劉云宏,王慶慶,石曉微,高秀薇
金銀花貯藏過程中綠原酸含量的高光譜無損檢測模型研究
劉云宏1,2,王慶慶1,石曉微1,高秀薇1
(1. 河南科技大學(xué)食品與生物工程學(xué)院,洛陽 471023;2. 河南省食品原料工程技術(shù)研究中心,洛陽 471023)
綠原酸(chlorogenic acid, CGA)是評價金銀花品質(zhì)的重要指標(biāo)。為了實現(xiàn)金銀花貯藏期間CGA含量變化的快速有效檢測,該文采集了500個不同貯藏時間(0~20 d)的金銀花高光譜圖像,構(gòu)建CGA含量的高光譜檢測模型。為了提高模型性能,采用savizky-golay卷積平滑(SG),移動窗口平滑(moving average),標(biāo)準(zhǔn)正態(tài)變量(standard normal variable,SNV),基線校正(baseline correction,BC),多元散射校正(multiplicative scatter correction,MSC),正交信號校正(orthogonal signal correction,OSC)6種預(yù)處理方法并建立偏最小二乘回歸(partial least squares regression,PLSR)模型,確定SNV方法為最佳預(yù)處理方法,其預(yù)測集的2為0.976 6,RMSE為0.271 1%。為了簡化校準(zhǔn)模型,利用無信息變量消除(uninformative variable elimination,UVE),連續(xù)投影算法(successive projections algorithm,SPA),競爭性自適應(yīng)加權(quán)算法(competitive adaptive reweighted sampling,CARS)以及UVE-CARS、UVE-SPA等方法對SNV預(yù)處理后的光譜提取特征波長。然后,分別基于全光譜數(shù)據(jù)和所選特征變量數(shù)據(jù),建立線性偏最小二乘回歸(PLSR)和非線性BP神經(jīng)網(wǎng)絡(luò)模型。結(jié)果表明:UVE-CARS算法可以有效地減少提取變量個數(shù)(共提取26個,僅占全光譜范圍的3.2%),PLSR和BP模型的預(yù)測集2分別為0.974 6和0.978 4,RMSE分別為0.286 3%和0.250 3%。非線性BP模型預(yù)測結(jié)果整體優(yōu)于線性PLSR模型,在BP模型中,UVE-CARS-BP預(yù)測精度最高,預(yù)測集的2和RMSE的值分別為0.978 4, 0.250 3%。綜上,基于高光譜成像技術(shù)建立的SNV-UVE-CARS-BP模型,可以實現(xiàn)金銀花貯藏過程中CGA含量變化的快速無損預(yù)測。
光譜分析;無損檢測;模型;高光譜成像;金銀花;綠原酸;特征波長;貯藏
金銀花為忍冬科植物忍冬的干燥花蕾,富含酚類、環(huán)烯醚萜類、黃酮類、精油等多種活性成分,具有抗菌消炎、清熱解毒等功效[1-2]。綠原酸(chlorogenic acid,CGA)是金銀花中的主要藥用成分之一,具有抗病毒、抗真菌等功效,在抵抗心血管疾病、癌癥和糖尿病等慢性疾病方面也有重要作用[3-4]。化學(xué)和藥理研究表明,CGA含量高低是評價金銀花藥材質(zhì)量優(yōu)劣的重要標(biāo)志[5-6]。而CGA由于活性強、易氧化,容易在金銀花貯藏過程中不斷降解。因此,實現(xiàn)金銀花在貯藏過程中CGA含量的準(zhǔn)確、可靠、快速、無損檢測,對監(jiān)測和保證金銀花的藥效品質(zhì)十分重要。高效液相色譜(high performance liquid chromatography,HPLC)、液相色譜-質(zhì)譜聯(lián)用和紫外分光光度計等常用的CGA含量測定方法,雖然能夠?qū)崿F(xiàn)準(zhǔn)確測定,但具有耗時、費力、化學(xué)試劑使用量大等缺陷,難以實現(xiàn)CGA的快速無損檢測。白雁等[7]和郝海群[8]分別利用近紅外光譜分析技術(shù)(near infrared spectroscopy,NIRS)對金銀花中CGA含量進(jìn)行檢測,表明NIRS可用于快速測定金銀花中CGA的含量。但在上述NIRS檢測金銀花中CGA的研究中,都對金銀花樣品進(jìn)行了粉碎處理,未能保證樣品的完整性、無損性。另一方面,利用NIRS采集的金銀花樣品的光譜數(shù)據(jù)量較大,維度較高,且未采用數(shù)據(jù)降維方法,不利于在線檢測[9]。因此,采用多種變量篩選及其變量方法之間的融合對光譜數(shù)據(jù)降維,選取特征光譜變量,可以降低模型的復(fù)雜度,對后續(xù)建模分析非常重要[10]。
高光譜成像(hyperspectral imaging,HSI)技術(shù)將光譜學(xué)和計算機視覺相結(jié)合,可以同時獲得樣本的光譜信息和空間信息[11-12]。從而實現(xiàn)食品和農(nóng)產(chǎn)品成分及品質(zhì)的快速、無損檢測與鑒定,且無需對檢測對象進(jìn)行前處理。Liu等[13]采用HSI技術(shù)成功實現(xiàn)了紫薯干燥過程中花青素含量的快速預(yù)測,為干燥過程中農(nóng)產(chǎn)品品質(zhì)檢測提供了有效手段。李靖等[14]利用HSI技術(shù)結(jié)合BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測燕麥-葡聚糖含量,預(yù)測值與測定值之間的決定系數(shù)2為0.75,預(yù)測均方根誤差為0.009 8。Shi等[15]利用HSI結(jié)合RBF神經(jīng)網(wǎng)絡(luò)對不同貯藏溫度下羅非魚片新鮮度指標(biāo)(總揮發(fā)性鹽基氮、總需氧量和值)進(jìn)行了無損測定。上述文獻(xiàn)研究證實了HSI技術(shù)可以實現(xiàn)物料品質(zhì)及成分的快速無損檢測,但目前,有關(guān)金銀花貯藏過程中CGA含量變化的高光譜檢測研究未見報道。
本研究以金銀花貯藏過程中CGA含量為研究對象,進(jìn)行HSI檢測模型構(gòu)建方法研究。首先使用6種不同的預(yù)處理方法對原始光譜進(jìn)行降噪并建立偏最小二乘回歸(partial least squares regression,PLSR)模型,以期確定最優(yōu)的預(yù)處理方法;接著采用5種變量(波長)篩選方法提取特征波長;最后分別建立線性PLSR和非線性BP神經(jīng)網(wǎng)絡(luò)的CGA高光譜檢測模型,通過對比模型的預(yù)測精度以獲得最佳的特征波長篩選方法和預(yù)測模型,以期為實現(xiàn)金銀花貯藏過程中CGA含量的無損檢測提供參考。
本試驗所用金銀花購買于河南省洛陽市同仁堂藥房,試驗所用金銀花中CGA的質(zhì)量分?jǐn)?shù)為4.864 2%。選擇無損傷的、完整的金銀花作為實驗對象進(jìn)行后續(xù)研究與分析。將金銀花平鋪在15個培養(yǎng)皿中,并置于恒溫恒濕箱內(nèi)進(jìn)行模擬貯藏,本研究采用溫度30 ℃,相對濕度85%的貯藏條件[16],以實現(xiàn)在較短時間內(nèi)獲得必要信息來評估金銀花的品質(zhì)指標(biāo)。每5 d取出3個培養(yǎng)皿的金銀花進(jìn)行試驗。首先,用HSI系統(tǒng)分別掃描每組樣品(100個金銀花),然后利用HPLC法測量相應(yīng)的CGA含量。由于在貯藏20 d后,金銀花已發(fā)生明顯霉變,且表面有大量的菌絲,說明此時的金銀花已不具備商業(yè)價值,因此,本研究只對貯藏前20 d金銀花的CGA含量變化進(jìn)行研究。
本研究所用HSI系統(tǒng)[17]的光譜范圍為371~1024 nm。該系統(tǒng)主要由CCD相機、光譜儀(Inno-Spec IST50-3810,德國),光源,高精度電機控制的傳送帶,計算機以及暗箱組成,光譜分辨率為2.8 nm,光源為4個對稱放置的150 W的可調(diào)節(jié)光纖鹵素?zé)簦?0000420108型,德國ESYLUX公司)。
在采集金銀花樣品的高光譜圖像前,先將儀器開啟預(yù)熱0.5 h,使光源和采集系統(tǒng)達(dá)到穩(wěn)定。經(jīng)過反復(fù)調(diào)試,設(shè)定鏡頭與平臺之間的高度為250 mm,傳送帶移動速度為1.2 mm/s,CCD相機的曝光時間為90 ms。在圖像采集過程中,每次將一個金銀花放置在傳送平臺上,使用SICap-STVR(Inno-Spec GmbH Ltd,德國)軟件共采集500個金銀花高光譜圖像。為了減少暗電流噪聲和不均勻照明的影響,使用式(1)對所獲取的原始高光譜圖像進(jìn)行黑白校正[10, 18]。
式中是黑白校正后的圖像數(shù)據(jù),是原始高光譜圖像數(shù)據(jù),是全黑標(biāo)定數(shù)據(jù),是全白標(biāo)定數(shù)據(jù)。
用HSI系統(tǒng)采集的金銀花高光譜圖像為三維的立方體數(shù)據(jù)塊,其包括二維的圖像信息和一維的波長信息,圖像中的每一個像素點包含全波長的光譜信息,提高了光譜數(shù)據(jù)的可靠性和穩(wěn)定性[12]。使用ENVI 5.1軟件(Research Systems Inc.,Boulder,CO,USA)將金銀花樣品與背景分離,并根據(jù)樣品和背景之間的光譜差異(樣品與背景光譜值差異最大的波長位置分割圖像)確定感興趣區(qū)域(region of interest,ROI)。金銀花的形狀和品質(zhì)分布具有不規(guī)則性和不均勻性。若感興趣區(qū)域選擇局部,提取的光譜信息不能表征整個金銀花樣本。雖選擇整個金銀花作為ROI,因其形體尺寸不大,所以對整個樣品ROI提取數(shù)據(jù)后,經(jīng)過對光譜數(shù)據(jù)去除噪聲比較大的信息,以及對全波長提取特征波長,用于建模分析是可行的。因此,該研究選擇整個金銀花樣品作為ROI,提取的光譜信息更為全面,將ROI內(nèi)所有光譜信息的平均值作為對應(yīng)反射光譜值。在Matlab 2014a中計算分割出的每張圖像內(nèi)ROI的平均光譜值,并繪制所有樣品對應(yīng)ROI內(nèi)平均值的光譜曲線圖。
在采集完不同貯藏時間的金銀花的高光譜圖像后,利用HPLC法測量金銀花中CGA含量[19]。首先,將金銀花樣品用研缽粉碎后精確稱量0.1 g到錐形瓶中,并向錐形瓶中加入10 mL 50%甲醇,隨后將錐形瓶放在50 W的超聲清洗儀中,在20 ℃下水浴30 min提取CGA。然后,在10 000 r/min速度下離心20 min,并用0.22m Millipore膜過濾上清液。最后,將過濾得到的溶液密封并儲存在深色玻璃瓶中,用HPLC Agilent Technologies 1260 Infinity系統(tǒng)作進(jìn)一步分析。采用C18色譜柱(250 mm × 4.6 mm,5m)進(jìn)行CGA分離,柱溫25 ℃,流動相由乙腈-0.4%磷酸溶液以15∶85的比例混合而成,進(jìn)樣量為10L,流速為1.0 mL/min,檢測波長為327 nm。每組試驗重復(fù)3次。
高光譜圖像采集時,由于樣品表面不均勻、儀器的基線漂移、隨機噪聲、光散射等原因使得原始光譜中包含無用的信息[20-21]。為了提高模型預(yù)測精度和建模的效率,本研究采用了6種光譜預(yù)處理方法來增強原始光譜數(shù)據(jù)信息,包括savizky-golay卷積平滑(SG),移動窗口平滑(moving average),標(biāo)準(zhǔn)正態(tài)變量(standard normal variable,SNV),基線校正(baseline correction,BC),多元散射校正(multiplicative scatter correction,MSC),正交信號校正(orthogonal signal correction,OSC)。
本試驗中采集的每個高光譜圖像的大小是1 032×270像素,每個像素光譜包含1 288個變量,數(shù)據(jù)維度較高。為了解決高光譜原始數(shù)據(jù)量龐大、冗余信息多、預(yù)測精度降低的問題,需要對全波段數(shù)據(jù)進(jìn)行降維。因此,使用無信息變量消除(uninformative variable elimination,UVE),連續(xù)投影算法(successive projections algorithm,SPA),競爭性自適應(yīng)加權(quán)算法(competitive adaptive reweighted sampling,CARS)來篩選原始光譜數(shù)據(jù)中與檢測樣品相關(guān)性較高的特征波長,并通過對比模型的精度確定最佳變量篩選方法。
UVE是一種基于偏最小二乘回歸(partial least squares regression,PLSR)算法中回歸系數(shù)穩(wěn)定性來消除無信息變量的算法,可以有效篩選有用的波長變量[22-23]。UVE算法就是把與光譜矩陣同維數(shù)的隨機變量矩陣(人工添加隨機噪聲信息)加入到光譜矩陣中,通過交叉驗證逐一剔除法建立PLSR模型,得到相應(yīng)的回歸系數(shù)向量,分析回歸系數(shù)向量的平均值和標(biāo)準(zhǔn)偏差的商的穩(wěn)定性,去除光譜矩陣對應(yīng)的C
SPA是一種前向變量選擇算法,可以減少變量之間的共線性,使冗余度最低,以選擇矢量空間共線性最小的變量集合[24-25]。SPA算法詳細(xì)的模型步驟可見參考文獻(xiàn)[26]。
CARS算法是根據(jù)自適應(yīng)重加權(quán)采樣技術(shù)和指數(shù)衰減函數(shù)選擇PLSR中回歸系數(shù)絕對值較大的變量,去掉權(quán)重較小的波長點,尋出最佳變量組合[27-28],CARS算法詳細(xì)的模型步驟可見參考文獻(xiàn)[9]。
PLSR模型是一種線性多變量數(shù)據(jù)分析方法,集中了主成分分析和典型相關(guān)分析的特點,通過從自變量和因變量數(shù)據(jù)中提取包含原數(shù)據(jù)變異信息的主成分來建立回歸模型[10, 29],被廣泛應(yīng)用于食品和農(nóng)產(chǎn)品內(nèi)部含量的預(yù)測。PLSR是一種常用算法,具體模型可詳見參考文獻(xiàn)[25]。
為了得到適合CGA含量的預(yù)測模型,本試驗除了建立PLSR模型外,又建立了CGA含量的BP神經(jīng)網(wǎng)絡(luò)模型。BP神經(jīng)網(wǎng)絡(luò)是一種基于誤差逆?zhèn)鞑ニ惴ǖ亩鄬忧梆伨W(wǎng)絡(luò),是目前應(yīng)用較廣泛的神經(jīng)網(wǎng)絡(luò)模型,它可以處理復(fù)雜的非線性問題[30-31]。本試驗采用3層結(jié)構(gòu)的BP神經(jīng)網(wǎng)絡(luò):輸入層、隱含層、輸出層。每一層之間通過神經(jīng)元連接,同層之間無連接,用函數(shù)作為隱層神經(jīng)元傳遞函數(shù)、函數(shù)為訓(xùn)練函數(shù)、e函數(shù)為輸出層神經(jīng)元傳遞函數(shù),輸入層為光譜變量個數(shù)(本試驗中全光譜數(shù)據(jù)的輸入變量數(shù)為824,特征波長輸入變量分別與對應(yīng)的特征波長數(shù)一致),輸出層為測定的CGA值,隱含層節(jié)點數(shù)設(shè)為6,迭代次數(shù)、訓(xùn)練目標(biāo)誤差和學(xué)習(xí)速率分別設(shè)為1 000、0.000 1和0.01。
以決定系數(shù)(2)和均方根誤差(RMSE)來估計模型性能。2較高且RMSE較低時,模型性能較好[32]。若2的值高于0.90,則表示該模型有很高的預(yù)測能力[33]。本試驗所有數(shù)據(jù)處理與結(jié)果分析均在Matlab 2014a軟件中進(jìn)行。
通過HPLC法測得的金銀花貯藏過程中CGA含量變化結(jié)果如表1所示。金銀花中CGA含量與其品質(zhì)呈正相關(guān)。初始CGA質(zhì)量分?jǐn)?shù)最高,為4.864 2%,表明相應(yīng)的金銀花品質(zhì)也是最高。隨著貯藏時間從第5到20天,平均CGA含量降低至初始含量的6.1%,表明CGA在本貯藏試驗中損失嚴(yán)重。這可能是由于金銀花中CGA等活性成分在較高濕度的貯藏環(huán)境下易發(fā)生酶促氧化降解[34],從而導(dǎo)致金銀花質(zhì)量在短時間內(nèi)明顯下降。此外,由于貯藏20 d后,金銀花發(fā)生了明顯霉變,說明本研究中金銀花的貯藏條件適合部分微生物生長,從而消耗了金銀花中的CGA等活性成分[34],這可能是CGA大量損失的另一個主要原因。
在基于光譜數(shù)據(jù)和CGA含量值建模之前,先將500個樣品按照2∶1的比例隨機劃分為校正集和預(yù)測集。劃分結(jié)果與對應(yīng)的CGA含量統(tǒng)計結(jié)果見表2。由表可知,在不同的貯藏期(0、5、10、15、20 d),CGA含量之間有較大的差異,而校正集與預(yù)測集之間的差異很小,這有利于建立精度更高的金銀花CGA含量檢測模型。
表1 金銀花貯藏過程中的綠原酸含量值
表2 校正集和預(yù)測集的綠原酸含量統(tǒng)計值
金銀花光譜圖像的采集范圍為371~1024 nm,由于371~483 nm和902~1 024 nm范圍內(nèi)噪聲影響明顯,信噪比很低。因此,本研究僅選用483~902 nm(共824個波段)的光譜范圍作進(jìn)一步分析。圖1為不同貯藏時間(0、5、10、15、20 d)金銀花樣本的平均光譜曲線。由圖可見,在665~682 nm處有明顯的波谷,這可能是由于金銀花中C-H伸縮振動而引起的[35]。光譜曲線在682~774 nm范圍內(nèi)急劇上升,這可能是因為金銀花在可見光波段的吸收較少[36]。700~900 nm光譜區(qū)主要反映樣品內(nèi)含氫基團(tuán)(C-H、O-H)振動的倍頻與合頻的特征信息[33],而隨著貯藏時間的延長,金銀花樣品中CGA含量逐漸減少,使得光譜反射強度逐漸降低。每條平均光譜曲線呈現(xiàn)出相似的趨勢,說明金銀花含有的內(nèi)部成分大致相同。但樣本的光譜反射率存在明顯差異,這可能與金銀花內(nèi)部化學(xué)成分含量不同有關(guān),而這些差異為建立不同貯藏期金銀花CGA含量預(yù)測模型提供了理論依據(jù)。
圖1 不同貯藏時間金銀花樣品的原始平均光譜圖
基于原始數(shù)據(jù)和預(yù)處理后的數(shù)據(jù)建立PLSR模型,以比較不同預(yù)處理方法的效果,結(jié)果如表3所示。原始光譜的PLSR模型校正集2為0.966 9,RMSE為0.315 4%,預(yù)測集2為0.941 6,RMSE為0.384 9%。與原始光譜相比,所有預(yù)處理后的PLSR模型的校正集2的值都高于0.98,預(yù)測集2值在0.97以上,RMSE均小于0.3%,表明PLSR模型的預(yù)測性能有所提升。其中,經(jīng)SNV預(yù)處理后所建的PLSR模型有最佳的預(yù)測效果,預(yù)測集的2為0.976 6,RMSE為0.271 1%,表明SNV方法能有效地消除由固體顆粒大小、表面散射和光程變化引起的光譜誤差,顯著提高模型的精度[37]。因此,本試驗選擇SNV為最佳的預(yù)處理方法,并進(jìn)行后續(xù)的建模分析。
表3 基于不同預(yù)處理方法的PLSR的模型結(jié)果
2.4.1 UVE方法提取特征波長
UVE方法用于剔除原始824個波段中的無信息變量,金銀花貯藏過程中CGA含量的UVE變量的穩(wěn)定性分布結(jié)果如圖2所示。2條平行線表示變量穩(wěn)定性的上、下限,兩條閾值分界線內(nèi)的波長變量全部剔除,分界線以外的變量保留用于進(jìn)一步分析。經(jīng)UVE方法篩選后,共得到192個波長變量,占全波長的23.3%。
注:垂直虛線左側(cè)為光譜變量的穩(wěn)定性分布曲線,右側(cè)為UVE中引入的824個隨機噪聲變量的穩(wěn)定性分布結(jié)果。
2.4.2 CARS方法提取特征波長
運行CARS算法時,迭代次數(shù)和蒙特卡羅采樣運行次數(shù)分別設(shè)置為800和55?;贑ARS篩選金銀花CGA含量高光譜特征波長的過程如圖3所示。圖3a,3b和3c分別表示隨著采樣次數(shù)的增加,采樣變量的個數(shù),RMSECV值和每個波長的回歸系數(shù)路徑的變化趨勢。
圖3 CARS方法篩選結(jié)果
從圖3a可以看出,第一階段變量數(shù)減少較快,隨后逐漸減慢,這是由于指數(shù)衰減函數(shù)的作用,體現(xiàn)了使用CARS算法篩選特征波長中有“粗選”和“精選”2個階段[38]。圖3b反映了隨著采樣次數(shù)增加RMSECV的變化趨勢。采樣次數(shù)從1到26,RMSECV值差距不大。隨后RMSECV值升高,可能是因為在剔除無信息變量時丟失了一些重要信息變量。結(jié)合圖3c分析可知,當(dāng)采樣次數(shù)為26時(“*”列所對應(yīng)的位置),獲得最佳變量子集且RMSECV值最?。?.347 7%)。最終,CARS算法從824個波段中選擇了51個最佳波長,占整個波長的6.2%。
2.4.3 SPA方法提取特征波長
SPA算法的最大有效波長設(shè)置為30,對應(yīng)的RMSE分布如圖4a所示,其中方塊對應(yīng)所選變量數(shù)。由圖可知,隨著變量數(shù)的增加,RMSE值呈下降趨勢,當(dāng)波長數(shù)增加到17后,RMSE值基本不變。通過SPA算法從824個波長中選擇了17個最佳波長,分布如圖4b所示,其中正方形對應(yīng)所選擇的波長所對應(yīng)的具體波段(共17個),全光譜變量被極大壓縮,占全波長的2.1%。
注:a圖中方塊表示最終篩選的變量個數(shù);b圖中方塊表示篩選變量具體對應(yīng)的波長。
由于高光譜圖像在采集過程中存在非線性因素在內(nèi)的多種因素的影響,如背景干擾,散光和CCD噪聲等,不利于對光譜數(shù)據(jù)的分析。而BP神經(jīng)網(wǎng)絡(luò)是一種常用的非線性的建模方法,它可以有效地處理非線性問題[39]。因此,本試驗分別以UVE,CARS,SPA這3種算法提取的特征波長變量作為輸入變量,金銀花CGA含量值作為因變量建立線性PLSR和非線性BP神經(jīng)網(wǎng)絡(luò)模型。為了評估提取的特征波長對預(yù)測金銀花不同貯藏時間的CGA含量的有效性,將其與全光譜數(shù)據(jù)的模型相比較,結(jié)果如表4所示。
表4 金銀花CGA含量的PLSR和BP模型的預(yù)測結(jié)果
對比線性的PLSR模型的結(jié)果可知,全光譜-PLSR模型校正集的2為0.981 9,RMSE為0.229 7%,預(yù)測集的2為0.976 6,RMSE為0.271 1%,代表模型效果較好。從特征波長選擇的角度可知,不同波長篩選方法對相應(yīng)模型的建立會發(fā)生不同程度的變化。UVE-PLSR,CARS- PLSR和SPA-PLSR模型的預(yù)測結(jié)果較全光譜-PLSR模型均有不同程度的降低,但校正集和預(yù)測集的2均高于0.9,說明基于特征波長建立的PLSR模型還是可行的,具有良好的預(yù)測性能,其中UVE-PLSR模型的預(yù)測效果優(yōu)于CARS-PLSR和SPA-PLSR,預(yù)測集的2為0.970 4,RMSE為0.298 6%,且結(jié)果與全光譜-PLSR接近。表明UVE方法可以有效地剔除無用的信息變量,保留與金銀花品質(zhì)相關(guān)性強的信息,而SPA算法可能在剔除冗余變量的同時將有用的信息也剔除。但是,與CARS、SPA算法相比,UVE算法提取的特征波長數(shù)量較多(192個)占全波長的23.3%,導(dǎo)致模型運算時間相對較長。因此,為了提高UVE-PLSR模型的運算時間,將UVE分別與CARS和SPA算法相結(jié)合提取特征波長變量,UVE-CARS選取特征變量26個,占UVE的13.5%,UVE-SPA選取9個特征變量,占UVE的4.7%,并建立相應(yīng)的模型,模型的預(yù)測結(jié)果見表4。由表4可知,UVE-CARS-PLSR模型的預(yù)測集2為0.974 6,RMSE為0.286 3%,UVE-SPA-PLSR模型的預(yù)測集2為0.9414, RMSE為0.413 1%。與UVE-PLSR對比可知,UVE-CARS-PLSR不僅減少了模型的輸入變量,還提高了模型的預(yù)測精度,而UVE-SPA雖提取的特征波長數(shù)較少,減少了模型的運行時間,但其預(yù)測精度降低。綜合考慮PLSR模型的復(fù)雜度,選擇UVE-CARS-PLSR為CGA最優(yōu)的PLSR預(yù)測模型。得到的UVE-CARS-PLSR模型如式(2):
=2.901 6-32.085 1523.59nm+38.202 3532.82nm+
25.462 8537.94nm-21.055 6540.51nm-
49.843 2543.07nm+ 39.462 5563.57nm+
30.562 8580.98nm-47.307 3590.72nm-
20.071 5593.28nm+ 30.537 6604.03nm+
15.104 3609.15nm+ 34.470 7610.17nm-
48.476 7616.83nm-29.888 7643.43nm+
34.287 3648.03nm+ 23.689 8650.59nm-
36.834 2653.14nm-45.829 2746.98nm+
42.650 0751.05nm+ 47.525 5812.93nm-
33.304 9813.94nm-37.450 9814.95nm+
31.003 6817.98nm+ 33.288 1818.49nm-
36.648 1819.5nm-16.285 7821.02nm(2)
式中為預(yù)測的CGA的值,為UVE-CARS篩選得到的特征波長對應(yīng)的光譜反射率。
比較BP神經(jīng)網(wǎng)絡(luò)模型效果可知,全光譜-BP模型校正集2為0.989 8,RMSE為0.172 5%,預(yù)測集2為0.977 1,RMSE為0.258 1%,模型精度較好。分析UVE-BP,CARS-BP,SPA-BP,UVE-CARS-BP和UVE- SPA-BP模型可知,UVE-CARS-BP模型的預(yù)測效果最好,其預(yù)測集2為0.978 4,RMSE為0.250 3%,且僅有UVE-CARS-BP模型的預(yù)測精度優(yōu)于全光譜-BP模型。因此,選定UVE-CARS-BP模型為最優(yōu)BP模型。
圖5為5種變量篩選方法提取的特征波長的分布圖,分析最佳變量篩選方法UVE-CARS篩選的波長主要集中在520~660 nm,這可能與C-H鍵的伸縮振動有關(guān)[40],且選取的750 nm和810 nm附近與CGA物質(zhì)的C-H、O-H 鍵以及H2O分子的倍頻吸收有關(guān)[41]。與UVE-CARS算法相比,基于UVE算法提取的特征波長變量建立的預(yù)測模型性能與其接近,但選取的波長變量數(shù)較多。SPA與UVE-SPA 2種算法,可能選取的波長數(shù)較少,不足以提取與CGA物質(zhì)相關(guān)性較強的波長。雖然CARS算法提取的波長基本包含了所有的UVE-CARS提取的波長,但建立的CARS-模型的精度低于UVE-CARS模型的精度,這可能是由于CARS算法選擇的特征波長除包含與CGA物質(zhì)相關(guān)的有用信息外,同時也包含噪聲信息[42]。
圖5 不同變量篩選方法選取的特征波長變量
綜上可知,UVE-CARS方法是最佳的特征變量篩選方法,由UVE-CARS方法篩選的26個特征波長變量可以代替全光譜變量,非線性的BP神經(jīng)網(wǎng)絡(luò)模型更適應(yīng)于金銀花貯藏過程中CGA含量的預(yù)測,且UVE-CARS-BP模型為最優(yōu)金銀花CGA含量預(yù)測模型?;赟NV預(yù)處理后的光譜數(shù)據(jù)建立的UVE-CARS-BP模型的CGA含量的預(yù)測值和測量值的結(jié)果如圖6所示,其預(yù)測集2為0.978 4,RMSE為0.250 3%,回歸方程為=0.978 4+ 0.097 0,擬合效果最佳。
圖6 基于SNV預(yù)處理后的UVE-CARS-BP模型的CGA含量的預(yù)測值與測量值
本研究采用HSI技術(shù)對金銀花貯藏過程中CGA的含量進(jìn)行定量檢測,基于不同預(yù)處理方法和多種變量篩選方法,嘗試建立預(yù)測能力較高的高光譜模型,為利用HSI技術(shù)對金銀花貯藏過程中CGA含量測定和品質(zhì)控制提供參考。主要結(jié)論如下:
1)為了降低儀器噪聲、基線漂移等對原始光譜的影響,分析了SG、Moving average、SNV、BC、MSC、OSC這6種不同的光譜降噪方法,通過建立PLSR模型對比得出,經(jīng)SNV預(yù)處理后的光譜數(shù)據(jù)建立的PLSR的模型精度最高,預(yù)測集2為0.977 6,RMSE為0.271 1%,表明SNV方法的降噪效果最好,可以顯著提高模型的精度,其被確定為最佳的預(yù)處理方法用于后續(xù)的建模分析。
2)探討了基于UVE,CARS,SPA,UVE-CARS和UVE-SPA這5種變量篩選方法對模型的性能的影響,發(fā)現(xiàn)UVE-CARS為最佳的變量篩選方法,基于UVE-CARS篩選的特征波長變量建立的PLSR和BP模型的預(yù)測集2分別為0.974 6和0.978 4,RMSE分別為0.286 3%和0.250 3%。
3)對比線性PLSR模型與BP神經(jīng)網(wǎng)絡(luò)模型的精度發(fā)現(xiàn),BP神經(jīng)網(wǎng)絡(luò)模型的性能整體優(yōu)于PLSR模型,其中SNV-UVE-CARS-BP模型精度最好,預(yù)測集2為0.978 4,RMSE為0.250 3%。
在今后的工作中將擴大試驗樣本的多樣化,收集不同地區(qū),不同批次的金銀花原料,解決同一地區(qū)相同批次樣品之間較小差異導(dǎo)致提高模型泛化能力的問題。此外,本研究中未涉及金銀花的圖像信息,而圖譜融合能夠提供更多的有用信息,因此,在未來的工作中,將基于光譜信息與圖像信息的有效融合來進(jìn)一步研究金銀花中CGA含量的快速無損檢測方法。
[1] 李曉芳,劉云宏,馬麗婷,等. 遠(yuǎn)紅外輻射溫度對金銀花干燥特性及品質(zhì)的影響[J]. 食品科學(xué),2017,38(15): 69-76. Li Xiaofang, Liu Yunhong, Ma Liting, et al. Effect of far-infrared radiation temperature on drying characteristics and quality of[J]. Food Science, 2017, 38(15): 69-76. (in Chinese with English abstract)
[2] Wang X Q, Wei F Y, Wei Z F, et al. Homogenate-assisted negative-pressure cavitation extraction for determination of organic acids and flavonoids in honeysuckle (Thunb.) by LC–MS/MS[J]. Separation and Purification Technology, 2014, 135: 80-87.
[3] Yao X H, Xu J Y, Hao J Y, et al. Microwave assisted extraction for the determination of chlorogenic acid in Flos Lonicerae by direct analysis in real time mass spectrometry (DART-MS) [J]. Journal of Chromatography B Analytical Technologies in Biomedical and Life Science, 2018, 1092: 82-87.
[4] Hunyadi A, Martins A, Hsieh T J, et al. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats[J]. PLoS One, 2012, 7(11): e50619.
[5] 毛利華,李世周,楊哲,等. 金銀花活性成分及其產(chǎn)品開發(fā)研究進(jìn)展[J]. 江蘇科技信息,2018,35(17): 47-49. Mao Lihua, Li Shizhou, Yang Zhe, et al. Research progress on active components in honeysuckle and development of its products[J]. Jiangsu Science and Technology information, 2018, 35(17): 47-49. (in Chinese with English abstract)
[6] 葛朝暉,張海娟. 基于化學(xué)成分含量變化的金銀花藥材保質(zhì)期預(yù)測[J]. 中國藥房,2017,28(12): 1677-1680. Ge Zhaohui, Zhang Haijuan. Forecast on shelf life of lonicerae japonicae based on its chemical components variation[J]. Chain Pharmacy, 2017, 28(12): 1677-1680. (in Chinese with English abstract)
[7] 白雁,李珊,王星,等. 近紅外光譜法快速測定金銀花中綠原酸的含量[J]. 中國實驗方劑學(xué)雜志,2011,17(5): 66-69. Bai Yan, Li Shan, Wang Xing, et al. Determination of chlorogenic acid of honeysuckle by near-infrared spectroscopy rapidly[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(5): 66-69. (in Chinese with English abstract)
[8] 郝海群. 近紅外光譜法測定金銀花中綠原酸含量[J]. 河南中醫(yī),2015,35(3): 640-642. Hao Haiqun. The chlorogenic acid content of jinyinhua tested with near infrared ray chromotherapy[J]. Henan traditional Chinese medicine, 2015, 35(3): 640-642. (in Chinese with English abstract)
[9] 王巧華,周凱,吳蘭蘭,等. 基于高光譜的雞蛋新鮮度檢測[J]. 光譜學(xué)與光譜分析,2016,36(8): 2596-2600. Wang Qiaohua, Zhou Kai, Wu Lanlan, et al. Egg freshness detection based on hyper-spectra[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2596-2600. (in Chinese with English abstract)
[10] 劉燕德,肖懷春,孫旭東,等. 柑桔葉片黃龍病光譜特征選擇及檢測模型[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(3): 180-187. Liu Yande, Xiao Huaichun, Sun Xudong, et al. Spectral feature selection and discriminant model building for citrus leaf Huanglongbing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 180-187. (in Chinese with English abstract)
[11] Wu D, Sun D W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part II: Applications[J]. Innovative Food Science and Emerging Technologies, 2013, 19(1): 1-14.
[12] Xiong Z, Sun D W, Xie A, et al. Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis[J]. Food Chemistry, 2015, 178: 339-345.
[13] Liu Y H, Sun Y, Xie A G, et al. Potential of hyperspectral imaging for rapid prediction of anthocyanin content of purple-fleshed sweet potato slices during drying process[J]. Food Analytical Methods, 2017, 10(12): 3836-3846.
[14] 李靖,王春光. 基于高光譜的燕麥-葡聚糖含量測定方法研究[J]. 農(nóng)機化研究,2018,40(4): 149-155. Li Jing, Wang Chunguang. Study on determination method of-glucan content in oat based on hyperspectral technology [J]. Journal of Agricultural Mechanization Research, 2018, 40(4): 149-155. (in Chinese with English abstract)
[15] Shi C, Qian J P, Zhu W Y, et al. Nondestructive determination of freshness indicators for tilapia fillets stored at various temperatures by hyperspectral imaging coupled with RBF neural networks[J]. Food Chemistry, 2019, 275: 497-503.
[16] Cong S L, Sun J, Mao H P, et al. Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR[J]. Journal of the Science of Food and Agriculture, 2017, 98(4): 29-35.
[17] Liu Y H, Wang Q Q, Xu Q, et al. Non-destructive detection of Flos Lonicerae treated by sulfur fumigation based on hyperspectral imaging[J]. Journal of Food Measurement and Characterization, 2018, 12(4): 2809-2818.
[18] 劉小丹,馮旭萍,劉飛,等. 基于近紅外高光譜成像技術(shù)鑒別雜交稻品系[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(22): 189-194. Liu Xiaodan, Feng Xuping, Liu Fei, et al. Identification of hybrid rice strain based on near-infrared hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 189-194. (in Chinese with English abstract)
[19] 王萌,王建成,劉鈞寧,等. HPLC法測定不同加工方法金銀花中綠原酸和木犀草苷的含量[J]. 藥學(xué)研究,2014,33 (5): 261-263. Wang Meng, Wang Jiancheng, Liu Junning, et al. Determination of chlorogenic acid and galuteolin with different processing methods in flos lonicerae by HPLC[J]. Journal of Pharmaceutical Research, 2014, 33 (5): 261-263. (in Chinese with English abstract)
[20] 蔣蘋,羅亞輝,胡文武,等. 基于高光譜的油茶籽內(nèi)部品質(zhì)檢測最優(yōu)預(yù)測模型研究[J]. 農(nóng)機化研究,2015,37(7): 56-60. Jiang Ping, Luo Yahui, Hu Wenwu, et al. Research on optimal predicting model for the detection of internal quality by hyperspectral technology [J]. Journal of Agricultural Mechanization Research, 2015, 37(7): 56-60. (in Chinese with English abstract)
[21] Mohammadi-Moghaddam T, Razavi S M A, Taghizadeh M, et al. Hyperspectral imaging as an effective tool for prediction the moisture content and textural characteristics of roasted pistachio kernels[J]. Journal of Food Measurement and Characterization, 2018, 12(3): 1493-1502.
[22] Wei X, Zhang Y C, Wu D, et al. Rapid and non-destructive detection of decay in peach fruit at the cold environment using a self-developed handheld electronic-nose system[J]. Food Analytical Methods, 2018, 11(11): 2990-3004.
[23] Zhang H Y, Zhu Q B, Huang M, et al. Automatic determination of optimal spectral peaks for classification of Chinese tea leaves using laser-induced breakdown spectroscopy[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 154-158.
[24] 馮潔,劉云宏,王慶慶,等. 基于高光譜成像技術(shù)的金銀花與山銀花快速鑒別[J]. 食品與機械,2018,34(5): 87-90,176. Feng Jie, Liu Yunhong, Wang Qingqing, et al. Rapid identification ofandbased on hyperspectral imaging[J]. Food and Machinery, 2018, 34(5): 87-90, 176. (in Chinese with English abstract)
[25] Zhu H Y, Chu B Q, Zhang C, et al. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers[J]. Scientific Reports, 2017, 7(1): 4125.
[26] 吳迪,寧紀(jì)鋒,劉旭,等. 基于高光譜成像技術(shù)和連續(xù)投影算法檢測葡萄果皮花色苷含量[J]. 食品科學(xué),2014,35(8): 57-61. Wu Di, Ning Jifeng, Liu Xu, et al. Determination of anthocyanin content in grape skins using hyperspectral imaging technique and successive projections algorithm[J]. Food Science, 2014, 35(8): 57-61. (in Chinese with English abstract)
[27] Jiang J L, Cen H Y, Zhang C, et al. Nondestructive quality assessment of chili peppers using near-infrared hyperspectral imaging combined with multivariate analysis[J]. Postharvest Biology and Technology, 2018, 146: 147-154.
[28] 鄭濤,劉寧,孫紅,等. 基于高光譜成像的馬鈴薯葉片葉綠素分布可視化研究[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(S1): 153-159,340. Zheng Tao, Liu Ning, Song Hong, et al. Visualization of chlorophyll distribution of potato leaves based on hyperspectral imaging technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 153-159, 340. (in Chinese with English abstract)
[29] 馮海寬,楊福琴,楊貴軍,等. 基于特征光譜參數(shù)的蘋果葉片葉綠素含量估算[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(6): 182-188. Feng Haikuan, Yang Fuqin, Yang Guijun, et al. Estimation of chlorophyll content in apple leaves base on spectral feature parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 182-188. (in Chinese with English abstract)
[30] 陳明. MATLAB神經(jīng)網(wǎng)絡(luò)原理與實例精解[M]. 北京:清華大學(xué)出版社,2013.
[31] Zhang D Y, Lu X, Dong L, et al. Fast prediction of sugar content in dangshan pear (.) using hyperspectral imagery data[J]. Food Analytical Methods, 2018, 11(8): 2336-2345.
[32] Pan Y, Sun D W, Cheng J H,et al. Non-destructive detection and screening of non-uniformity in microwave sterilization using hyperspectral imaging analysis[J]. Food Analytical Methods, 2018, 11(6): 1568-1580.
[33] Yu X J, Tang L, Wu X F, et al. Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm[J]. Food Analytical Methods, 2018, 11(3): 768-780.
[34] 劉治華. 金銀花干燥動力學(xué)及其貯藏穩(wěn)定性研究[D]. 濟南:山東大學(xué),2015. Liu Zhihua. Drying Kinetics and Storing Stability of the Flower Bud ofThunb.[D]. Jinan: Shandong University, 2015. (in Chinese with English abstract)
[35] 程麗娟,劉貴珊,何建國,等. 靈武長棗蔗糖含量的高光譜無損檢測[J]. 食品科學(xué), 2018,40 (10): 285-291. Cheng Lijuan, Liu Guishan, He Jianguo, et al. Sucrose content nondestructive detection of lingwu long jujube by hyperspectral imaging technique[J]. Food Science, 2018, 40 (10): 285-291. (in Chinese with English abstract)
[36] 李曉麗,魏玉震,徐劼,等. 基于高光譜成像的茶葉中EGCG分布可視化[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(7): 180-186. Li Xiaoli, Wei Yuzhen, Xu Jie, et al. EGCG distribution visualization in tea leaves based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 180-186. (in Chinese with English abstract)
[37] Bi Y M, Yuan K L, Xiao W Q, et al. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation[J]. Analytica Chimica Acta, 2016, 909: 30-40.
[38] 于雷,洪永勝,周勇,等. 高光譜估算土壤有機質(zhì)含量的波長變量篩選方法[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(13): 95-102. Yu Lei, Hong Yongsheng, Zhou Yong, et al. Wavelength variable selection methods for estimation of soil organic matter content using hyperspectral technique [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 95-102. (in Chinese with English abstract)
[39] 葉勤,姜雪芹,李西燦,等. 基于高光譜數(shù)據(jù)的土壤有機質(zhì)含量反演模型比較[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(3): 164-172. Ye Qin, Jiang Xueqin, Li Xican, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 164-172. (in Chinese with English abstract)
[40] Dutta D, Das P K, Bhunia U K, et al. Retrieval of tea polyphenol at leaf level using spectral transformation and multi-variate statistical approach[J]. International Journal of Applied Earth Observation And Geoinformation, 2015, 36: 22-29.
[41] Sun J T, Ma B X, Dong, J, et al. Detection of internal qualities of hami melons using hyperspectral imaging technology based on variable selection algorithms[J/OL]. Journal of Food Process Engineering. 2017, 40(3), UNSP e12496, 1-10.
[42] 梁琨,劉全祥,潘磊慶,等. 基于高光譜和CARS-IRIV算法的‘庫爾勒香梨’可溶性固形物含量檢測[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報,2018,41(4): 760-766. Liang Kun, Liu Quanxiang, Pan Leiqing, et al. Detection of soluble solids content in‘Korla fragrant pear’based on hyperspectral imaging and CARS-IRIV algorithm[J]. Journal of Nanjing Agricultural University, 2018, 41(4): 760-766. (in Chinese with English abstract)
Hyperspectral nondestructive detection model of chlorogenic acid content during storage of honeysuckle
Liu Yunhong1,2, Wang Qingqing1, Shi Xiaowei1, Gao Xiuwei1
(14710232.471023)
During the storage process, honeysuckle easily undergoes discoloration and mildew under the influence of temperature, humidity and microorganisms, which leads to a significant decrease of its medicinal efficacy and economic value, and even harms the health of consumers. Hence, it is necessary to monitor the quality of honeysuckle during storage. Chlorogenic acid (CGA), as the main active ingredient, is an important indicator to evaluate the quality of honeysuckle. In order to realize rapid and effective detection of CGA content in honeysuckle, 500 hyperspectral images of honeysuckle during different storage periods were collected by hyperspectral imaging (HSI) system, and then CGA content values were measured by high performance liquid chromatography (HPLC) method. Average spectral information extracted from the hyperspectral images and corresponding CGA values were used to build HSI detection models. Because of the non-uniformity of sample surface, baseline drift of instrument, random noise and light scattering, the collected hyperspectral images contained some redundant information, which could reduce the accuracy of modeling. In order to improve the prediction accuracy and efficiency of the model, six spectral preprocessing methods were used to improve the signal-to-noise ratio of the original spectrum, including Savizky-Golay filter (SG), moving average, standard normal variable (SNV), baseline correction (BC), multiplicative scatter correction (MSC), orthogonal signal correction (OSC). Comparing the effects of different pretreatment methods by establishing partial least squares regression (PLSR) models, the SNV-PLSR model obtained the best prediction accuracy with determination coefficient (2)of 0.976 6 and root mean square error (RMSE) of 0.271 1% in prediction set, and SNV was identified as the best pretreatment method for further analysis. In order to simplify the calibration model, the uninformative variable elimination (UVE), successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), the combination of UVE and CARS (UVE-CARS), and the combination of UVE and SPA (UVE-SPA) were used to extract characteristic wavelengths from the pre-processed spectrum by SNV method. And UVE, CARS, SPA, UVE-CARS and UVE-SPA selected 192, 51, 17, 26, 9 characteristic wavelengths from the full spectrum. Then, based on the full spectrum data and the selected characteristic variables by five variable screening methods, the linear PLSR and the non-linear BP neural network model were established. The performance of all the models were evaluated by the index of2for calibration set and prediction set, (RMSE) for calibration set and prediction set. The results showed that UVE-CARS algorithm could effectively eliminate useless information variables from full spectrum, and 26 characteristic wavelengths were selected from full spectrum by UVE-CARS algorithm, and the established model based on UVE-CARS algorithm had high accuracy, which was considered as the best feature wavelength screening method. The prediction results of the non-linear BP model were better than that of the linear PLSR model. In all BP model, the prediction accuracy of UVE-CARS-BP was the highest with2of 0.978 4 and RMSE of 0.250 3% in prediction set, respectively, and it was proved that the non-linear model was more suitable for the prediction of CGA content in honeysuckle. In conclusion, HSI technology combined with SNV-UVE-CARS-BP model can realize the rapid and non-destructive prediction of CGA content in honeysuckle during storage.
spectrum analysis; nondestructive detection; models; hyperspectral imaging; honeysuckle; chlorogenic acid; characteristic wavelength; storage;
10.11975/j.issn.1002-6819.2019.13.035
O433
A
1002-6819(2019)-13-0291-09
2019-01-23
2019-05-29
國家自然科學(xué)基金資助項目(U1404334);河南省自然科學(xué)基金項目(162300410100);河南省高校創(chuàng)新人才資助項目(19HASTIT013);河南省科技攻關(guān)項目(172102310617;172102210256)
劉云宏,副教授,博士,主要從事農(nóng)產(chǎn)品加工及品質(zhì)檢測研究,Email:beckybin@haust.edu.cn
劉云宏,王慶慶,石曉微,高秀薇.金銀花貯藏過程中綠原酸含量的高光譜無損檢測模型研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(13):291-299. doi:10.11975/j.issn.1002-6819.2019.13.035 http://www.tcsae.org
Liu Yunhong, Wang Qingqing, Shi Xiaowei, Gao Xiuwei.Hyperspectral nondestructive detection model of chlorogenic acid content during storage of honeysuckle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 291-299. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.035 http://www.tcsae.org