王文娥,張維樂(lè),胡笑濤
U 形渠道量水平板水力性能試驗(yàn)研究
王文娥,張維樂(lè),胡笑濤
(西北農(nóng)林科技大學(xué) 旱區(qū)農(nóng)業(yè)工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)
根據(jù)北方灌區(qū)渠道底坡緩且灌溉水流多泥沙的現(xiàn)狀,該文針對(duì)U型渠道設(shè)計(jì)了平板量水裝置。為了探索不同尺寸懸垂薄平板在明渠水流沖擊作用下的水力學(xué)特性,確定流量與平板偏轉(zhuǎn)角度之間的關(guān)系。分析水流流態(tài),將渠道運(yùn)動(dòng)水流分為3部分,對(duì)平板部分水流應(yīng)用閘孔淹沒(méi)出流公式,建立流量計(jì)算模型,得出流量與角度的半經(jīng)驗(yàn)關(guān)系式。對(duì)流量系數(shù)計(jì)算模型中的待定系數(shù)進(jìn)行估計(jì),得到了統(tǒng)一形式的流量公式。U型平板測(cè)流范圍為9~44 L/s, 經(jīng)驗(yàn)證,計(jì)算流量與實(shí)測(cè)流量之間最大相對(duì)誤差為6.9%,平均相對(duì)誤差為3.2%,其中收縮比0.547、0.439平板測(cè)流相對(duì)誤差均小于5%,滿足灌區(qū)量水要求。同一收縮比板型,相對(duì)水頭損失隨著流量增大而減小,不同收縮比板型,相對(duì)水頭損失隨著板型收縮比增大而增大,除收縮比0.715平板在小流量(本試驗(yàn)大約為10L/s)測(cè)流時(shí),相對(duì)水頭損失比在10%以上,其余平板測(cè)流時(shí)相對(duì)水頭損失均小于10%,其中收縮比為0.439和0.337平板最大水頭損失不超過(guò)上游總水頭6%。經(jīng)過(guò)綜合分析,選擇0.547到0.439為平板最佳收縮比測(cè)流范圍。研究可為灌區(qū)量水設(shè)施的改進(jìn)提供依據(jù)。
流量;渠道;角度;渠道閘孔出流;流量系數(shù);水頭損失
灌區(qū)量水是當(dāng)前實(shí)行灌區(qū)計(jì)劃用水,精確引水配水和節(jié)水灌溉的重要手段,各級(jí)渠道中農(nóng)渠及末級(jí)渠系過(guò)水?dāng)嗝婕傲髁枯^小,但數(shù)量大,研發(fā)經(jīng)濟(jì)可靠、精度高、測(cè)流范圍廣、制作方便的小型渠道量水設(shè)施有利于灌區(qū)推廣量水技術(shù),實(shí)現(xiàn)現(xiàn)代化管理[1]。目前灌區(qū)槽類(lèi)量水設(shè)施應(yīng)用廣泛,如巴歇爾量水槽、機(jī)翼型量水槽、短喉道量水槽,量水柱[2-6]等,但是這些量水槽結(jié)構(gòu)復(fù)雜不便于基層人員施工,施工精度不夠時(shí)降低了測(cè)流精度,水頭損失增大[7-8]。對(duì)于北方渠道底坡比降小,灌溉水流多泥沙,這些量水設(shè)施缺乏地區(qū)適用性,需對(duì)現(xiàn)有量水槽進(jìn)一步改進(jìn),或設(shè)計(jì)新型量水設(shè)施。渠道中懸掛的平板是一種構(gòu)造簡(jiǎn)單的小型渠道量水設(shè)施,水流流經(jīng)懸垂平板時(shí),水流沖擊作用使平板發(fā)生偏轉(zhuǎn),其偏轉(zhuǎn)角與流量具有固定關(guān)系,與傳統(tǒng)量水槽相比,平板量水設(shè)施具有施測(cè)便捷可移動(dòng)的優(yōu)點(diǎn)。劉力奐等[9-10]參考泵站拍門(mén)設(shè)計(jì),結(jié)合射流理論和力矩平衡原理得到了細(xì)長(zhǎng)平板偏轉(zhuǎn)角度與流量的關(guān)系式,在梯形渠道上進(jìn)行了驗(yàn)證;王軍等[11-12]針對(duì)U型渠道設(shè)計(jì)板式量水裝置,結(jié)合受力和量綱分析,得出了流量角度的半經(jīng)驗(yàn)關(guān)系式。Tariq等[13-15]利用力矩平衡定理和繞流阻力公式研究鉸接桿在水流中的運(yùn)動(dòng),得到了渠道中心流速與平均流速關(guān)系式。
本文從北方灌區(qū)小型渠道灌水的實(shí)際情況出發(fā),以降低量水成本,改進(jìn)量水設(shè)施為目的,達(dá)到低成本高效率測(cè)流的成效,針對(duì)U形渠道設(shè)計(jì)了簡(jiǎn)易平板量水裝置。由于測(cè)流時(shí)平板下水流流態(tài)與弧形閘門(mén)完全淹沒(méi)出流下水流流態(tài)類(lèi)似,本文基于前人對(duì)弧形閘門(mén)過(guò)流計(jì)算研究[16-22],參照淹沒(méi)出流公式得到不同收縮比板型下的流量角度半經(jīng)驗(yàn)公式,對(duì)流量系數(shù)計(jì)算模型中的待定參數(shù)進(jìn)行最小二乘估計(jì),得到了統(tǒng)一形式的流量公式。對(duì)不同收縮比板型的水頭損失,測(cè)流精度與測(cè)流穩(wěn)定性進(jìn)行綜合分析,確定適用板型收縮比范圍。
圖1為試驗(yàn)示意圖,平板懸掛軸線與渠底中心線垂直,對(duì)稱(chēng)懸掛在渠道中,由于平板面積小于渠道橫斷面,渠道中的水流從平板兩側(cè)和底部流出。假設(shè)將渠道中運(yùn)動(dòng)水流分為3部分,各部分之間運(yùn)動(dòng)互不干擾,即平板相對(duì)應(yīng)的部分水流遇到平板阻擋后只有從平板底部流出,而不從左右發(fā)生繞流。故可將與平板相對(duì)應(yīng)這部分水流流動(dòng)看成淹沒(méi)出流狀態(tài)下的閘孔出流。故應(yīng)用閘孔出流公式[23]計(jì)算這一部分流量。
對(duì)上下游漸變流斷面列能量方程[24]:
式中1和2分別為板前和下游漸變流斷面水深,m;1和2分別為斷面1-1和2-2的平均流速,m/s;為局部水頭損失系數(shù),為重力加速度,9.8 N/m2。
斷面1-1處水流平均流速為
注:h1為板前漸變流斷面水深,m;h2為下游漸變流斷面水深,m;L為軸安放位置O到渠底中心的垂直距離,m;L1為軸安放位置O到裝置末端距離,m;e為開(kāi)度,m;R為平板底弧半徑,cm。
Fig.1 3-view of canal and size of plate in 4 contraction ratios
平板對(duì)應(yīng)1-1部分過(guò)水?dāng)嗝婷娣e為
式中1為平板對(duì)應(yīng)部分流量,m3/s;為速度系數(shù),=21;為垂直收縮系數(shù);為平板寬度,m;為開(kāi)度,m;為軸安放位置到渠底中心的垂直距離,m,1為軸安放位置到裝置底端距離,,由于與1接近,默認(rèn)相等;為平板偏轉(zhuǎn)角度,(°)。1為-斷面中平板對(duì)應(yīng)1部分水流過(guò)水?dāng)嗝婷娣e,m2。
平板部分對(duì)應(yīng)流量1為
式中為流量系數(shù);Q為平板部分(圖1c中1)對(duì)應(yīng)流量,L/s。
總流量:
式中收縮比為平板面積板與渠道斷面面積之比;為斷面總流量,L/s;為綜合流量系數(shù)。
試驗(yàn)在陜西楊凌西北農(nóng)林科技大學(xué)北校區(qū)水工廳進(jìn)行。試驗(yàn)系統(tǒng)(如圖2所示)包括穩(wěn)水池、泵房、調(diào)節(jié)閥門(mén)、尾門(mén)、有機(jī)玻璃U形渠道、回水渠道、測(cè)流平板、薄壁三角堰等。
圖2 試驗(yàn)系統(tǒng)及測(cè)定布置圖
U形渠道全長(zhǎng)12 m,渠頂寬53 cm,深45 cm,底弧直徑40 cm,中心角152°,外傾角14°,渠道底坡5×10-4,綜合糙率0.011。板長(zhǎng)為影響平板水力性能影響因素之一,為控制變量,設(shè)計(jì)板長(zhǎng)與渠道深度一致,將平板底部設(shè)計(jì)成圓弧段有利于水流繞流時(shí)減少水頭損失,將測(cè)流平板設(shè)計(jì)為容易加工制作的半圓形和矩形2部分組成,矩形寬度和半圓直徑相等,平板總長(zhǎng)均為44 cm,軸到平板底端長(zhǎng)為46.6 cm(懸垂?fàn)顟B(tài)下平板底端距渠底約2~3 mm),半圓部分半徑分別為16、12、10、8 cm;對(duì)應(yīng)收縮比分別為0.715、0.547、0.439、0.337。測(cè)流平板設(shè)置在距渠道進(jìn)口5.2 m處,前后共布置10個(gè)測(cè)點(diǎn)(位置見(jiàn)圖2)。渠道下游回水渠道設(shè)置三角堰,測(cè)量渠道流量。
平板偏轉(zhuǎn)角度用電子數(shù)顯角度尺測(cè)量,精度0.1°;平板上下游水位及板前后水位用SCM60型水位測(cè)針測(cè)量(由于渠道底坡緩,長(zhǎng)度較短,水深與水位視為相等),精度0.1 mm。試驗(yàn)流量范圍9~44 L/s,每5 L/s 左右為1個(gè)工況,共9種流量;每種流量下水深及偏轉(zhuǎn)角測(cè)量3次。
水面線可以直觀地體現(xiàn)測(cè)流平板對(duì)渠道沿程水深的影響,通過(guò)對(duì)不同收縮比量水平板在不同工況下沿著渠道中心線10個(gè)斷面水深的測(cè)量,得到各工況下水面曲線。選取同一相近流量下不同收縮比板型試驗(yàn)水面線和同一板型不同流量下水面線進(jìn)行對(duì)比。
圖3中水面線位置在渠道中軸線所在位置剖面處(位置見(jiàn)圖1俯視圖)。圖3a為收縮比0.439平板測(cè)流時(shí)不同流量下水面線。同一流量下(圖3a),從斷面1到平板安放位置,由于平板在水中的阻擋,液體的動(dòng)能轉(zhuǎn)化為壓能,使得水面上升,在發(fā)生繞流之后,水流發(fā)生能量交換,使壓能補(bǔ)償動(dòng)能,水深降低,并且平板安放位置到斷面4位置之間水面降低并產(chǎn)生一對(duì)對(duì)稱(chēng)不穩(wěn)定的旋渦,旋轉(zhuǎn)方向相反并有規(guī)則的脫落,在斷面4到斷面6之間,流速重組,水面逐漸上升并達(dá)到平穩(wěn),在接近下游尾門(mén)時(shí),由于發(fā)生跌水影響,在斷面9附近水面線慢慢下降。其他收縮比板型試驗(yàn)時(shí)與該板型水面變化規(guī)律一致。
圖3b為25 L/s流量下,4種不同收縮比平板測(cè)流工況下的水面曲線。同一流量下,收縮比大的平板測(cè)流上游水面線會(huì)整體高于收縮比小的平板。在發(fā)生繞流后,由于水流被壓縮的程度不同,流速重組并到達(dá)穩(wěn)定的位置斷面隨著收縮比增大向后移動(dòng)。
流量角度關(guān)系是量水板最重要的一項(xiàng)水力性能分析,是作為平板量水設(shè)施可行性重要判斷依據(jù)。從圖4可以看出,同一板型,平板偏轉(zhuǎn)角度隨著流量增大而增大。
圖3 不同收縮比平板測(cè)流水面線
圖4 平板偏轉(zhuǎn)角度與流量的關(guān)系
閘孔出流流態(tài)的不同影響著流量系數(shù)的取值,參考文獻(xiàn)[18],根據(jù)綜合耗能系數(shù)E(定義為E=1+X,1為相對(duì)開(kāi)度,X為潛流比,表示閘門(mén)阻力和閘后水躍對(duì)過(guò)閘水流水頭損失綜合影響),對(duì)于閘孔出流的不同流態(tài),流量系數(shù)選取不同的計(jì)算模型,綜合流量系數(shù)E與收縮斷面弗雷德數(shù)(F)的分布可作為閘孔出流流態(tài)判別的依據(jù)。閘孔出流處水流流態(tài)可分為自由出流、高F(E<1,F>1.5)下的部分淹沒(méi)出流和低F下的完全淹沒(méi)出流。其中E≥1時(shí),收縮斷面<1.5,此時(shí)閘后為波狀水躍或無(wú)水躍,水流狀態(tài)屬于完全淹沒(méi)出流。經(jīng)驗(yàn)算板后(緊貼平板)處斷面的F始終小于0.5,上下游水位差相差較小,板后水流流態(tài)與低F下的完全淹沒(méi)出流相似。如圖5所示,綜合流量系數(shù)(μ)與相對(duì)開(kāi)度(1)有很好的規(guī)律。因此淹沒(méi)出流下的平板μ與1有關(guān),其計(jì)算模型可假定為
對(duì)不同平板綜合流量系數(shù)擬合結(jié)果如下:
將綜合流量系數(shù)表達(dá)式代入式(6)得到半經(jīng)驗(yàn)公式(見(jiàn)表1),將計(jì)算流量(經(jīng)表1計(jì)算)與實(shí)測(cè)流量進(jìn)行對(duì)比(圖6),結(jié)果表明,計(jì)算流量與實(shí)測(cè)流量之間最大相對(duì)誤差為6.9%,平均相對(duì)誤差(相對(duì)誤差之和除以工況個(gè)數(shù))為3.2%,R2均在90%以上,其中收縮比0.547、0.439平板測(cè)流相對(duì)誤差均小于5%,滿足灌區(qū)量水小于10%的要求[25]。
表1 流量半經(jīng)驗(yàn)公式擬合結(jié)果
注:為總流量,m3·s-1;為偏轉(zhuǎn)角度,(°);1為板前水深,m。
Note: Q is the total flow rate, m3·s-1;is angle of plate deflection, (°);1is water depth in front of plate, m.
農(nóng)業(yè)灌溉測(cè)量中,量水設(shè)施的水頭損失直接影響著水庫(kù)輻射灌區(qū)的面積,在沿程水頭損失無(wú)法改變的情況下應(yīng)該盡量減少設(shè)施產(chǎn)生的局部水頭損失,以便水庫(kù)的輻射更廣闊的灌區(qū)。本研究中因?yàn)檠芯慷伍L(zhǎng)度相對(duì)較短,所以水頭損失以局部損失為主。局部水頭損失主要由2部分組成[24]。由于平板面的阻滯作用會(huì)在平板表面形成邊界層,當(dāng)液體質(zhì)點(diǎn)繞過(guò)平板時(shí)會(huì)發(fā)生邊界層的分離,由于此時(shí)液體質(zhì)點(diǎn)壓能補(bǔ)償了用來(lái)提供繞流時(shí)的動(dòng)能和克服摩擦的能量損失,小于下游壓強(qiáng),從而使液體發(fā)生回流,形成漩渦。漩渦本身不是穩(wěn)定的,主流區(qū)和漩渦區(qū)的液體質(zhì)點(diǎn)會(huì)不斷發(fā)生動(dòng)量與能量交換,質(zhì)點(diǎn)與質(zhì)點(diǎn)之間碰撞,摩擦?xí)拇罅繖C(jī)械能。并且漩渦的存在混亂了液體內(nèi)質(zhì)點(diǎn)的流速分布,在經(jīng)過(guò)旋渦區(qū)之后,流速會(huì)重新分布,流速的重新分布也會(huì)需要消耗一定能量。
為了計(jì)算水頭損失,對(duì)1-1斷面和2-2斷面列能量方程得出水頭損失,計(jì)算不同水頭損失占上游總水頭百分比。
式中h為1-1斷面與2-2斷面間水頭損失,m;1、2分別為1-1斷面和1-1斷面單位質(zhì)量水體的位能,由于2斷面相距較近,默認(rèn)1=2;1、2分別為1-1斷面和2-2斷面單位質(zhì)量水體的壓能,m;1、2分別為1-1斷面和2-2斷面的平均流速,m/s。
由圖7看出,除收縮比0.715平板在小流量(本試驗(yàn)大約為10 L/s)測(cè)流時(shí),水頭損失比在10%以上,其余平板測(cè)流時(shí)水頭損失比均小于10%,其中收縮比為0.439和0.337平板最大水頭損失不超過(guò)上游總水頭6%。對(duì)于同一板型,水頭損失百分比隨著流量的增大而減小。原因如圖8所示(2/3指的是平板浸入水下部分面積對(duì)垂直于水流方向的投影面積與過(guò)水?dāng)嗝婷娣e之比),隨著流量增大,平板受到水流沖力增大,平板開(kāi)啟角度增大,2/3隨著流量增大而減小,從而使板前后水位差和水流流速差減小,進(jìn)而使水頭損失占上游總水頭比例減小。對(duì)于同一流量下,水頭損失百分比隨著平板收縮比增大而增大。同一流量下,收縮比大的平板板下部分垂直于水平法平面的面積大,水流受到阻擋作用大,使上游水位升高,水頭損失占上游總能量百分比也增大。平板量水設(shè)施通過(guò)偏轉(zhuǎn)角的增加降低了水頭損失,同時(shí)精度較穩(wěn)定;巴歇爾量水槽測(cè)流時(shí)水頭損失[26-27]隨著流量增加而增加,平板測(cè)流具有明顯優(yōu)勢(shì)。
由圖3b水面線可以看出,當(dāng)平板收縮比為0.337時(shí),由于平板質(zhì)量較輕,擋水面較小,引起水面的紊動(dòng)較大,導(dǎo)致平板偏轉(zhuǎn)角度穩(wěn)定性差,對(duì)測(cè)流精度的影響程度很大,不宜選擇。對(duì)于收縮比為0.715平板,雖然平板測(cè)流角度穩(wěn)定性高,但是由于平板面積比較大,阻水作用強(qiáng),不僅不利于雜草等漂浮物通過(guò),壅水程度相對(duì)較高,增大了水頭損失,而且小流量下測(cè)流精度低。對(duì)于收縮比0.547、0.439的平板,2種測(cè)流平板測(cè)流精度高,測(cè)流誤差均低于5%,兩側(cè)過(guò)流面積足夠大,水頭損失大大減小,測(cè)流角度穩(wěn)定性相對(duì)較好,所以確定收縮比在0.547~0.439范圍內(nèi)平板進(jìn)行測(cè)流。
圖7 不同收縮比平板水頭損失比較
圖8 流量與相對(duì)面積比關(guān)系圖
本文設(shè)計(jì)一種U形量水平板,在測(cè)流范圍為9~44 L/s時(shí)在U形渠道上進(jìn)行了收縮比0.337~0.715板型明渠均勻流試驗(yàn),參考閘孔出流計(jì)算公式,得出了流量公式,初步探究了U形量水板的水力性能,主要結(jié)論如下:
1)對(duì)流量系數(shù)計(jì)算模型中的待定系數(shù)進(jìn)行估計(jì),得出了具有統(tǒng)一形式的流量計(jì)算公式。U形量水平板測(cè)流范圍9~44 L/s,從流量計(jì)算值和實(shí)測(cè)值的相對(duì)誤差看出,計(jì)算流量與實(shí)測(cè)流量之間最大相對(duì)誤差為6.9%,平均相對(duì)誤差為3.2%,其中收縮比0.547、0.439平板測(cè)流相對(duì)誤差均小于5%,滿足灌區(qū)量水要求。
2)同一流量下,水頭損失會(huì)隨著平板收縮比增大而增大;除收縮比0.715平板在小流量(本試驗(yàn)大約為10 L/s)測(cè)流時(shí),相對(duì)水頭損失比在10%以上,其余平板測(cè)流時(shí)水頭損失比均小于10%,其中收縮比為0.547,0.439和0.337平板最大水頭損失不超過(guò)上游總水頭6%。
3)板型收縮比是影響U形測(cè)流平板水力學(xué)性能的重要因素,該板型的收縮比為0.439~0.547時(shí),不僅相對(duì)水頭損失較小,偏轉(zhuǎn)角度穩(wěn)定,且測(cè)流精度高,是較適宜的收縮比。
本文設(shè)計(jì)流量測(cè)量裝置的核心部件是量水平板,實(shí)際應(yīng)用時(shí)需在外部設(shè)置防風(fēng)、儀器保護(hù)及控制等裝置,降低由于風(fēng)荷載及氣象因素對(duì)測(cè)量精度的影響;上游設(shè)置攔污柵,攔截漂浮物;當(dāng)不測(cè)流時(shí)及渠道冬季結(jié)冰前,該裝置向上翻轉(zhuǎn)至豎直,不影響渠道輸水;當(dāng)明渠冬季結(jié)冰后水流的流動(dòng)邊界發(fā)生變化,本裝置不適用于結(jié)冰條件下的流量量測(cè);在裝置制作時(shí)需參照本文設(shè)計(jì)原則,針對(duì)不同U型渠道尺寸,選擇合適底弧半徑對(duì)平板進(jìn)行制作。量水平板形式及對(duì)應(yīng)測(cè)流公式簡(jiǎn)單,水頭損失小,價(jià)格便宜,制作方便,測(cè)量方法快捷,具有很好的實(shí)用性,配合電子設(shè)備有望實(shí)現(xiàn)對(duì)流量的動(dòng)態(tài)量測(cè)。
平板量水裝置的流量系數(shù)影響因素有很多,如渠道型號(hào)、水質(zhì)、糙率、坡度,板的材質(zhì),尺寸與厚度等,本文僅針對(duì)試驗(yàn)渠道條件下平板體型參數(shù)對(duì)水力性能的影響進(jìn)行了分析,確定了適用的參數(shù)范圍。所得結(jié)論對(duì)不同坡度及不同尺寸的U型渠道的適應(yīng)性需要進(jìn)一步驗(yàn)證。
[1] 徐義軍,韓啟彪. 我國(guó)灌區(qū)量水槽研究概述[J]. 節(jié)水灌溉,2012(5): 56-59. Xu Yijun, Han Qibiao. Summary of current research on measuring flume in irrigation districts of China[J].Journal of Water Conservation Irrigation, 2012(5): 56-59. (in Chinese with English abstract).
[2] 張敏. 弧底梯形短喉道量水槽水力性能數(shù)值模擬[D]. 楊凌:西北農(nóng)林科技大學(xué),2018. Zhang Min. Numerical Simulation on Hydraulic Performance of Short-throat Flume in Arc-Based Trapezoidal[D]. Yangling: Northwest Agriculture & Forestry University, 2018. (in Chinese with English abstract)
[3] 宋一夢(mèng). 常用灌區(qū)渠道機(jī)翼柱形量水槽模型試驗(yàn)與數(shù)值模擬研究[D]. 長(zhǎng)春:長(zhǎng)春工程學(xué)院,2019. Song Yimeng. Experiment and Numerical Simulation Research on Wing Pillar-shaped Measuring-flume in Common Irrigation Channels[D]. Changchun:Changchun Institute of Technology,2019. (in Chinese with English abstract)
[4] 薛城,王文娥,胡笑濤,等. 溝灌簡(jiǎn)易長(zhǎng)喉道量水槽水力性能初探[J]. 灌溉排水學(xué)報(bào),2018,37(10):87-93. Xue Cheng, Wang Wen’e, Hu Xiaotao, et al. Measuring the hydraulic characteristics of the triangle long-throated flume used in furrow irrigation[J]. Journal of Irrigation and Drainage,2018,37(10):87-93. (in Chinese with English abstract).
[5] 肖苡辀,王文娥,胡笑濤. 田間便攜式平底短喉道量水槽水力特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10): 99-106. Xiao Yizhou, Wang Wen’e, Hu Xiaotao. Hydraulic performance experiment of portable short-throat flume with flat base in field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 99-106. (in Chinese with English abstract)
[6] 劉英,王文娥,胡笑濤,等. U 形渠道圓頭量水柱測(cè)流影響因素試驗(yàn)及模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào)2014,30(19):97-106. Liu Ying, Wang Wen’e, Hu Xiaotao, et al. Experiment and simulation of factors affecting flow measurement of water- measuring column with round head in U-shaped channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 97-106. (in Chinese with English abstract).
[7] 冉聃頡,王文娥,胡笑濤,等. 梯形喉口無(wú)喉道量水槽水力性能分析[J]. 水科學(xué)進(jìn)展,2018,29(2): 236-244. Ran Danjie, Wang Wen’e, Hu Xiaotao, et al. Analyzing hydraulic performance of trapezoidal cutthroat flumes[J]. Advances in Water Science, 2018, 29(2): 236-244. (in Chinese with English abstract).
[8] 蘇怡. U形渠道斜坎(平頂)量水堰水力性能研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2018. Su Yi. Study on Hydraulic Performance of Inclined ( Flat top ) Measuring Weir in U-shaped Channel[D]. Yangling: Northwest A&F University,2018.
[9] 劉力奐,徐輝,于永海,等. 細(xì)長(zhǎng)板開(kāi)啟角度與明渠均勻流流量關(guān)系研究[J]. 水利水電科技進(jìn)展,2005,25(1):45-47. Liu Lihuan, Xu Hui, Yu Yonghai, et al. Study on the relationship between opening angle of slim plates and discharge of uniform flow in open channels[J]. Advances in Science and Technology of Water Resources, 2005,25(1): 45-47. (in Chinese with English abstract).
[10] 劉力奐,曾輝斌. 一種新的灌區(qū)量水方法[J]. 河海大學(xué)學(xué)報(bào):自然科學(xué)版,2006,34(5):534-536. Liu Lihuan, Zeng Huibin. A new method for flux measu-rement in irrigated area[J]. Journal of Hohai University: Natural Sciences,2006,34(5): 534-536. (in Chinese with English abstract).
[11] 郭志華. D50U型渠道板柱復(fù)合式流量量測(cè)裝置測(cè)流性能及水力特性試驗(yàn)研究[D]. 太原:太原理工大學(xué),2018. Guo Zhihua. The Experiment Study on the Flow Measu-rement Performance and Hydraulic Characteristics of D50 Shaped Channel Plate Column Combined Measurement Device[D].Taiyuan: Taiyuan University of Technology,2018. (in Chinese with English abstract)
[12] 王軍. 山西省標(biāo)準(zhǔn)化U型渠道流量量測(cè)裝置測(cè)流性能及水力特性研究[D]. 太原:太原理工大學(xué),2018. Wang Jun. Research on the Flow Measurement Performances and Hydraulic Characteristics of U-Channel Plate and Plate –Column Compound Flow Measuring Device[D]. Taiyuan: Taiyuan University of Technology, 2018. (in Chinese with English abstract).
[13] Tariq A U R, Masood M. Deflecting velocity rod for flow measurements in small channels[J]. Journal of Irrigation & Drainage Engineering, 2001, 127(5): 311-317.
[14] Moonasingha A D. Discussion of “deflecting velocity rod for flow measurements in small channels” by ata-ur- rehman tariq and muhammad masood[J]. Journal of Irrigation & Drainage Engineering, 2003, 129(1): 67-68.
[15] Tariq A U R, Massod M. Closure to “deflecting velocity rod for flow measurements in small channels” by ata-ur- rehman tariq and muhammad massod[J]. Journal of Irrigation & Drainage Engineering, 2003, 129(1): 68-68.
[16] 郭永鑫,汪易森,郭新蕾,等. 基于流態(tài)辨識(shí)的弧形閘門(mén)過(guò)流計(jì)算[J]. 水利學(xué)報(bào),2018,49(8):907-916. Guo Yongxin, Wang Yisen, Guo Xinlei, et al. New discharge algorithms of radial gates based on the flow regime identi-fication[J]. Journal of Hydraulic Engineering, 2018, 49(8): 907-916. (in Chinese with English abstract).
[17] 楊開(kāi)林,汪易森. 調(diào)水工程閘門(mén)特性的動(dòng)態(tài)系統(tǒng)辨識(shí)[J].水利學(xué)報(bào),2011,42(11):1289-1294. Yang Kailin, Wang Yisen. Dynamic system identification of gate characteristics for water diversion projects[J]. Journal of Irrigation & Drainage Engineering,2011,42(11):1289-1294. (in Chinese with English abstract).
[18] 穆祥鵬,陳文學(xué),崔巍,等. 弧形閘門(mén)流量計(jì)算方法的比較與分析[J]. 南水北調(diào)與水利科技,2009,7(5):20-22,27. Mu Xiangpeng, Chen Wenxue, Cui Wei,et al. Comparison and analysis of discharge calculation methods of radial gates[J]. South-to-North Water Transfers and Water Science& Technology, 2009, 7(5): 20-22, 27. (in Chinese with English abstract).
[19] 袁新明,曹邱林. 上下游水位對(duì)平底板水閘閘堰出流淹沒(méi)界限的影響[J]. 水利學(xué)報(bào),1997,18(11):78-84. Yuan Xinming, Cao Qiulin. The influence of upstream and downstream water levels on the submerged limits of the outflow of flat lock[J]. Journal of Hydraulic Engineering, 1997,18(11): 78-84. (in Chinese with English abstract).
[20] 杜嶼,戴榮法,張世聞. 閘孔流量系數(shù)綜合分析[J]. 水文.1997(5): 39-45. Du Yu, Dai Rongfa, Zhang Shiwen. Comprehensive analysis of sluice flow coefficient[J] Joural of Hydrographic. 1997(5): 39-45. (in Chinese with English abstract).
[21] 杜嶼,杜占德,王健. 孔堰流變換分界(e/H)值的綜合分析[J]. 水文,1992(4):28-33. Du Yu, Du Zhande, Wang Jian. Comprehensive analysis of flow transformation boundary (e/H) of orifice flow and weir flow[J]. Joural of Hydrographic, 1992(4): 28-33. (in Chinese with English abstract)
[22] 楊玲霞, 武秋娟, 范如琴,等. 閘孔出流局部水頭損失系數(shù)研究[J]. 人民黃河,2009,31(12): 85-86.
[23] Yang Lingxia,Wu Qiujuan,F(xiàn)an Ruqin,et al. Study on the local head loss coefficient of sluice outlet[J]. Yellow River,2009,31(12):85-86. (in Chinese with English abstract)
[24] 王致清主編. 流體力學(xué)[M]. 北京:中國(guó)工業(yè)出版社,1962.
[25] 呂宏興,裴國(guó)霞,楊玲霞. 水力學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2011.
[26] 王長(zhǎng)德. 量水技術(shù)與設(shè)施[M]. 北京:中國(guó)水利水電出版社,2005.
[27] 肖苡辀. 田間便攜式短喉道量水槽水力性能研究[D].楊凌:西北農(nóng)林科技大學(xué), 2016.Xiao Yizhou. Study on Hydraulic Performance of Portable Short-Throat Flume in the field[D]. Yangling: Northwest A& F University,2016. (in Chinese with English abstract)
Experimental study on hydraulic performance of water-gaging plate for U-shaped canal
Wang Wen’e, Zhang Weile, Hu Xiaotao
(712100,)
In view of lack of effective regional water measuring facilities for gentle slope canal with silt current in irrigation areas of northern China, a portable U-shaped flat water measuring device was proposed as a flow water measuring equipment in the field. This study was to investigated its hydraulic performance of flat water measuring facilities based on prototype test.The prototype test was carried out inNorthwest A & F University in Yangling, Shannxi of China. In order to explore dynamic characteristics and deflection phenomenon of a draping thin plate under the impact of open channel flow, the relationship between discharge and deflection angle of the plate was determined. The flow pattern was analyzed, and the moving water flow was divided into 3 parts. The formula for calculating the outlet flow of gate was applied to the flow relative to measuring device, and the flow calculation model was established.The undetermined coefficients in the flow coefficient calculation model were estimated and a unified formula for flow rate was obtained. The flat shape was made up of a rectangle and a semicircle,arc radius were respectively 16, 12, 10 and 8 cm, and the corresponding contraction ratios were 0.715, 0.547, 0.439 and 0.337. The measuring device was installed at 5.0 m far from the inlet of upstream of U-shaped channel. The base slope of the channel was 1/2 000. The triangular weir was installed at the end of the downstream of the channel to measure current flow. A total of 10 sections were used to observe the flow characteristics. The current range of U plate measuring device was 9-44 L/s (9 work conditions for each contraction ratio). The results from the prototype experiment was used to compute model parameters and validate the simulation results. The result showed that the maximum relative error between the measured flow rate and the calculated flow rate was 6.9%, with an average relative error of 3.2%. For the contraction ratio of 0.439 and 0.547, the plate flow measurement errors were less than 5%, which met the water measured requirement of irrigation area. Itindicated that the current calculation model had a high accuracy. With the same contraction ratio, the relative head loss ratio decreased with the increase of flow rate, the relative head loss ratio increased with the increase of plate contraction ratio. The ratio of relative head loss was more than 10% when the plate contraction ratio was 0.715 plate at the low flow rate (about 10 L/s in this test), and the relative head loss ratio of the remaining plate was less than 10%. Besides, the maximum relative head loss of platecontraction ratio of 0.337 and 0.439 was not higher than 6%. After comprehensive analysis, 0.547 to 0.439 were chosen as the best plate contraction ratio. In practical application, devices such as wind prevention, instrument protection should be installed externally to reduce the influence of wind load and meteorological factors on measurement accuracy. The trash gate should be installed along the upstream to intercept the floating objects such as weeds.When this device was not used for measuring discharge and before the channel froze in winter, the device should be turned up to the vertical statement, which didn’t affect the channel water delivery. According to different sizes of U-shaped canals, the appropriate bottom arc radius should be selected to make the plate.
flow rate; canal; angle; canal gate hole outflow; discharge coefficient; head loss
10.11975/j.issn.1002-6819.2019.13.009
S274.4
A
1002-6819(2019)-13-0084-07
2018-12-02
2019-05-10
公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201503125);“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC0400203)
王文娥,教授,博士生導(dǎo)師,主要從事從事流體機(jī)械與流體動(dòng)力學(xué)、節(jié)水灌溉理論與技術(shù)相關(guān)研究。Email:wangwene@nwsuaf.edu.cn
王文娥,張維樂(lè),胡笑濤. U形渠道量水平板水力性能試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(13):84-90. doi:10.11975/j.issn.1002-6819.2019.13.009 http://www.tcsae.org
Wang Wen’e, Zhang Weile, Hu Xiaotao.Experimental study on hydraulic performance of water-gaging plate for U-shaped canal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 84-90. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.009 http://www.tcsae.org