石吉勇,李文亭,胡雪桃,黃曉瑋,李志華,郭志明,鄒小波
基于葉綠素葉面分布特征的黃瓜氮鎂元素虧缺快速診斷
石吉勇,李文亭,胡雪桃,黃曉瑋,李志華,郭志明,鄒小波※
(江蘇大學(xué)食品與生物工程學(xué)院,鎮(zhèn)江 212013)
為了快速、無(wú)損診斷作物氮(N)、鎂(Mg)營(yíng)養(yǎng)虧缺,該研究提出一種以葉綠素葉面分布特征診斷黃瓜N、Mg元素虧缺的方法。在設(shè)施栽培模式下精確控制N、Mg營(yíng)養(yǎng)元素的供給,培養(yǎng)黃瓜缺N、缺Mg及對(duì)照植株(營(yíng)養(yǎng)元素正常植株),然后采集對(duì)應(yīng)的高光譜圖像并結(jié)合化學(xué)計(jì)量學(xué)方法快速、無(wú)損檢測(cè)葉綠素分布。與對(duì)照組葉片葉綠素分布相比,缺N葉片的葉綠素含量在整個(gè)葉面區(qū)域偏低,缺Mg葉片葉綠素在葉脈之間區(qū)域含量偏低。鑒于此,提取葉綠素葉面分布特征(葉片所有像素點(diǎn)對(duì)應(yīng)的葉綠素含量均值及標(biāo)準(zhǔn)差)對(duì)N、Mg營(yíng)養(yǎng)元素虧缺進(jìn)行診斷,對(duì)預(yù)測(cè)集N、Mg元素虧缺正確診斷率達(dá)90%。研究結(jié)果表明葉綠素葉面分布特征可作為一種黃瓜N、Mg元素虧缺診斷依據(jù)。
葉綠素;光譜分析;模型;分布特征;黃瓜葉片;氮元素;鎂元素;高光譜成像
設(shè)施栽培作物以早熟、高產(chǎn)、增效快等優(yōu)點(diǎn)而廣受歡迎,其中黃瓜在中國(guó)的設(shè)施栽培作物中占比大,已成為中國(guó)一些地方的農(nóng)業(yè)經(jīng)濟(jì)支柱之一[1-3]。設(shè)施栽培黃瓜生長(zhǎng)周期短、產(chǎn)出量大、需肥量多,容易出現(xiàn)N、Mg營(yíng)養(yǎng)元素虧缺,影響其產(chǎn)量和經(jīng)濟(jì)效益[4-7]。元素分析方法如凱氏定氮法、原子吸收法等能夠準(zhǔn)確分析黃瓜植株不同部位的N、Mg營(yíng)養(yǎng)元素含量,是診斷作物N、Mg元素虧缺的標(biāo)準(zhǔn)方法[8-11]。然而元素分析測(cè)試過(guò)程涉到復(fù)雜的樣品前處理以及化學(xué)試劑消耗,不利于設(shè)施栽培黃瓜N、Mg營(yíng)養(yǎng)元素虧缺的高效診斷。
與正常植株相比,N、Mg營(yíng)養(yǎng)元素虧缺往往導(dǎo)致黃瓜葉片葉綠素含量下降[12-13]。利用無(wú)損檢測(cè)設(shè)備如SPAD葉綠素測(cè)色儀[14-15]、可見(jiàn)光光譜儀[16-18]、近紅外光譜儀[16,19]等快速獲取作物葉片葉綠素含量,可實(shí)現(xiàn)植株N、Mg營(yíng)養(yǎng)元素虧缺的快速診斷。相關(guān)論文表明葉綠素下降僅出現(xiàn)在N、Mg元素虧缺葉片部分區(qū)域(其他區(qū)域的葉綠素含量與正常葉片相同),而可見(jiàn)光譜、近紅外光譜、SPAD葉綠素儀數(shù)值等方法僅能感知葉片采樣點(diǎn)處的葉綠素含量,導(dǎo)致采樣位置選取對(duì)診斷結(jié)果造成影響[14-15,19]。因此,本文通過(guò)定量描繪葉綠素含量在整片葉片中的分布情況,從表征葉綠素含量分布差異的角度提出N、Mg元素虧缺診斷依據(jù),有望克服現(xiàn)有元素虧缺診斷方法的不足,實(shí)現(xiàn)N、Mg元素虧缺的高效、快速診斷。
高光譜圖像技術(shù)可獲取待測(cè)樣本的二維圖像信息,又可獲取二維圖像中每個(gè)像素點(diǎn)對(duì)應(yīng)的光譜信息[20-23]。利用像素點(diǎn)光譜信息對(duì)待測(cè)組分含量的敏感性,可逐一解析每個(gè)像素點(diǎn)對(duì)應(yīng)的待測(cè)組分含量,進(jìn)而實(shí)現(xiàn)待測(cè)組分含量分布圖的快速、無(wú)損檢測(cè)[24-26]。課題組前期利用黃瓜葉片高光譜信息與葉綠素含量之間的對(duì)應(yīng)關(guān)系,實(shí)現(xiàn)了葉綠素含量在黃瓜葉片上的二維分布檢測(cè)[27-29]。在以上前期研究的基礎(chǔ)上,本文擬采用高光譜圖像技術(shù)分析葉綠素含量在缺N、缺Mg及正常黃瓜葉片上的分布差異,提取葉綠素含量分布特征作為N、Mg元素虧缺診斷依據(jù),并建立設(shè)施栽培黃瓜N、Mg元素虧缺診斷新方法。
在溫室大棚內(nèi)以無(wú)土栽培的方式通過(guò)精確控制黃瓜植株的營(yíng)養(yǎng)供給培育缺N植株、缺Mg植株以及對(duì)照植株。具體過(guò)程如下:將水果黃瓜種子(碧玉3號(hào),上海富農(nóng)種業(yè)有限公司)發(fā)芽后得到的幼苗置于裝有珍珠巖(使用前消毒,鎮(zhèn)江培蕾有機(jī)肥有限公司)的花盆或枕袋中,待黃瓜植株長(zhǎng)出3片葉子時(shí),將所有黃瓜植株分為缺N組、缺Mg組和對(duì)照組繼續(xù)培養(yǎng)。其中對(duì)照組植株使用按山崎配方配置包含植株所有所需營(yíng)養(yǎng)元素的營(yíng)養(yǎng)液;缺N組植株使用在對(duì)照組營(yíng)養(yǎng)液的基礎(chǔ)上完全扣去N元素的缺N植株?duì)I養(yǎng)液;缺M組植株使用在對(duì)照組營(yíng)養(yǎng)液的基礎(chǔ)上完全扣去Mg元素的缺Mg植株?duì)I養(yǎng)液。為了保證試驗(yàn)結(jié)果的可靠性,分3批次培育缺N植株60株、缺Mg組植株60株以及對(duì)照組植株60株。利用凱氏定氮法[8]、原子吸收光譜法[10]檢測(cè)缺N組樣本、缺Mg組樣本以及對(duì)照組樣本的N、Mg元素含量,從而驗(yàn)證所培育樣本的缺素狀態(tài)。
高光譜成像系統(tǒng)由線掃描高光譜儀(V10E,Spectral Imaging Ltd.,芬蘭)、線光源(DC-950A,Dolan-Jenner Ltd.,美國(guó))、電控平移臺(tái)(TSA200-A,北京卓立漢光有限公司,中國(guó)),光箱和計(jì)算機(jī)組成。為了防止基線漂移,數(shù)據(jù)采集前將高光譜圖像采集系統(tǒng)預(yù)熱30 min。數(shù)據(jù)采集時(shí),將葉片樣本平鋪在電控平移臺(tái)上,并關(guān)閉光箱以防止外界光線的干擾。設(shè)定樣本高光譜圖像采集參數(shù)為:曝光時(shí)間為45 ms、光譜分辨率為2.8 nm、圖像分辨率為600′1 280像素、采樣間隔為0.67 nm、電控位移平臺(tái)速度為1.25 mm/s以及電控位移平臺(tái)行程為100 mm[30]。高光譜圖像數(shù)據(jù)采集完成后,得到一個(gè)大小為600′1 280(像素)′1 024(波段)的三維數(shù)據(jù)塊。
采用高效液相色譜儀(LC-20A,島津,日本)檢測(cè)葉片樣本對(duì)應(yīng)的葉綠素含量[31]。準(zhǔn)確稱取30~40 mg葉片組織,于4 mL 體積分?jǐn)?shù)為80%丙酮水溶液(含0.01%(質(zhì)量分?jǐn)?shù))二丁基羥基甲苯)進(jìn)行色素提取,以4 000 r/min的速度離心10 min后收集提取液,以70%甲醇水溶液(含0.05%(體積分?jǐn)?shù))三乙胺)和30%乙酸乙酯溶液(含0.05%(體積分?jǐn)?shù))三乙胺)為流動(dòng)相,將提取液經(jīng)0.45m微膜過(guò)濾器過(guò)濾送入C18反相色譜柱(Spherisorb ODS-2,規(guī)格:250 mm×4.6 mm),利用紫外可見(jiàn)檢測(cè)器(北京科益恒達(dá)科技有限公司,Prominence SPD-20A)于440 nm 波段下獲取葉綠素對(duì)應(yīng)的檢測(cè)信號(hào)。在相同的條件下,建立葉綠素a標(biāo)準(zhǔn)品(#C5753,Sigma公司,美國(guó))、葉綠素b標(biāo)準(zhǔn)品(# C5758,Sigma公司,美國(guó))與檢測(cè)信號(hào)的對(duì)應(yīng)關(guān)系,按公式(1)換算出提取液對(duì)應(yīng)的葉綠素含量。
= 0.035′10-3X+0.08′10-3X+1.449 (1)
式中為葉綠素質(zhì)量濃度,g/mL,X為葉綠素a色譜峰面積,mV,X為葉綠素b色譜峰面積,mV。
葉綠素葉面分布特征快速診斷設(shè)施栽培黃瓜N、Mg元素虧缺的流程如圖1所示。首先,構(gòu)建葉綠素含量校正模型。采集校正集樣本(表1所示)對(duì)應(yīng)的高光譜圖像信息,提取感興趣區(qū)域的光譜;同時(shí)采用高效液相色譜分析校正集樣本對(duì)應(yīng)的葉綠素含量參考值。利用校正集樣本的光譜信息及對(duì)應(yīng)的葉綠素含量參考值,建立葉綠素含量校正模型。其次,驗(yàn)證葉綠素含量校正模型。采集獨(dú)立于校正集的黃瓜葉片構(gòu)建測(cè)試集,提取測(cè)試集樣本高光譜圖像的感興趣區(qū)域光譜,將其代入已建立的葉綠素含量校正模型以計(jì)算出測(cè)試集樣本的葉綠素含量預(yù)測(cè)值,通過(guò)比較葉綠素含量預(yù)測(cè)值與參考值之間的差異來(lái)驗(yàn)證葉綠素含量校正模型的效果。最后,葉綠素葉面分布特征的提取及診斷。提取缺素葉片、對(duì)照組葉片高光譜圖像中每個(gè)像素點(diǎn)對(duì)應(yīng)的光譜信息,代入驗(yàn)證后的葉綠素含量校正模型計(jì)算出每個(gè)像素點(diǎn)對(duì)應(yīng)的葉綠素含量,進(jìn)而得到缺素葉片及對(duì)照組葉片的葉綠素含量分布圖。通過(guò)定量表征缺N葉片、缺Mg葉片及對(duì)照組葉片的葉綠素含量分布差異,實(shí)現(xiàn)缺N葉片、缺Mg葉片及對(duì)照組葉片的快速診斷。
圖1 葉綠素葉面分布特征快速診斷設(shè)施栽培黃瓜氮、鎂元素虧缺流程圖
表1 校正集及預(yù)測(cè)樣本
在黃瓜植株生長(zhǎng)20 d后,分別采集缺N植株、缺Mg植株、對(duì)照組植株的10片老葉[31](第1~3節(jié)點(diǎn))、10片中葉(第4~5節(jié)點(diǎn))、10片新葉(第6~8節(jié)點(diǎn))進(jìn)行N元素以及Mg元素含量檢測(cè)。缺N組、缺Mg組及對(duì)照組的N元素分析結(jié)果如圖2 a所示,缺N植株老葉、中葉、新葉對(duì)應(yīng)的N元素質(zhì)量分?jǐn)?shù)均值為7.15、13.83、17.97 mg/g,缺Mg組及對(duì)照組植株老葉、中葉、新葉對(duì)應(yīng)的N元素質(zhì)量分?jǐn)?shù)均值范圍為10.55~11.58、16.07~17.23、19.59~19.98 mg/g。缺N組、缺Mg組及對(duì)照組的Mg元素分析結(jié)果如圖2 b所示,缺Mg植株老葉、中葉、新葉對(duì)應(yīng)的Mg元素質(zhì)量分?jǐn)?shù)均值為0.85、1.11、1.41 mg/g,缺N組及對(duì)照組植株老葉、中葉、新葉對(duì)應(yīng)的Mg元素含量均值范圍為0.98~1.01、1.15~1.25、1.43~1.46 mg/g。
N、Mg元素檢測(cè)結(jié)果表明:1)相同節(jié)點(diǎn)處缺N組、缺Mg組植株葉片的元素含量低于對(duì)照組植株的葉片的元素含量且差異顯著(<0.05),表明本研究利用缺N營(yíng)養(yǎng)液及缺Mg營(yíng)養(yǎng)液成功培養(yǎng)了缺N植株及缺Mg植株;2)對(duì)比缺素植株與對(duì)照組植株N、Mg營(yíng)養(yǎng)元素含量在老葉、中葉、新葉之間的差異,缺素植株老葉與對(duì)照組植株老葉之間的含量差異最大(<0.01),表明植株前3個(gè)節(jié)點(diǎn)的老葉可作為N、Mg元素虧缺診斷研究的代表性樣本。
圖2 不同組葉片對(duì)應(yīng)的N、Mg元素含量
在黃瓜植株生長(zhǎng)30 d后,分別采集3棵缺N植株、3棵缺Mg植株、3棵對(duì)照組植株上所有節(jié)點(diǎn)的黃瓜葉片,并利用高效液相色譜法檢測(cè)每個(gè)節(jié)點(diǎn)葉片對(duì)應(yīng)的葉綠素含量,結(jié)果如表2所示。缺N植株老葉、中葉、新葉對(duì)應(yīng)的葉綠素質(zhì)量分?jǐn)?shù)范圍為5.59~6.59、8.51~9.65、11.85~13.90 mg/g,缺Mg植株老葉、中葉、新葉對(duì)應(yīng)的葉綠素質(zhì)量分?jǐn)?shù)范圍為6.45~7.37、8.93~9.95、12.65~13.93 mg/g,對(duì)照組植株老葉、中葉、新葉對(duì)應(yīng)的葉綠素質(zhì)量分?jǐn)?shù)范圍為6.85~7.53、8.93~10.49、12.41~13.95 mg/g。
葉綠素檢測(cè)結(jié)果表明:1)與對(duì)照組植株各節(jié)點(diǎn)的葉綠素含量相比,缺N植株第1節(jié)點(diǎn)到第2節(jié)點(diǎn)葉片葉綠素含量偏低且差異顯著(<0.05),而第5節(jié)點(diǎn)到第8節(jié)點(diǎn)葉片葉綠素含量無(wú)明顯差異(>0.05),表明N元素虧缺主要脅迫黃瓜植株的老葉;2)缺Mg植株及對(duì)照組植株第1節(jié)點(diǎn)到第3節(jié)點(diǎn)葉片的葉綠素含量均值不同,但葉綠素均值對(duì)應(yīng)的標(biāo)準(zhǔn)差導(dǎo)致各組葉綠素含量范圍彼此重疊,表明利用檢測(cè)區(qū)域的葉綠素含量均值無(wú)法有效診斷缺Mg葉片,有必要尋求新的特征參數(shù)以實(shí)現(xiàn)缺N、缺Mg葉片的同步診斷。
表2 缺N組、缺Mg組及對(duì)照組植株不同節(jié)點(diǎn)處葉片葉綠素含量檢測(cè)結(jié)果
2.3.1 葉綠素含量校正模型的構(gòu)建及驗(yàn)證
首先,提取60片校正集黃瓜葉片感興趣區(qū)域(相對(duì)整個(gè)黃瓜葉片)的高光譜信息以及利用HPLC檢測(cè)該感興趣區(qū)域?qū)?yīng)的葉綠素含量參考值,利用區(qū)間偏最小二乘(interval partial least squares, iPLS)、聯(lián)合區(qū)間偏最小二乘(synergy interval partial least squares, siPLS)、后向區(qū)間偏最小二乘(backward interval partial least squares, biPLS)建立了葉綠素含量校正模型(如表3所示),其次,針對(duì)40片測(cè)試集黃瓜葉片,將其對(duì)應(yīng)的高光譜信息代入iPLS、biPLS、siPLS校正集模型來(lái)測(cè)試集的葉綠素含量,同時(shí)利用高效液相色譜法(high performance liquid chromatography, HPLC)測(cè)定測(cè)試集樣品的葉綠素含量參考值,通過(guò)測(cè)試集相關(guān)系數(shù)、測(cè)試集均方根誤差衡量葉綠素含量計(jì)算值與參考值之間的差異。結(jié)果表明,siPLS模型效果最優(yōu),對(duì)應(yīng)的校正集相關(guān)系數(shù)為0.917 4、校正集均方根誤差為1.93 mg/g,對(duì)應(yīng)的預(yù)測(cè)相對(duì)標(biāo)準(zhǔn)偏差為4.58、測(cè)試集相關(guān)系數(shù)為0.900 7、測(cè)試集均方根誤差為1.92 mg/g。
表3 葉綠素含量校正模型及其驗(yàn)證結(jié)果
注:z綠素檢測(cè)結(jié)果表明:(RPD: 預(yù)測(cè)相對(duì)標(biāo)準(zhǔn)偏差;: 校正集相關(guān)系數(shù); RMSEC: 校正集均方根誤差, mg×g-1;: 預(yù)測(cè)集相關(guān)系數(shù); RMSEP: 預(yù)測(cè)集均方根誤差, mg×g-1。
Note:RPD: residual predictive deviation;: the calibration coefficients; RMSEC: root mean standard error of calibration, mg×g-1;: the prediction coefficient; RMSEP: root mean square error of prediction, mg×g-1.
2.3.2 缺素及對(duì)照組葉片葉綠素分布圖檢測(cè)
采集缺N葉片、缺Mg葉片及對(duì)照組葉片(老葉)對(duì)應(yīng)的高光譜圖像,提取高光譜圖像中每個(gè)像素點(diǎn)對(duì)應(yīng)的光譜信息,代入驗(yàn)證后的siPLS葉綠素含量校正模型計(jì)算出每個(gè)像素點(diǎn)對(duì)應(yīng)的葉綠素含量,進(jìn)而得到缺素葉片及對(duì)照組葉片的葉綠素含量分布圖,如圖3所示。對(duì)照組葉片的葉綠素含量分布如圖3 a所示,該分布圖表明對(duì)照組葉片微小區(qū)域之間葉綠素含量存在差異,但葉綠素含量在對(duì)照組葉片的整個(gè)葉面分布較均勻,其質(zhì)量分?jǐn)?shù)范圍主要集中在10~20 mg/g。缺N葉片的葉綠素含量分布如圖3 b所示,與對(duì)照組葉片葉綠素含量分布圖相比較,葉綠素含量分布較均勻,但缺N葉片的葉綠素含量整體偏低,其質(zhì)量分?jǐn)?shù)范圍主要集中在5~15 mg/g,表明葉綠素含量的葉面均值可作為診斷N元素虧缺的依據(jù)。缺Mg葉片的葉綠素含量分布如圖3 c所示,與對(duì)照組葉片葉綠素含量分布圖相比較,缺Mg葉片葉綠素含量整體與對(duì)照組葉片接近,其質(zhì)量分?jǐn)?shù)范圍主要集中在10~20 mg/g,但缺Mg葉片葉脈之間葉綠素含量的分布均勻性較差,表明葉脈間葉綠素含量在各像素點(diǎn)處的均勻性可作為診斷Mg元素虧缺的依據(jù)。鑒于以上分析結(jié)果,可以以像素點(diǎn)為最小單元精確統(tǒng)計(jì)葉綠素葉面分布圖中所有像素點(diǎn)對(duì)應(yīng)的均值、標(biāo)準(zhǔn)差作為診斷N、Mg元素虧缺的特征參數(shù)。
2.3.3 葉綠素分布特征提取及N、Mg缺素診斷
分別采集對(duì)照組植株老葉25片、缺N植株老葉25片以及缺K植株老葉25片,按照3∶2的比例分為校正集和測(cè)試集,檢測(cè)單片葉片對(duì)應(yīng)的葉綠素含量分布圖,并從中提取葉片葉綠素葉面分布特征對(duì)N、Mg元素虧缺進(jìn)行診斷。根據(jù)上文節(jié)中N、Mg元素虧缺葉片葉綠素分布圖與對(duì)照組葉片葉綠素分布圖的比較結(jié)果,N元素虧缺葉片主要表現(xiàn)為各像素點(diǎn)葉綠素含量差異不大但整體均值偏低,而Mg元素虧缺葉片主要表現(xiàn)為所有像素點(diǎn)的葉綠素均值差異不大但像素點(diǎn)之間葉綠素含量波動(dòng)較大。因此,提取缺N、Mg及對(duì)照組葉片葉綠素分布圖各像素點(diǎn)對(duì)應(yīng)的均值與標(biāo)準(zhǔn)差作為缺素診斷依據(jù),結(jié)果如圖4所示。
圖3 不同組葉片對(duì)應(yīng)的綠素分布圖
注:箭頭所指為被錯(cuò)誤診斷的樣本。
圖4橫坐標(biāo)為樣本葉綠素葉面分布圖所有像素點(diǎn)對(duì)應(yīng)的葉綠素均值,縱坐標(biāo)為樣本葉綠素葉面分布圖所有像素點(diǎn)對(duì)應(yīng)的葉綠素標(biāo)準(zhǔn)差。從圖4可以看出,借助均值和標(biāo)準(zhǔn)差這2個(gè)葉綠素分布特征,缺N組分葉片、缺Mg組葉片及對(duì)照組葉片呈現(xiàn)出了明顯的聚類趨勢(shì)。缺N組主要表現(xiàn)為葉片所有像素點(diǎn)的葉綠素均值比對(duì)照組葉片偏低,對(duì)應(yīng)的樣本主要聚類于圖4左下方。缺Mg組主要表現(xiàn)為標(biāo)準(zhǔn)差比對(duì)照組葉片偏高,對(duì)應(yīng)的樣本主要聚類于圖4右上方。對(duì)照組具有高的葉綠素均值和較低的葉綠素標(biāo)準(zhǔn)差,對(duì)應(yīng)的樣本主要聚類于圖4的右下方。為了對(duì)缺N及缺Mg樣本進(jìn)行診斷,設(shè)定11.50 mg/g作為診斷N元素虧缺的閾值(如圖4中豎虛線所示),其對(duì)應(yīng)的校正集診斷率為100%。利用該閾值對(duì)預(yù)測(cè)集的N元素虧缺樣本進(jìn)行診斷,對(duì)應(yīng)的診斷率為90%。設(shè)定2.20 mg/g作為診斷Mg元素虧缺的閾值(如圖4橫虛線所示),其對(duì)應(yīng)的校正集診斷率為93.33%,其中1個(gè)缺Mg樣本被錯(cuò)誤的診斷為對(duì)照組樣本(如圖4黑色實(shí)線箭頭所示)。利用該閾值對(duì)預(yù)測(cè)集的Mg元素虧缺樣本進(jìn)行診斷,對(duì)應(yīng)的診斷率為90%。
利用高光譜信號(hào)對(duì)黃瓜葉綠素含量的敏感性建立了葉綠素含量校正模型(預(yù)測(cè)集相關(guān)系數(shù)為0.900 7, 測(cè)試集均方根誤差為 1.92 mg/g),結(jié)合高光譜圖像包含每個(gè)像素點(diǎn)光譜信息的特性實(shí)現(xiàn)了葉綠素含量葉面分布圖的快速、無(wú)損檢測(cè)。通過(guò)比較對(duì)照組、缺N組、缺Mg組葉片的葉綠素含量分布圖,從中提取葉片葉綠素分布圖所有像素點(diǎn)的均值和標(biāo)準(zhǔn)差作為診斷作物N、Mg元素虧缺的特征,利用葉綠素葉面均值11.50 mg/g和葉綠素葉面標(biāo)準(zhǔn)差2.20 mg/g作為診斷閾值建立了基于葉綠素葉面分布特征的N、Mg元素虧缺診斷模型,對(duì)N、Mg元素虧缺的校正集診斷率分別為100%、93.33%,對(duì)N、Mg元素虧缺的測(cè)試集診斷率分別為90%、90%。研究結(jié)果表明,葉綠素葉面分布特征可作為一種新的黃瓜N、Mg元素虧缺診斷依據(jù)。
[1] 王田利. 我國(guó)黃瓜生產(chǎn)的發(fā)展變化歷程[J]. 西北園藝(蔬菜),2015(6):4-6.
[2] 卞曉春,劉水東,吳春芳. 2種鮮食蠶豆設(shè)施栽培模式及其效益[J]. 浙江農(nóng)業(yè)科學(xué),2018,59(12):2289-2291. Bian Xiaochun, Liu Shuidong, Wu Chunfang. Analysis of two cultivation modes for fresh-eating broad bean in greenhouse and their benefit[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(12): 2289-2291. (in Chinese with English Abstract)
[3] 汪永虎,雷玉明. 設(shè)施栽培黃瓜生理性病害診斷及管理[J].中國(guó)園藝文摘,2016,32(2):182-183.
[4] 萬(wàn)述偉,張守才,趙明,等. 設(shè)施栽培黃瓜的氮磷鉀肥料效應(yīng)研究[J]. 中國(guó)土壤與肥料,2012(5):44-49. Wan Shuwei, Zhang Shoucai, Zhao Ming, et al. Effects of nitrogen, phosphorus and potassium on cucumber facilities cultivation[J]. Soil and Fertilizer Sciences in China, 2012(5): 44-49. (in Chinese with English Abstract)
[5] 趙敏華,王愛(ài)花,趙薇,等. 設(shè)施栽培黃瓜臨界氮濃度和氮營(yíng)養(yǎng)指數(shù)模擬[J]. 中國(guó)土壤與肥料,2018(6):141-147. Zhao Minhua, Wang Aihua, Zhao Wei, et al. Simulation of critical nitrogen concentration and nitrogen nutrition index in greenhouse cucumber[J]. Soil and Fertilizer Sciences in China, 2018(6): 141-147. (in Chinese with English Abstract)
[6] 劉靜,董利堯,許小江,等. 黃瓜周年設(shè)施栽培技術(shù)[J].長(zhǎng)江蔬菜,2018(13):42-44.
[7] 李銀坤,武雪萍,郭文忠,等. 不同氮水平下黃瓜-番茄日光溫室栽培土壤N2O排放特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30 (23):260-267. Li Yinkun, Wu Xueping, Guo Wenzhong, et al. Characteristics of greenhouse soil N2O emissions in cucumber-tomato rotation system under different nitrogen conditions [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30 (23): 260-267 (in Chinese with English Abstract)
[8] 孫宗訓(xùn). 凱氏定氮法和奈氏比色法測(cè)定植株全氮方法的比較[J]. 現(xiàn)代農(nóng)業(yè)科技,2011(24):41-44.
[9] 李文韜,周燕,胡佳,等. 凱氏定氮法測(cè)定某未知含氮化合物氮含量[J]. 中國(guó)衛(wèi)生標(biāo)準(zhǔn)管理,2016,7(24):110-112. Li Wentao, Zhou Yan, Hu Jia, et al. Determination of the total nitrogen content in some unknown compound by the kjeldahl method[J]. China Health Standard Management, 2016,7(24): 110-112. (in Chinese with English Abstract)
[10] 邵玉芳,邵世勤. 微波消解-火焰原子吸收光譜法測(cè)定柳葉蒿中4種微量元素[J]. 食品安全導(dǎo)刊,2017(33):89.
[11] 葉國(guó)健. 微波消解-原子吸收法測(cè)定花生中鈣、鎂、銅和鋅的含量[J]. 中國(guó)油脂,2018,43(3):141-143. Ye Guojian. Determination of contents of Ca, Mg, Cu and Zn in peanut by microwave digestion-atomic absorption spectrometry[J]. China Oils and Fats, 2018, 43(3): 141-143. (in Chinese with English Abstract)
[12] Marouani A, Behi O, Salah H B, et al. Establishment of chlorophyll meter measurements to manage crop nitrogen status in potato crop[J]. Communications in Soil Science and Plant Analysis, 2015, 46(4): 476-489.
[13] Farhat N, Elkhouni A, Zorrig W, et al. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning[J]. Acta Physiologiae Plantarum, 2016, 38(6): 145.
[14] Bullock D G, Anderson D S. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn[J]. Journal of Plant Nutrition, 1998, 21(4): 741-755.
[15] 孟晉. 基于消費(fèi)級(jí)近紅外相機(jī)的水稻葉片葉綠素(SPAD)分布問(wèn)題研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2017. Meng Jin. Research On Chlorophyll Distribution Of The Rice Based On Consumer-Grade Near-Infrared Camera[D]. Wuhan:Huazhong Agricultural University, 2017. (in Chinese with English Abstract)
[16] Neto A, Lopes D C, Pinto F, et al. Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves[J]. Biosystems Engineering, 2017, 155: 124-133.
[17] Schouten R E, Farneti B, Tijskens L, et al. Quantifying lycopene synthesis and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy[J]. Postharvest Biology and Technology, 2014, 96: 53-63.
[18] 程萌,張俊逸,李民贊,等. 用于微小型光譜儀的冬小麥抽穗期葉綠素含量診斷模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):157-163. Cheng Meng, Zhang Junyi, Li Minzan, et al. Chlorophyll content diagnosis model of winter wheat at heading stage applied in miniature spectrometer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33 (Supp.1): 157-163. (in Chinese with English Abstract)
[19] 石吉勇,鄒小波,趙杰文,等. 近紅外光譜技術(shù)快速無(wú)損診斷黃瓜植株氮、鎂元素虧缺[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(8):283-287. Shi Jiyong, Zou Xiaobo, Zhao Jiewen, et al. Rapid and non-destructive diagnostics of nitrogen and magnesium deficiencies in cucumber plants by near-infrared spectroscopy [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 283-287. (in Chinese with English Abstract)
[20] 吳偉斌,李佳雨,張震邦,等. 基于高光譜圖像的茶樹(shù)LAI與氮含量反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):195-201. Wu Weibin, Li Jiayu, Zhang Zhenbang, et al. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 195-201. (in Chinese with English Abstract)
[21] 孫紅,鄭濤,劉寧,等. 高光譜圖像檢測(cè)馬鈴薯植株葉綠素含量垂直分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(1):149-156. Sun Hong, Zheng Tao, Liu Ning, et al. Vertical distribution of chlorophyll in potato plants based onhyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 149-156. (in Chinese with English Abstract)
[22] Shi J Y, Chen W, Zou X B, et al. Detection of triterpene acids distribution in loquat (Eriobotrya japonica) leaf using hyperspectral imaging[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2018, 188(5): 436-442.
[23] Shi J Y, Hu X T, Zou X B, et al. A rapid and nondestructive method to determine the distribution map of protein, carbohydrate and sialic acid on Edible bird's nest by hyper-spectral imaging and chemometrics[J]. Food Chemistry, 2017, 229(15): 235-241.
[24] Wu X, Song X L, Qiu Z J, et al. Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging[J]. Meat Science, 2016, 113: 92-96.
[25] Lohumi S, Lee S, Lee H, et al. Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef[J]. Infrared Physics & Technology, 2016, 74: 1-10.
[26] Zhu F L, Zhang H L, Shao Y N, et al. Mapping of fat and moisture distribution in atlantic salmon using near-infrared hyperspectral imaging[J]. Food and Bioprocess Technology, 2014, 7(4): 1208-1214.
[27] Zou X B, Shi J Y, Hao L M, et al. In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging[J]. Analytica Chimica Acta, 2011, 706(1): 105-112.
[28] 石吉勇,鄒小波,趙杰文,等. 基于GA-ICA和高光譜圖像技術(shù)的黃瓜葉葉綠素檢測(cè)[J]. 江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,32(2):134-139. Shi Jiyong, Zou Xiaobo, Zhao Jiewen, et al. Measurement of chlorophyll content in cucumber leaves based on GA-ICA and hyper-spectral imaging technique[J]. Journal of Jiangsu University (Natural Science Edition), 2011, 32(2): 134-139. (in Chinese with English Abstract)
[29] 鄒小波,張小磊,石吉勇,等. 基于高光譜圖像的黃瓜葉
片葉綠素含量分布檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(13):169-175. Zou Xiaobo, Zhang Xiaolei, Shi Jiyong, et al. Detection of chlorophyll content distribution in cucumber leaves based on hyperspectral imaging [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(13): 169-175. (in Chinese with English Abstract)
[30] 石吉勇,張芳,胡雪桃,等. 基于高光譜技術(shù)的乳桿菌快速鑒別[J]. 中國(guó)食品學(xué)報(bào),2018,18(8):208-213. Shi Jiyong, Zhang Fang, Hu Xuetao, et al. Rapid identification of five kinds of lactic acid bacteria based on hyperspectral technology[J]. Journal of Chinese Institute of Food Science and Technology, 2018,18(8): 208-213. (in Chinese with English Abstract)
[31] Shi J Y, Zoui X B, Zhao J W, et al. Nondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imaging[J]. Scientia Horticulturae, 2012, 138: 190-197.
Diagnosis of nitrogen and magnesium deficiencies based on chlorophyll distribution features of cucumber leaf
Shi Jiyong, Li Wenting, Hu Xuetao, Huang Xiaowei, Li Zhihua, Guo Zhiming, Zou Xiaobo※
(212013,)
Nitrogen (N) and magnesium (Mg) elements play important role in the growth of cucumber plants, N and Mg deficiencies in cucumber plants drastically affects the quality and most importantly yield of agricultural products. In the published papers, chlorophyll content was used as an indicator for diagnosing N deficiency and Mg deficiency. However, leaf with low chlorophyll content appears both in N deficient and Mg deficient plans, which makes it is difficult to simultaneously detect N and Mg deficiencies using chlorophyll content. In this study, new indicators based on chlorophyll distribution features of the whole cucumber leaves were proposed for diagnostics of N and Mg deficiencies. N deficient, Mg deficient and control cucumber plants were cultured in a greenhouse with special nutrient supply. The content of N and Mg nutrient elements in N deficient, Mg deficient and control leaves were determined to test the nutrient status of cucumber plants in N deficient, Mg deficient and Control groups. 100 fresh cucumber leaves were collected and used as samples for detecting a chlorophyll distribution map. Firstly, hyperspectral images of cucumber leaves in the calibration set were collected and chlorophyll content of the cucumber leaves was determined using high performance liquid chromatography technology. Chlorophyll content calibration models were built using the hyperspectral images and chlorophyll content. Secondly, the hyperspectral images and chlorophyll content of cucumber samples in testing set were used to test the chlorophyll content calibration models, and the chlorophyll content calibration model with the best performance was selected as the optimal calibration model. The chlorophyll content distribution maps of N deficient, Mg deficient and control cucumber leaves were measured using the optimal chlorophyll content calibration model. After hyperspectral image collecting, hyperspectral image data of N deficient, Mg deficient and control leaves were obtained. Then, the spectral data of every pixel in the hyperspectral images was extracted and substituted in the optimal chlorophyll content calibration model to calculate the chlorophyll content at each pixel. The chlorophyll content of all pixels were displayed in two dimension spastically, then the chlorophyll content distribution maps of N deficient, Mg deficient and control leaves were obtained. The chlorophyll content distribution maps of 25 N deficient cucumber leaves, 25 Mg deficient cucumber leaves and 25 control cucumber leaves were determined. Compared with the distribution map of chlorophyll content in the control leaves, N deficiency led to the decrease of chlorophyll content in the whole leaf, and Mg deficiency led to the decrease of chlorophyll content in the area between the main veins. According to these results, two chlorophyll distribution features, the average and standard deviation of chlorophyll content at every pixels in a chlorophyll distribution map, were extracted for diagnosing N deficiency and Mg deficiency. Result showed that an average of chlorophyll content (11.5 mg/g) could be used as a threshold value to diagnose N deficiency, and the diagnostic rates for the calibration set and prediction set were 100% and 90%, respectively. A standard deviation of chlorophyll content (2.20 mg/g) could be used as a threshold value to diagnose Mg deficiency, and the diagnostic rates for the calibration set and prediction set were 93.3% and 90%, respectively. The result indicated that the extracted features could reflect the characteristic of N and Mg deficient cucumber leaves and could be employed to diagnose N and Mg deficiency nondestructively.
chlorophyll; spectrum analysis; models; distribution; cucumber leaf; nitrogen; magnesium; hyperspectral imaging
10.11975/j.issn.1002-6819.2019.13.019
O657.3
A
1002-6819(2019)-13-0170-06
2019-01-18
2019-05-26
國(guó)家自然科學(xué)基金(31772073, 60901079);江蘇省重點(diǎn)研發(fā)計(jì)劃(BE2016306);江蘇省六大人才高峰(GDZB-016);江蘇省自然科學(xué)基金(BK20130505);中國(guó)博士后科學(xué)基金(2016M600379);江蘇省高校自然科學(xué)研究面上項(xiàng)目(16KJB550002)和江蘇省博士后科研資助(1601080B)聯(lián)合資助。
石吉勇,副教授,研究方向?yàn)槭称窡o(wú)損檢測(cè)。Email:shi_jiyong@ujs.edu.cn
鄒小波,教授,研究方向?yàn)槭称窡o(wú)損檢測(cè)。Email:zou_xiaobo@ujs.edu.cn
石吉勇,李文亭,胡雪桃,黃曉瑋,李志華,郭志明,鄒小波.基于葉綠素葉面分布特征的黃瓜氮鎂元素虧缺快速診斷[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(13):170-176. doi:10.11975/j.issn.1002-6819.2019.13.019 http://www.tcsae.org
Shi Jiyong, Li Wenting, Hu Xuetao, Huang Xiaowei, Li Zhihua, Guo Zhiming, Zou Xiaobo.Diagnosis of nitrogen and magnesium deficiencies based on chlorophyll distribution features of cucumber leaf[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 170-176. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.019 http://www.tcsae.org