国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

十八胺化學改性下壤土的斥水性與入滲性能研究

2019-08-23 02:04吳珺華劉嘉銘王茂勝
農(nóng)業(yè)工程學報 2019年13期
關(guān)鍵詞:烷基壤土水頭

吳珺華,林 輝,劉嘉銘,王茂勝,楊 松

十八胺化學改性下壤土的斥水性與入滲性能研究

吳珺華1,林 輝1,劉嘉銘1,王茂勝1,楊 松2※

(1. 南昌航空大學土木建筑學院,南昌 330063;2. 云南農(nóng)業(yè)大學水利學院,昆明 650201)

以壤土為研究對象,將十八胺基伯胺作為斥水劑摻入天然風干重塑壤土中,配置了不同十八烷基伯胺含量和初始含水率的改性試樣,采用滴水穿透時間法測定了改性壤土的斥水等級,提出并獲得了改性壤土的臨界含水率,分析了十八烷基伯胺含量、壤土斥水等級、初始含水率的關(guān)系。在此基礎(chǔ)上,采用全自動三軸滲透儀,開展了改性壤土在不同水頭差作用下的滲透試驗,揭示了不同斥水等級壤土的入滲性能,獲得了改性壤土的穩(wěn)定入滲率。結(jié)果表明:十八烷基伯胺含量和土壤含水率是影響土壤斥水性的重要因素。十八烷基伯胺含量越高,土壤斥水等級越大,上限含水率越低,而下限含水率越高。土壤斥水等級相同時,初始入滲速率受水頭差影響較小,如十八胺基伯胺質(zhì)量分數(shù)為0.6%的土壤,20和60 kPa水頭差條件下其初始入滲速率分別為0.210和0.238 cm/s;入滲持續(xù)一段時間后,入滲速率突然降低,降至0.005 cm/s,進入穩(wěn)定入滲階段。土壤斥水性越強,穩(wěn)定入滲速率和穩(wěn)定入滲率均呈下降趨勢,壤土防滲效果越好。起始出滲時間隨水頭差的增大而減小,隨土壤斥水性的增大而增大。上述研究成果可為斥水性土壤應(yīng)用于土木水利工程領(lǐng)域提供試驗基礎(chǔ)。

土壤;滲透性;含水率;斥水性;十八烷基伯胺

0 引 言

親水性土壤可以在非飽和狀態(tài)與飽和狀態(tài)之間相互轉(zhuǎn)換[1]。斥水土壤由于水分難以迅速鋪展,水分不易入滲,難以直接轉(zhuǎn)換[2]。這一特性對地表徑流、地表水入滲和蒸發(fā)、包氣帶水氣運移、植被根系水吸附、地下水環(huán)境等具有重要影響[3-4]。具有斥水性的土壤,其導水率和入滲率比親水性土壤的要小,入滲能力降低[5];土壤內(nèi)部水分不易流出,導致土壤內(nèi)外水力差異[6-7],直接影響農(nóng)作物的正常生長[8];水分側(cè)向運移及不規(guī)則分布極大影響著土壤水分運移過程,會導致作物水分脅迫[9]和作物營養(yǎng)脅迫”[10]等不利于農(nóng)作物生長問題的出現(xiàn)。目前關(guān)于土壤斥水性的研究成果主要集中在農(nóng)業(yè)科學等領(lǐng)域,研究對象為天然斥水性的土壤,重點集中在如何減小和消除土壤斥水性帶來的負面影響,而針對重塑斥水性土壤的研究鮮見報道。在土木水利工程領(lǐng)域,往往由于親水土壤的入滲性能導致滲透變形,在外界水壓力作用下通過土壤孔隙產(chǎn)生滲透力,出現(xiàn)管涌、流土等入滲破壞現(xiàn)象[11];孔隙水的排出和流入導致土壤孔隙重新分布,產(chǎn)生滲透變形,土壤內(nèi)部應(yīng)力重新調(diào)整,出現(xiàn)地面變形[12]、邊坡失穩(wěn)[13]、水流滲漏[14]、地表水和地下水污染[15-16]等工程災害。現(xiàn)有防滲技術(shù)以阻斷土壤部分滲流路徑為主[17],但土壤親水性對土木水利工程的影響并未引起足夠重視,防滲長期性無法保證[18]。隨著中國“一帶一路”戰(zhàn)略性目標的逐步實施,諸多相關(guān)地區(qū)將不可避免地遇到與水有關(guān)的工程安全問題,如土坡滑坍、滲透破壞、地表沉降、污水污染等,這些都涉及到土壤的滲流特性。

常見改性方式主要有物理改性[19-21]、化學改性[22-25]和生物改性[26-28]?;瘜W改性主要是采用表面活性劑對土顆粒表面進行處理,達到改變土顆粒與溶劑相互作用的目的?;瘜W改性在諸多學科應(yīng)用廣泛,如某些憎水、憎油材料的制成。在土木水利工程領(lǐng)域,土壤通常被視為親水性材料。如果能夠通過化學改性方法對其進行處理使其具有斥水性,那么由土壤親水性引發(fā)的各種工程問題可迎刃而解。目前研究表明,土壤斥水性除了與斥水劑類型[29]有關(guān)外,還與土壤含水率[30]、密實度[31]、溫度[32]等相關(guān)。本文采用化學改性的方法,制得不同十八烷基伯胺(簡稱十八烷,下同)含量和初始含水率的試樣,探究十八烷基伯胺含量、初始含水率對改性土壤斥水度的影響。在此基礎(chǔ)上,采用全自動三軸滲透儀,開展改性壤土在不同圍壓、不同水頭差作用下的滲透試驗,探究改性土壤對滲流的影響,并獲得改性壤土穩(wěn)定入滲率的變化規(guī)律。

1 材料與方法

1.1 試驗材料

試驗用土取自云南省昆明市盤龍區(qū)黑龍?zhí)陡浇叵?0 cm埋深處的土壤,風干碾碎過2 mm篩后備用。壤土的相對密度2.71,天然干密度1.35 g/cm3,最大干密度1.5 g/cm3,最優(yōu)含水率質(zhì)量分數(shù)30.8%,塑限29.5%,液限62.7%,塑性指數(shù)33.2。采用丹東百特儀器有限公司生產(chǎn)的BT-9300ST型激光粒度分布儀測定其顆粒級配曲線見圖1,其中粒徑<0.002 mm、0.002~<0.02 mm和0.02~2 mm的土壤顆粒質(zhì)量占比分別為18.46%、41.67%和39.87%。根據(jù)國際土壤質(zhì)地三角形分類法可知,試驗用土為壤土。經(jīng)XRD衍射圖知壤土主要礦物有石英(質(zhì)量分數(shù)34.0%)、赤鐵礦(6.3%)、鐵氧化物(9.4%)、高嶺石(10.2%)、三水鋁礦(24.3%)和白云母(15.7%)。

斥水劑為十八烷基伯胺(CH3(CH2)16CH2NH2)。將十八烷基伯胺碾碎至細顆粒狀后備用。輔助材料和設(shè)備主要有:去離子水、電烘箱、燒杯、攪拌器、滴定管及防護材料等。

圖1 壤土顆粒級配曲線

1.2 初始含水率不同的改性壤土試樣制備及試驗

將十八烷基伯胺與土壤按不同質(zhì)量比攪拌均勻后放置75 ℃烘箱中,每隔2 h取出攪拌均勻后再放入烘箱,共攪拌4次,獲得十八伯胺含量不同的改性土壤,制備5組不同斥水度的改性土壤。采用噴霧器對斥水土壤進行增濕。試樣初始為干燥狀態(tài),噴灑一定水量攪拌均勻后,取部分土樣密封24 h。每組共制備16種不同初始含水率試樣,采用滴水穿透時間法(water drop penetration time,WDPT)測定相應(yīng)的滴水穿透時間,同時將未滴定檢測部分的試樣進行含水率試驗,相應(yīng)的含水率見表1。

1.3 滲透試驗的試樣制備及試驗過程

目前斥水土壤的入滲研究主要集中在土壤斥水性對水分運移規(guī)律的影響方面[33],研究方法以室內(nèi)土柱試驗[34]和現(xiàn)場入滲試驗[35]為主,未考慮高水頭和圍壓下斥水土壤的滲流特性。據(jù)此采用南京土壤儀器廠生產(chǎn)的全自動三軸滲透系統(tǒng)進行滲透試驗。該系統(tǒng)可自動控制進出試樣水量,并實時監(jiān)測記錄流量,最大滲流量為480 mL,精度為0.01 mL。為獲得不同斥水程度試樣的入滲性能,根據(jù)《土工試驗方法標準》(GB/T 50123-1999)中三軸試樣制備方法分別制備了6組改性壤土試樣,每組3個試樣,用以開展?jié)B透水頭差(試樣上下面施加不同水頭,模擬工程水頭差)分別為20、40和60 kPa的滲透試驗。為保證試樣與橡膠膜貼合緊密,試驗圍壓恒定為100 kPa。試樣為圓柱樣(Ф3.91 cm′H8 cm),初始干密度為1.35 g/cm3,初始含水率控制在3.2%±0.2%。試驗前先將進水管和出水管中氣體完全排出。試驗時水通過進液裝置從試樣底部進入,流經(jīng)試樣后從頂部排出,進水流量和出水流量由流量傳感器自動采集。每次滲透試驗完成后,需將去離子水補回至儲液容器內(nèi)。有2點需要說明:1)試樣斥水度的增大會導致試樣抗?jié)B能力增強,其內(nèi)部被水穿透的實際過水面積越小,導致單位時間內(nèi)通過試樣的水流量越小,故其入滲率逐漸減??;2)有壓滲流試驗中,試樣初始為非飽和狀態(tài)。水頭差越大,試樣飽和度越高,但均無法使試樣達到完全飽和狀態(tài),因此其入滲率與水頭差有關(guān),而且未摻十八烷基伯胺的試樣入滲率在不同水頭差下也存在差異??梢钥闯觯嚇拥姆€(wěn)定入滲率受斥水度和水頭差的共同影響,數(shù)值上均要小于飽和導水率。由于本文重點分析十八烷基伯胺含量對改性壤土入滲率的影響,且穩(wěn)定入滲時滿足層流條件,故本文采用達西定律來計算穩(wěn)定入滲率(式(1)),其中過水斷面面積取試樣橫截面積(即為常數(shù)),以探究穩(wěn)定入滲率與十八烷基伯胺含量的關(guān)系。

表1 用于臨界含水率試驗的試樣的初始含水率

式中為入滲率,cm/s;為流量,透過某橫截面積的水量,mL;為試樣滲透路徑長度,cm;為試樣橫截面積,cm2;為流量滲透試樣所需時間,s;為作用于試樣滲透路徑長度上的水位差,cm。

1.4 斥水度測定與評價標準

采用滴水穿透時間法來測定改性壤土的斥水度。滴水穿透時間法斥水度評價標準是根據(jù)滴水入滲土壤時間的不同將斥水等級分為無(<5 s)、輕微(5 s≤<60 s)、中等(60 s≤<600 s)、嚴重(600 s≤<3 600 s)和極度(≥3 600 s)5個等級[36]。為降低制樣不均勻性的影響,在試樣表面選取3處(正三角形分布,間距4 cm)測定滴水穿透時間。每滴水量為0.05 mL,每處滴水5滴,共計0.25 mL,取3處滴水穿透時間平均值作為最終結(jié)果。整個試驗過程中溫度控制在(24 ± 1)℃,濕度控制在64% ± 2%。

2 結(jié)果與分析

2.1 初始含水率對改性土壤斥水性能的影響

圖2為不同初始含水率下改性壤土的滴水穿透時間變化情況??梢钥闯觯送榛焚|(zhì)量分數(shù)為0.2%和0.4%的壤土,當含水率質(zhì)量分數(shù)低于12%時,滴水穿透時間均小于5 s,表現(xiàn)出親水性;含水率質(zhì)量分數(shù)繼續(xù)增至21%時,其滴水穿透時間迅速增至3 611和4 012 s,即斥水等級由無斥水快速升至極度斥水,增加速率基本一致;含水率質(zhì)量分數(shù)在21%~25%之間的壤土滴水穿透時間均大于3 600 s,斥水等級穩(wěn)定在極度;含水率質(zhì)量分數(shù)從25%增至32%(飽和)時,其斥水等級均由極度迅速降至無,下降速率基本一致。十八烷基伯胺質(zhì)量分數(shù)為0.6%和0.8%的壤土,天然風干狀態(tài)下的滴水穿透時間為731和2 584 s,即表現(xiàn)出嚴重的斥水等級。隨著含水率的增加,滴水穿透時間迅速增加,最大增至9 345(初始含水率質(zhì)量分數(shù)為23.1%)和12 364 s(初始含水率質(zhì)量分數(shù)為21.6%),斥水等級為極度;隨后滴水穿透時間迅速降低,至飽和狀態(tài)時斥水性完全消失。十八烷基伯胺質(zhì)量分數(shù)為1.0%的壤土,天然風干狀態(tài)下的滴水穿透時間為4 886 s,已達到極度斥水等級。隨著含水率的增加,滴水穿透時間亦迅速增加,最大值甚至超過18 000 s(初始含水率質(zhì)量分數(shù)為19.3%、20.0%和23.7%),斥水等級均為極度;當含水率質(zhì)量分數(shù)增至26.8%時,滴水穿透時間迅速降至9 346 s,隨后快速降低,至飽和狀態(tài)時斥水性完全消失。

可以看出,除十八烷基伯胺含量外,土壤含水率是影響土壤斥水性的重要因素。筆者將土壤由無斥水達到輕微斥水等級時的起始含水率稱為上限含水率;由最高斥水等級降至無斥水等級時的起始含水率稱為下限含水率。上限含水率和下限含水率統(tǒng)稱為臨界含水率。當土壤含水率在上限含水率與下限含水率之間變化時,其斥水性亦會有顯著變化,尋找不同斥水程度土壤的上限與下限含水率具有重要意義。就本試驗結(jié)果而言,十八烷基伯胺質(zhì)量分數(shù)為0.2%和0.4%的壤土,其上限含水率質(zhì)量分數(shù)分別為11.1%和10.8%,下限含水率質(zhì)量分數(shù)分別為23.9%和24.1%;十八烷基伯胺質(zhì)量分數(shù)為0.6%、0.8%和1.0%的壤土,其上限含水率質(zhì)量分數(shù)可取相應(yīng)的天然風干含水率,分別為3.5%、2.8%和2.0%,下限含水率質(zhì)量分數(shù)分別為26.3%、27.1%和27.3%。相同條件下,土壤密實度越大,意味著其內(nèi)部孔隙越小,水分越難入滲;含水率越大,土壤內(nèi)部孔隙逐漸被水充填。一旦孔隙水全部貫通形成連續(xù)通道,此時外界水體可經(jīng)由內(nèi)部連續(xù)通道自由出入,縱使土壤顆粒具有斥水性,亦無法阻止?jié)B流發(fā)生。隨著初始含水率的增加,土壤的斥水性也逐漸變化,其變化規(guī)律基本符合Li等[37-38]的研究成果。

圖2 不同初始含水率和十八烷基伯胺含量下壤土的滴水穿透時間和斥水等級

將臨界含水率與十八烷基伯胺含量的關(guān)系繪于圖3,若壤土含水率與十八烷基伯胺含量落在陰影區(qū)域內(nèi),意味著此時壤土具有較好的斥水性,越接近陰影區(qū)域形心,斥水性越好。要使壤土斥水性長期穩(wěn)定,需合理控制壤土含水率和十八烷基伯胺含量。就本次試驗結(jié)果而言,十八烷基伯胺含量越大,壤土斥水等級越高,當其含量達到一定值時,壤土斥水等級已達到極度。這表明,十八烷基伯胺含量存在一最優(yōu)值,既能滿足斥水等級要求,又能節(jié)約用量,性價比最好。根據(jù)本試驗結(jié)果認為,十八烷基伯胺質(zhì)量分數(shù)為1.0%的壤土,在含水率為0~26.8%范圍內(nèi)皆處于極度斥水等級,較其他組十八烷基伯胺含量的斥水壤土變化范圍廣,穩(wěn)定性好,其斥水性能最為合理。

圖3 壤土臨界含水率與十八烷基伯胺含量關(guān)系

2.2 改性土壤對滲流的影響

三軸滲透試驗結(jié)果包括入滲與出滲。從入滲方面來看,不同水頭作用下試樣的入滲曲線均表現(xiàn)出典型的雙線性,定義為初始入滲階段和穩(wěn)定入滲階段,兩線性段交點橫坐標定義為突變歷時。據(jù)此可獲得初始入滲速率和穩(wěn)定入滲速率。

圖4為不同改性壤土的滲流流量與時間關(guān)系曲線,包括入滲流量(通過水壓穿透試樣,試樣從非飽和至飽和破壞階段總?cè)霛B水體積)與出滲流量(水穿過試樣總出滲水體積)。除了極度斥水的試樣外,其余試樣的入滲曲線均呈現(xiàn)典型的雙線性階段:初始入滲階段和穩(wěn)定入滲階段,兩直線交點時間為突變所需歷時。相應(yīng)的初始入滲速率和穩(wěn)定入滲速率見表2。結(jié)果表明,斥水等級相同時,水頭差對初始入滲速率影響不明顯,如十八烷基伯胺質(zhì)量分數(shù)為0.6%時,20、40和60 kPa水頭差初始入滲速率分別為0.210、0.208和0.238 cm/s,相差不大。入滲持續(xù)一段時間后,入滲速率突然降低,對應(yīng)十八烷基伯胺質(zhì)量分數(shù)為0.6%的初始入滲速率分別降至0.005、0.004和0.010 cm/s,進入穩(wěn)定入滲階段。相同斥水等級下的穩(wěn)定入滲速率皆隨著水頭差增大而增大,隨著壤土從無斥水等級到極度斥水等級,其穩(wěn)定入滲速率呈下降趨勢,表明斥水性越強的壤土阻滲效果越明顯,水越難以入滲壤土。水頭差越大,突變所需歷時越長,如對應(yīng)的十八烷基伯胺質(zhì)量分數(shù)為0.6%的水頭差歷時分別為10.3、13.8和16.3 min,相應(yīng)的入滲量也隨著水頭差的增大而增大。

從出滲上看,其變化規(guī)律與入滲流量的基本一致,同一時刻下的數(shù)值比入滲流量要小,到穩(wěn)定滲流階段時,出滲速率與入滲速率基本相同。不同水頭差作用下出滲流量存在水平線段。由于試樣初始狀態(tài)為非飽和,入滲開始階段,水在短時間內(nèi)快速充填試樣內(nèi)部孔隙;當入滲流量達到一定值時,試樣趨于飽和,多余水量經(jīng)排水管流出,試樣處于穩(wěn)定滲流階段。起始出滲時間隨水頭差的增大而縮短,隨斥水等級的增大而增大,其中當壤土為極度斥水時,20 kPa水頭差作用時入滲流量不增反減,未測得出滲流量(圖4f, 出滲20 kPa為一段水平直線),表明水已無法入滲試樣,具備抵抗一定水頭作用下入滲的能力。

圖4 不同斥水等級的壤土滲流量與時間關(guān)系

表2 不同斥水等級和水頭差作用下壤土初始和穩(wěn)定入滲速率

2.3 對改性土壤穩(wěn)定入滲率的影響

將不同水頭差作用下壤土的穩(wěn)定入滲率與十八烷基伯胺含量關(guān)系繪于圖5中??梢钥闯觯S著十八烷基伯胺含量的增加,穩(wěn)定入滲率均呈下降趨勢。水頭差越小,下降幅度越明顯。十八烷基伯胺質(zhì)量分數(shù)較低時(0、0.2%和0.4%),穩(wěn)定入滲率受水頭差影響較大:水頭差越大,穩(wěn)定入滲率越小。十八烷基伯胺質(zhì)量分數(shù)達到一定值時(0.6%、0.8%和1.0%),穩(wěn)定入滲率基本不受水頭差的影響。滲流過程中,水對土顆粒會產(chǎn)生滲透力,滲透阻力主要來自固體顆粒及孔隙大小,其與水力梯度成正比。滲徑長度相同時,水頭差越大,相應(yīng)的滲透力越大,其對土壤內(nèi)部結(jié)構(gòu)的擠密作用越明顯,導致孔隙體積越小,入滲性能下降。因此當十八烷基伯胺含量較低時,水頭差對土壤入滲性能起主導作用;當十八烷基伯胺含量逐漸增加時,十八烷基伯胺對水的排斥作用明顯增強,甚至起絕對主導作用,此時水頭差對土壤入滲性能影響不明顯。對土木水利工程而言,在滿足相同密實度的前提下,土壤穩(wěn)定入滲率越小,工程防滲效果越好,傳統(tǒng)防滲措施可大大減少,降低工程造價。就本試驗結(jié)果而言,十八烷基伯胺質(zhì)量分數(shù)為0.8%的壤土,其在60 kPa水頭差作用下的穩(wěn)定入滲率為7.4×10-5cm/s,已屬于極低透水性級別,完全滿足工程防滲需要。

圖5 不同水頭差下壤土穩(wěn)定入滲率與十八烷基伯胺含量關(guān)系

3 結(jié) 論

本文采用斥水劑來處理親水性土壤以降低其滲透性能,既能提升防滲效果,又能減少其他防滲材料使用,降低成本。主要結(jié)論如下:

1)十八烷基伯胺含量和土壤含水率是影響土壤斥水性的重要因素。十八烷基伯胺含量越大,土壤斥水性越強。隨著斥水等級的提高,斥水土壤上限含水率增加,而下限含水率降低,整個斥水范圍不斷增大。

2)斥水等級相同時,初始入滲速率受水頭差影響較小;土壤從無斥水等級到極度斥水等級,其穩(wěn)定入滲速率逐漸下降,且起始出滲時間隨水頭差的增大而縮短。

3)隨著斥水等級的增加,穩(wěn)定入滲率均呈下降趨勢。水頭差越小,下降幅度越明顯。水頭差越大,穩(wěn)定入滲率越小。斥水等級為極度時,穩(wěn)定入滲率基本不受水頭差的影響。

4)十八烷基伯胺質(zhì)量分數(shù)為0.8%的壤土,在60 kPa水頭差作用下的穩(wěn)定入滲率為7.4×10-5cm/s,已達到低透水性級別,完全滿足工程防滲需要。

[1] Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical Engineering Division, 1977, 103: 447-466.

[2] 王中平,孫振平,金明. 表面物理化學[M]. 上海:同濟大學出版社,2015.

[3] 李毅,商艷玲,李振華,等.土壤斥水性研究進展[J].農(nóng)業(yè)機械學報,2012,43(1):68-75. Li Yi, Shang Yanling, Li Zhenhua, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 68-75. (in Chinese with English abstract)

[4] Debano L F. Water repellency in soils: A historical overview[J]. Journal of Hydrology, 2000, 231/232: 4-32.

[5] Doerr S H, Shakesby R A, Walsh R P D. Soil water repellency: Its causes, characteristics and hydro-geomor-phological significance[J]. Earth-Science Reviews, 2000, 51(1/2/3/4): 33-65.

[6] Doerr S H, Ferreira A J D, Walsh R P D, et al. Soil water repellency as a potential parameter in rainfall-runoff modeling: Experimental evidence at point to catchment scales from portugal[J]. Hydrological Process, 2003, 17(2): 363-377.

[7] Bauters T W J, Dicarlo D A, Steenhuis T S, et al.. Preferential flow in water-repellent sands[J]. Soil Science Society of America Journal, 1998, 62(5): 1185-1190.

[8] 劉春成,李毅,郭麗俊,等微咸水灌溉對斥水土壤水鹽運移的影響[J]. 農(nóng)業(yè)工程學報,2011,27(8):39-45. Liu Chuncheng, Li Yi, Guo Lijun, et al. Effect of brackish water irrigation on water and salt movement in repellent soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 39-45. (in Chinese with English abstract)

[9] 李柏貞,周廣勝. 干旱指標研究進展[J]. 生態(tài)學報,2014, 34(5):1043-1052. Li Baizhen, Zhou Guangsheng. Advance in study on drought index[J]. Acta Ecologica Sinica, 2014, 34(5): 1043-1052. (in Chinese with English abstract)

[10] Coles N, Trudgill S. The movement of nitrogen fertilizer from the soil surface to drainage waters by preferential flow in weakly structured soils[J]. Agriculture Ecosystems and Environment, 1985, 13: 241-259.

[11] 毛昶熙. 管涌與濾層的研究:管涌部分[J]. 巖土力學,2005,26(2):209-215. Mao Changxi. Study on piping and filters: Part I of piging[J]. Rock and Soil Mechanics, 2005, 26(2): 209-215. (in Chinese with English abstract)

[12] 施成華,彭立敏. 基坑開挖及降水引起的地表沉降預測[J].土木工程學報,2006,39(5):117-121. Shi Chenghua, Peng Limin. Ground surface settlement caused by foundation pit excavation and dewatering[J] China Civil Engineering Journal, 2006, 39(5): 117-121. (in Chinese with English abstract)

[13] 汪益敏,陳頁開,韓大建,等. 降雨入滲對邊坡穩(wěn)定影響的實例分析[J]. 巖石力學與工程學報,2004,23(6):920-924. Wang Yimin, Chen Yekai, Han Dajian, et al. Case study on influence of rainfall permeation on slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 920-924. (in Chinese with English abstract)

[14] 陳生水,鐘啟明,陶建基. 土石壩潰決模擬及水流計算研究進展[J]. 水科學進展,2008,19(6):903-910. Chen Shengshui, Zhong Qiming, Tao Jianji. Development in embankment dam break simulation and water flow simulation[J]. Advances in Water Science, 2008, 19(6): 903-910. (in Chinese with English abstract)

[15] 楊蘊,吳劍鋒,林錦,等. 控制海水入侵的地下水多目標模擬優(yōu)化管理模型[J]. 水科學進展,2015,26(4):579-588. Yang Yun, Wu Jianfeng, Lin Jin, et al. A multi-objective simulation-optimization model constrained by the potential seawater intrusion[J]. Advances in Water Science, 2015, 26(4): 579-588. (in Chinese with English abstract)

[16] 葉為民,金麒,黃雨. 地下水污染試驗研究進展[J].水利學報,2005,36(2):251-255. Ye Weimin, Jin Qi, Huang Yu. Review on advance in experimental study of pollution dispersion in groundwater[J]. Journal of Hydraulic Engineering, 2005, 36(2): 251-255. (in Chinese with English abstract)

[17] Deurer M, Bachmann J. Modeling water movement in heterogeneous water repellent soil: 2. A conceptual numerical simulation[J]. Vadose Zone Journal, 2007, 6(3): 446-457.

[18] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(3): 521-532.

[19] 王景明,王珂,鄭詠梅,等. 荷葉表面納米結(jié)構(gòu)與浸潤性的關(guān)系[J].高等學?;瘜W學報,2010,31(8):1596-1599. Wang Jingming, Wang Ke, Zheng Yongmei, et al. Effects of chemical composition and nano-structures on the wetting behaviour of lotus leaves[J]. Chemical Journal of Chinese Universities, 2010, 31(8): 1596-1599. (in Chinese with English abstract)

[20] Lee W, Jin M K, Yoo W C, et al. Nanostructuring of a polymeric substrate with well-defined nanometer scale topography and tailored surface wettability[J]. Langmuir, 2004, 20(18): 7665-7669.

[21] 徐先鋒,劉爍,洪龍龍. 非金屬超疏水材料的制備方法及研究進展[J]. 中國塑料,2013,27(5):12-18. Xu Xianfeng, Liu Shuo, Hong Longlong. Preparation and developments of non-metal superhydrophobic materials[J]. China Plastics, 2013, 27(5): 12-18. (in Chinese with English abstract)

[22] 楊松,龔愛民,吳珺華,等. 接觸角對非飽和土中基質(zhì)吸力的影響[J].巖土力學,2015,36(3):674-678. Yang Song, Gong Aimin, Wu Junhua, et al. Effect of contact angle on matric suction of unsaturated soil[J]. Rock and Soil Mechanics, 2015, 36(3): 674-678. (in Chinese with English abstract)

[23] 吳珺華,周曉宇,林輝,等. 不同斥水劑作用下土壤斥水度測定及其變化規(guī)律[J]. 農(nóng)業(yè)工程學報,2018,34(17):109-115.Wu Junhua, Zhou Xiaoyu, Lin Hui, et al. Hydrophobic degree measurement and its changes in soils modified by different hydrophobic agents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 109-115. (in Chinese with English abstract)

[24] 吳珺華,林輝,周曉宇,等. 斥水劑作用下非飽和土壤抗剪強度測定及其變化規(guī)律[J]. 農(nóng)業(yè)工程學報,2019,35(6):123-129. Wu Junhua, Lin Hui, Zhou Xiaoyu, et al. Measurement of shear strength and its change in unsaturated soils modified by hydrophobic agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 123-129. (in Chinese with English abstract)

[25] 劉清秉,項偉,張偉鋒,等. 離子土壤固化劑改性膨脹土的試驗研究[J].巖土力學,2009,30(8):2286-2290. Liu Qingbing, Xiang Wei, Zhang Weifeng, et al. Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese with English abstract)

[26] Roper M M. The isolation and characterisation of bacteria with the potential to degrade waxes that cause water repellency in sandy soils[J]. Australian Journal of Soil Research, 2004, 42(4): 427-434.

[27] Franco C M M, Tate M E, Oades J M. Studies on non-wetting sands: I. The role of intrinsic particulate organic matter in the development of water repellency in non-wetting sands[J]. Australian Journal of Soil Research, 1995, 33(2): 253-263.

[28] 周芳琴,羅鴻禧.微生物對某些巖土工程性質(zhì)的影響[J]. 巖土力學,1997,18(2):17-22. Zhou Fangqin, Luo Hongxi. The effect of microbes on some geotechnical engineering properties[J]. Rock and Soil Mechanics, 1997, 18(2): 17-22. (in Chinese with English abstract)

[29] 楊松,黃劍峰,羅茂泉,等. 斥水性砂土水-氣形態(tài)及其對斥水-親水轉(zhuǎn)化的影響分析[J]. 農(nóng)業(yè)機械學報,2017,48(11):247-252. Yang Song, Huang Jianfeng, Luo Maoquan, et al. Pore water-air configurations in water repellent sandy soil and its effects on transformation of hydrophilicity to hydro-phobicity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 247-252. (in Chinese with English abstract)

[30] Dekker L W, Ritsema C J. Wetting patterns and moisture variability in water repellent Dutch soils[J]. Journal of Hydrology, 2000, 231/232: 148-164.

[31] Liu H, Ju Z, Bachmann J, et al. Moisture dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves[J]. Soil Science Society of America Journal, 2012, 76(2): 342-349.

[32] Liu Chang, Chen Junying, Zhang Lin, et al. Effect of initial soil moisture content on infiltration characteristics of water-repellent clay loam[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(4): 354-361.

[33] Woudt B D V. Particle coatings affecting the wettability of soils[J]. Journal of Geophysical Research Atmospheres, 1959, 64(2): 263-267.

[34] Jordan A, Zavala L M, Nava A L, et al. Occurrence and hydrological effects of water repellency in different soil and land use types in Mexican volcanic highlands[J]. Catena, 2009, 79(1): 60-71.

[35] Li Xu, Wang Ziru, Yang Li, et al. Synthesis and performance of magnetic oil absorption material with rice chaff support[J]. Materials Review B: Research, 2018, 32(1): 219-222, 227.

[36] Nyman P, Sheridan G J, Smith H G, et al. Modeling the effects of surface storage, macropore flow and water repellency on infiltration after wildfire[J]. Journal of hydrology, 2014, 513: 301-313.

[37] Li Yi, Wang Xiaofang, Cao Zhenkai, et al. Soil water repellency characteristic curve influenced by drying and wetting processes[J]. Canadian Journal of Soil Science, 2017, 97: 226-240.

[38] 陳俊英,吳普特,張智韜,等. 土壤斥水性對含水率的響應(yīng)模型研究[J]. 農(nóng)業(yè)機械學報,2012,43(1):63-67Chen Junying, Wu Pute, Zhang Zhitao, et al. Response Models for soil water repellency and soil moisture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 63-67. (in Chinese with English abstract)

Hydrophobility and infiltration properties of loam chemically modified by octadecylamine

Wu Junhua1, Lin Hui1, Liu Jiaming1, Wang Maosheng1, Yang Song2※

(1.330063,2650201,)

This study aimed to analyze water repellency and infiltration performance of soils with octadecylamine addition. Air-dried remolded loam was mixed with octadecylamine to obtain water repellent loam. A total 5 kinds of loam with octadecylamine content of 0.2%, 0.4%, 0.6%, 0.8% and 1.0% were prepared. For each loam with a certain octadecylamine content, 16 samples with different initial moisture content were then prepared. The water repelling of water repellent loam was determined by water drop penetration time (WDPT), and the critical moisture content of water repellent loam was proposed. Then the permeability tests of water repellent loam under different water head differences were carried out by using a triaxial permeameter. The relationship between octadecylamine content, seepage discharge and water head differences was analyzed, and the permeability coefficient of water repellent loam was obtained. The octadecylamine and soil moisture content were important factors affecting soil water repellency and the higher octadecylamine mass fractions had the stronger water repellency of loam, the lower moisture content of upper limit, and the higher moisture content of lower limit. When the moisture content was less than 12%, the drop penetration time of loam with octadecylamine content of 0.2% and 0.4% was less than 5 s, which showed hydrophilicity. When the moisture content of loam increased to 21%, the drop penetration time of loam increased rapidly to 3 611 and 4 012 s, respectively. That means the corresponding water repelling of loam changed from hydrophilicity to extreme level. The drop penetration time of loam soil with moisture content between 21% and 25% was more than 3 600s, which showed extreme level. When the moisture content increased from 25% to 32% (saturation), the water repellency of loam decreased rapidly from extreme to hydrophilicity. In loam with natural air-dried moisture content, the drop penetration time of loam with octadecylamine content of 0.6% and 0.8% were 731 s and 2 584 s, which showed severe level. With the increasing of moisture content, the drop penetration time increased rapidly to 9 345 s (moisture content of 23.1%) and 12 364 s (moisture content of 21.6%), which showed extreme levels. Then the drop penetration time decreased rapidly and the water repellency disappeared completely at saturation. The drop penetration time of natural air-dried loam was 4 886 s with octadecylamine content of 1.0%, which showed extreme level. With the increasing of moisture content, the drop penetration time also increased rapidly. The maximums of drop penetration time were more than 18 000s (moisture content of 19.3%, 20.0% and 23.7%) which showed extreme levels. When the moisture content increased to 26.8%, the drop penetration time decreased rapidly to 9 346 s, and the water repellency disappeared completely at saturation. For loam with octadecylamine content of 0.2% and 0.4%, the upper limits of moisture content were 11.1% and 10.8%, and the lower limits of moisture content were 23.9% and 24.1%, respectively. For loam with octadecylamine contents of 0.6%, 0.8% and 1.0%, the upper limits of moisture content were 3.5%, 2.8% and 2.0%, and the lower limits of moisture content were 26.3%, 27.1% and 27.3%, respectively. When the octadecylamine content were the same, the initial infiltration rates was less affected by water head differences. After a period of time, the infiltration rates were decreased suddenly and kept stable. The larger water head differences had the higher stable infiltration rates. When the water repellency of soils changed from wettable to extreme level, the stable infiltration rate gradually decreased. The mutation time of infiltration was shortened with the increasing of water head differences. When the octadecylamine content were low (0%, 0.2% and 0.4%), the permeability coefficients were greatly affected by the water head differences: the greater the water head differences had the smaller permeability coefficients. When the octadecylamine content were high (0.6%, 0.8% and 1.0%), the permeability coefficients were basically not affected by the water head differences. When the octadecylamine content was 0.8% and the water head difference was 20 kPa, the water hardly infiltrated into loam which showed complete impermeability. The results can provide theoretical support to analysis on hydrophobized soil and its application in civil and hydraulic engineering.

soils; permeability; moisture; water repellent; octadecylamine

10.11975/j.issn.1002-6819.2019.13.013

S152.+7

A

1002-6819(2019)-13-0122-07

2018-11-23

2019-05-11

國家自然科學基金項目(51869013、41867038);江西省自然科學基金項目(20181BAB216033);江西省教育廳科技項目(GJJ180530);南昌航空大學研究生創(chuàng)新基金項目(YC2018070)

吳珺華,副教授,博士,主要從事非飽和土基本性質(zhì)研究。Email:wjhnchu0791@126.com

楊 松,副教授,博士,主要從事非飽和土基本性質(zhì)研究。Email:yscliff007@126.com

吳珺華,林 輝,劉嘉銘,王茂勝,楊 松.十八胺化學改性下壤土的斥水性與入滲性能研究[J]. 農(nóng)業(yè)工程學報,2019,35(13):122-128. doi:10.11975/j.issn.1002-6819.2019.13.013 http://www.tcsae.org

Wu Junhua, Lin Hui, Liu Jiaming, Wang Maosheng, Yang Song. Hydrophobility and infiltration properties of loam chemically modified by octadecylamine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019, 35(13): 122-128. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.013 http://www.tcsae.org

猜你喜歡
烷基壤土水頭
臺階溢洪道無因次消能水頭規(guī)律與水面線計算
疊片過濾器水頭損失變化規(guī)律及雜質(zhì)攔截特征
中低水頭混流式水輪發(fā)電機組動力特性計算分析研究
重烷基苯磺酸的生產(chǎn)與工藝研究
土壤質(zhì)地及砧木影響蘋果根際微生物功能多樣性及其碳源利用
廈門海關(guān)調(diào)研南安石材專題座談會在水頭召開
CONTENTS
紅花爾基水利樞紐工程壤土心墻壩碾壓試驗分析
一種哌嗪類離子液體的合成和性質(zhì)研究
烷基萘的合成及性能、應(yīng)用概述
永川市| 东阿县| 华亭县| 江城| 会理县| 宿松县| 凤山市| 海门市| 柳江县| 广灵县| 河源市| 衡水市| 永修县| 益阳市| 壤塘县| 资源县| 福贡县| 六枝特区| 思茅市| 澄迈县| 临朐县| 新化县| 淮阳县| 临海市| 静乐县| 桓仁| 拉萨市| 保康县| 灵寿县| 广水市| 彰化市| 仁布县| 淮北市| 江永县| 富源县| 沁源县| 博爱县| 垦利县| 宜丰县| 晋江市| 阿拉善右旗|