒng)標(biāo)定研究的方法準(zhǔn)確可行。

表7 仿真與土槽試驗(yàn)結(jié)果對(duì)比

4 結(jié) 論

本文基于土壤堆積試驗(yàn),采用實(shí)測(cè)試驗(yàn)與離散元仿真相結(jié)合的方法,結(jié)合EDEM軟件對(duì)中國南方地區(qū)種植土壤黏壤土進(jìn)行仿真參數(shù)標(biāo)定及優(yōu)化,以休止角為響應(yīng)值,借助Design Expert軟件,將顯著性分析和響應(yīng)面法應(yīng)用于仿真參數(shù)的優(yōu)化求解,篩選出對(duì)休止角影響顯著的物理參數(shù),分析影響休止角的參數(shù)間的交互作用,確定最優(yōu)參數(shù)。進(jìn)一步通過穴孔成型的仿真試驗(yàn)與土槽試驗(yàn)對(duì)比分析,驗(yàn)證黏壤土離散元仿真模型反映土壤物理力學(xué)特性的準(zhǔn)確性。得出如下結(jié)論:

1)仿真模擬的Plackett-Burman試驗(yàn)結(jié)果表明,仿真物理參數(shù)中土壤JKR表面能、土壤-土壤恢復(fù)系數(shù)、土壤-土壤靜摩擦因數(shù)對(duì)土壤休止角影響顯著;而其他物理參數(shù)對(duì)土壤休止角無顯著性影響。

2)仿真模擬的Box-Behnken試驗(yàn)結(jié)果表明,3個(gè)顯著性參數(shù)的一次項(xiàng)(土壤JKR表面能、土壤-土壤恢復(fù)系數(shù)、土壤-土壤靜摩擦因數(shù))和二次項(xiàng)(土壤JKR表面能和土壤-土壤恢復(fù)系數(shù)交互項(xiàng)、土壤-土壤靜摩擦因數(shù))對(duì)土壤休止角影響顯著。對(duì)二階回歸模型求解,得出黏壤土仿真參數(shù)最優(yōu)值:土壤JKR表面能12.73 J/m2、土壤-土壤恢復(fù)系數(shù)和靜摩擦因數(shù)分別為0.55、0.84,其余非顯著性參數(shù)取GEMM數(shù)據(jù)庫推薦值,土壤泊松比0.38、土壤-土壤滾動(dòng)摩擦因數(shù)0.1、土壤-鋼材恢復(fù)系數(shù)、靜摩擦因數(shù)和滾動(dòng)摩擦因數(shù)分別為0.3、0.6和0.1。

3)成穴裝置成穴的仿真試驗(yàn)與土槽試驗(yàn)的對(duì)比結(jié)果表明,利用代理模型進(jìn)行黏壤土離散元仿真參數(shù)標(biāo)定及優(yōu)化后,成穴裝置在土壤仿真模型中運(yùn)動(dòng)規(guī)律與土槽試驗(yàn)中差異較小,成型穴孔物理尺寸的數(shù)值差異在3.98%以內(nèi),仿真模擬土壤的物理力學(xué)特性與實(shí)際土壤一致。本研究探索出土壤離散元仿真物理參數(shù)系統(tǒng)標(biāo)定及優(yōu)化的方法,構(gòu)建中國南方地區(qū)黏壤土精準(zhǔn)的離散元仿真模型,為該類型土壤與觸土部件相互作用下的動(dòng)力學(xué)研究提供理論基礎(chǔ)與技術(shù)支撐。

[1] 李博,陳軍,黃玉祥.機(jī)械與土壤相互作用的離散元仿真研究進(jìn)展[J].農(nóng)機(jī)化研究,2015,37(1):217-222.Li Bo, Chen Jun, Huang Yuxiang. Research progress of discrete element simulation of soil-machine interaction[J]. Journal of Agrucultural Mechanization Research, 2015, 37(1): 217-222. (in Chinese with English abstract)

[2] 王學(xué)振,岳斌,高喜杰,等.深松鏟不同翼鏟安裝高度時(shí)土壤擾動(dòng)行為仿真與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(10):124-136.Wamg Xuezhen, Yue Bin, Gao Xijie, et al. Discrete element simulations and experiments of disturbance behavior as affected by mounting height of subsoiler’s wing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 124-136. (in Chinese with English abstract)

[3] 馬帥,徐麗明,邢潔潔,等.葉輪旋轉(zhuǎn)式葡萄藤埋土單邊清除機(jī)研制[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):1-10.Ma Shuai, Xu Liming, Xing Jiejie, et al. Development of unilateral cleaning machine for grapevine buried by soil with rotary impeller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 1-10. (in Chinese with English abstract)

[4] 賈洪雷,劉行,余海波,等.免耕播種機(jī)凹面爪式清茬機(jī)構(gòu)仿真與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):68-77.Jia Honglei, Liu Hang, Yu Haibo, et al. Simulation and experiment on stubble clearance mechanism with concave claw-type for no-tillage planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 68-77. (in Chinese with English abstract)

[5] Zdancevi?ius E, Ka?ianauskas R, Zabulionis D. Improvement of viscoelastic damping for the hertz contact of particles due to impact velocity[J]. Procedia Engineering, 2017, 172: 1286-1290.

[6] Buechler S R, Mustoe G G W, Berger J R, et al. Under-standing the soil contact problem for the LWD and static drum roller by using the DEM[J]. Journal of Engineering Mechanics-Asce, 2012, 138(1): 124-132.

[7] 方會(huì)敏,姬長英,F(xiàn)arman A C,等.基于離散元法的旋耕過程土壤運(yùn)動(dòng)行為分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):22-28. Fang Huimin, Ji Changying, Farman A C, et al. Analysis of soil dynamic behavior during rotary tillage based on distinct element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 22-28. (in Chinese with English abstract)

[8] Janda A, Ooi J Y. DEM modeling of cone penetration and unconfined compression in cohesive solids[J]. Powder Technology, 2016, 293: 60-68.

[9] 黃玉祥,杭程光,苑夢(mèng)嬋,等.深松土壤擾動(dòng)行為的離散元仿真與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):80-88.Huang Yuxiang, Hang Chengguang, Yuan Mengchan, et al. Discrete element simulation and experiment on disturbance behavior of subsoiling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 80-88. (in Chinese with English abstract)

[10] 袁全春,徐麗明,邢潔潔,等.機(jī)施有機(jī)肥散體顆粒離散元模型參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):21-27.Yuan Quanchun, Xu Liming, Xing Jiejie, et al. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 21-27. (in Chinese with English abstract)

[11] 石林榕,孫偉,趙武云,等.馬鈴薯種薯機(jī)械排種離散元仿真模型參數(shù)確定及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):35-42.Shi Linrong, Sun Wei, Zhao Wuyun, et al. Parameter determination and validation of discrete element model of seed potato mechanical seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 35-42. (in Chinese with English abstract)

[12] Mak J, Chen Y, Sadek M A. Determining parameters of a discrete element model for soil-tool interaction[J]. Soil and Tillage Research, 2012, 118: 117-122.

[13] Li Bo, Chen Ying, Chen Jun. Modeling of soil-claw interaction using the discrete element method (DEM)[J]. Soil and Tillage Research, 2016, 158: 177-185.

[14] Chen Y, Munkholm L J, Nyord T. A discrete element model for soil-sweep interaction in three different soils[J]. Soil and Tillage Research, 2013, 126: 34-41.

[15] Xiao Xiangwu, Tan Yuanqiang, Zhang Hao, et al. Experimental and DEM studies on the particle mixing performance in rotating drums: Effect of area ratio[J]. Powder Technology, 2017, 314: 182-194.

[16] Coetzee C J, Els D N J. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling[J]. Computers & Electronics in Agriculture, 2009, 65(2): 198-212.

[17] Grima A P, Wypych P W. Development and validation of calibration methods for discrete element modelling[J]. Granular Matter, 2011, 13(2): 127-132.

[18] 劉凡一,張艦,李博,等.基于堆積試驗(yàn)的小麥離散元參數(shù)分析及標(biāo)定[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):247-253.Liu Fanyi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(12): 247-253. (in Chinese with English abstract)

[19] 劉凡一,張艦,陳軍.小麥籽粒振動(dòng)篩分黏彈塑性接觸模型構(gòu)建及其參數(shù)標(biāo)定[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):37-43.Liu Fanyi, Zhang Jian, Chen Jun. Construction of visco-elasto-plasticity contact model of vibratory screening and its parameters calibration for wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 37-43. (in Chinese with English abstract)

[20] Uchul M, Fielke J M, Saunders C. 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil[J]. Soil and Tillage Research, 2014, 144: 220-227.

[21] Ucgul M, Fielke J M, Saunders C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129(1): 298-306.

[22] 張銳,韓佃雷,吉巧麗,等.離散元模擬中沙土參數(shù)標(biāo)定方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):49-56.Zhang Rui, Han Dianlei, Ji Qiaoli, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 49-56. (in Chinese with English abstract)

[23] 王憲良,胡紅,王慶杰,等.基于離散元的土壤模型參數(shù)標(biāo)定方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(12):78-85. Wang Xianliang, Hu Hong, Wang Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract)

[24] 武濤,黃偉鳳,陳學(xué)深,等.考慮顆粒間黏結(jié)力的黏性土壤離散元模型參數(shù)標(biāo)定[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,38(3):93-98.Wu Tao, Huang Weifeng, Chen Xueshen, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J]. Journal of South China Agricultural University, 2017, 38(3): 93-98. (in Chinese with English abstract)

[25] 王金武,唐漢,王奇,等.基于EDEM 軟件的指夾式精量排種器排種性能數(shù)值模擬與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):43-50. Wang Jinwu, Tang Han, Wang Qi, et al. Numerical simulation and experiment on seeding performance of pickup finger precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 43-50. (in Chinese with English abstract)

[26] 戚江濤,蒙賀偉,坎雜,等.基于EDEM 的雙螺旋奶牛飼喂裝置給料性能分析與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):65-71. Qi Jiangtao, Meng Hewei, Kan Za, et al. Analysis and test of feeding performance of dual-spiral cow feeding device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 65-71. (in Chinese with English abstract)

[27] 高國華,馬帥.基于離散單元分析與物場分析的盆花移栽手爪優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):35-42.Gao Guohua, Ma Shuai. Improvement of transplanting manipulator for potted flower based on discrete element analysis and Su-field analysis[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(6): 35-42. (in Chinese with English abstract)

[28] 朱德泉,李蘭蘭,文世昌,等.滑片型孔輪式水稻精量排種器排種性能數(shù)值模擬與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):17-26. Zhu Dequan, Li Lanlan, Wen Shichang, et al. Numerical simulation and experiment on seeding performance of slide hole-wheel precision seed-metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(21): 17-26. (in Chinese with English abstract)

[29] Zhong Wenqi, Yu Aibing, Liu Xuejiao, et al. DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications[J]. Powder Technology, 2016, 302: 108-152.

[30] 石林榕,趙武云,孫偉.基于離散元的西北旱區(qū)農(nóng)田土壤顆粒接觸模型和參數(shù)標(biāo)定[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):181-187. Shi Linrong, Zhao Wuyun, Sun Wei. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 181-187. (in Chinese with English abstract)

[31] 賀一鳴,向偉,吳明亮,等.基于堆積試驗(yàn)的壤土離散元參數(shù)的標(biāo)定[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2018,44(2):216-220. He Yiming, Xiang Wei, Wu Mingliang, et al. Parameters calibration of loam soil for discrete element simulation based on the repose angle of particle heap[J]. Journal of Hunan Agricultural University: Natural Sciences, 2018, 44(2): 216-220. (in Chinese with English abstract)

[32] 羅帥,袁巧霞,GOUDA Shaban,等.基于JKR粘結(jié)模型的蚯蚓糞基質(zhì)離散元法參數(shù)標(biāo)定[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):343-350.Luo Shuai, Yuan Qiaoxia, Gouda S, et al. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 343-350. (in Chinese with English abstract)

中國農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:吳明亮(E041200186S)

Calibration of simulation physical parameters of clay loam based on soil accumulation test

Xiang Wei1,2, Wu Mingliang1※, Lü Jiangnan2, Quan Wei1, Ma Lan2, Liu Jiajie2

(1.,,410128;2.,,410205,)

In order to obtain the precise physical parameters of the discrete element simulation model of typical cultivated soil clay loam in southern China, this paper constructed a soil discrete element simulation model. Based on a soil accumulation test, this study proposed a method for combining the significance analysis and response surface method, which calibrated and optimized the simulation parameters of clay loam in southern China. Combining the results of actual test and GEMM database parameters recommended by constructing the DEM model of the soil, repose angle of soil was taken as response value, using the Design Expert software through the Plackett-Burman test, the steepest climbing test and Box-Behnken test, simulation physical parameters were calibrated and optimized. The simulation model of discrete element in clay loam was verified to be accurate by analyzing the simulation and soil bin testing of hole forming device. The DEM model of soil was established on the basis of the parameters determined by the basic test. The 8 initial physical parameters were screened for significance using the Plackett-Burman test. The results show that: the surface energy of soil for JKR model, soil-soil restitution coefficient, and the soil-soil static friction coefficient have significant effects on the response value and repose angle. Based on the optimal interval value of the significant parameters are determined by the steepest ascent test and the Box-Behnken test result, the quadratic regression model of significance parameters and repose angle is established and optimized to obtain the optimal combination of the significance parameters: The surface energy of soil for JKR model is 12.73 J/m2. The soil-soil restitution coefficient is 0.55. The soil-soil static friction coefficient is 0.84. Other insignificance parameters are as recommended by the GEMM database (Poisson's ratio of soil is 0.38. Soil-soil rolling friction coefficient is 0.1. Soil-steel restitution coefficient is 0.3. Soil-steel static friction coefficient is 0.6. Soil-steel rolling friction coefficient is 0.1). By the analog simulation of optimal parameter combination, it can be obtained that the simulated repose angle is 42.9° and the measured repose angle is 42.4°, therefore, the relative error is only 1.2%. There is no significant difference in shape and relevant value between the soil in simulation and the soil in experiment (>0.05). The optimized parameters can be used for further DEM analog simulation between the clay loam and the soil-contacting components and revealing the law of motion of clay loam under the action of soil-contacting components. The results of the simulation and soil bin testing of hole forming device show that, motion law of the soil-engaging component in the simulated soil model is slightly different from that in the soil groove test, with the numerical difference within 3.98%, which proves that the soil simulation model after parameter calibration and optimization can accurately replace the real soil for simulation. The research can provide theoretical basis and technical support for the dynamic study of the interaction between this type of soil and the contact soil components.

models; discrete element method; clay loam; parameter calibration; repose angle; simulation parameters; Johoson-Kendall-Roberts contact model

10.11975/j.issn.1002-6819.2019.12.014

S152.9;TP391.9

A

1002-6819(2019)-12-0116-08

2019-01-10

2019-05-17

國家科技支撐計(jì)劃(2014BAD11B03);湖南省科技廳重點(diǎn)項(xiàng)目(2017NK2131);國家麻類產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-16-E21);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項(xiàng)目(CAAS-ASTIP-2016-IBFC)

向偉,博士,助理研究員,主要從事農(nóng)業(yè)機(jī)械創(chuàng)新設(shè)計(jì)。Email:xwxblg@163.com

吳明亮,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械研究。Email:mlwu@hunau.edu.cn

向 偉,吳明亮,呂江南,全 偉,馬 蘭,劉佳杰. 基于堆積試驗(yàn)的黏壤土仿真物理參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):116-123. doi:10.11975/j.issn.1002-6819.2019.12.014 http://www.tcsae.org

Xiang Wei, Wu Mingliang, Lü Jiangnan, Quan Wei, Ma Lan, Liu Jiajie. Calibration of simulation physical parameters of clay loam based on soil accumulation test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 116-123. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.12.014 http://www.tcsae.org

猜你喜歡
恢復(fù)系數(shù)壤土因數(shù)
利用恢復(fù)系數(shù)巧解碰撞問題
因數(shù)是11的巧算
土壤質(zhì)地及砧木影響蘋果根際微生物功能多樣性及其碳源利用
“積”和“因數(shù)”的關(guān)系
CONTENTS
因數(shù)和倍數(shù)的多種關(guān)系
積的變化規(guī)律
用DIS聲波傳感器測(cè)量重力加速度
紅花爾基水利樞紐工程壤土心墻壩碾壓試驗(yàn)分析
花生籽?;謴?fù)系數(shù)及摩擦系數(shù)研究