韋姍姍 胡圣波 鄢婷婷 莫金容
摘 要:為滿足對流層無線通信系統(tǒng)設計和優(yōu)化的需要,基于拋物型波動方程和分步小波變換,研究了對流層電波傳播特性,開發(fā)了電波傳播特性分析軟件。首先,通過建立數(shù)值求解的計算場景,給出了一種基于分步小波變換的對流層電波傳播特性分析方法;其次,基于提出的分析方法和Matlab,開發(fā)了對流層電波傳播特性分析軟件。數(shù)值計算表明,提出的分步小波變換方法收斂性比分步傅里葉變換方法好;對流層傳播損耗與天線高度和仰角密切相關,天線仰角越小傳播損耗也越小,天線高度越大傳播損耗越小;蒸發(fā)波導環(huán)境下的傳播損耗比標準大氣環(huán)境下的傳播損耗要小。此外,開發(fā)的分析軟件圖形用戶界面友好,操作簡單、靈活。
關鍵詞:分步小波;電波傳播特性;收斂性;傳播損耗;圖形用戶界面
中圖分類號: TP802+.4遠動信號、信號發(fā)射、接收及轉換
文獻標志碼:A
Abstract: In order to meet the needs of tropospheric wireless communication system design and optimization, based on parabolic wave equation and Split Step Wavelet Method (SSWM), the tropospheric radio wave propagation characteristics were studied, and the wave propagation characteristic analysis software was developed. Fristly,a method for analyzing the tropospheric propagation characteristics based on split step wavelet method was presented by establishing a computation scene of numerical solution. Then, the tropospheric radio wave propagation characteristics analysis software was developed based on the proposed analysis method and Matlab.The numerical results show that the convergence of the proposed SSWM is better than that of Split Step Fourier Method (SSFM); tropospheric propagation loss is closely related to antenna height and elevation: the smaller the antenna elevation angle, the smaller the propagation loss; the larger the antenna height, the smaller the propagation loss; the propagation loss in an evaporation duct environment is smaller than that in the standard atmospheric environment. In addition, the developed analysis software has a user-friendly graphical user interface and is simple and flexible to operate.
Key words: split step wavelet; radio wave propagation characteristics; convergence; propagation loss; Graphical User Interface (GUI)
0 引言
對流層散射傳播具有超視距、大容量、高可靠等優(yōu)點,在軍事、民用領域應用前景十分廣闊。但是,受大氣動力學和熱力學條件的影響,對流層折射率呈現(xiàn)時變、空變特性,再加上反射、繞射、折射等交織在一起,使得對流層散射傳播十分復雜。而研究對流層散射傳播特性主要采用數(shù)值求解拋物型波動方程的方法,如文獻[1-5]。
拋物型波動方程由Helmholtz波動方程作旁軸近似得到。一般地,拋物型波動方程具有這些獨特優(yōu)勢[5-8]:1)可同時處理折射效應和衍射效應,計算簡單、精度高。2)可有效處理非均勻、非規(guī)則的電磁分布,適合時變、空變電磁環(huán)境下的無線傳播的信道建模。3)采用迭代算法求解方程,可預測傳播路徑的損耗[9]。因此,拋物型波動方程非常適合折射率時變、空變的對流層傳播建模。
數(shù)值求解拋物型波動方程普遍采用時域有限差分法(Finite-Difference Time-Domain, FDTD)和頻域有限差分法(Finite-Difference Frequency-Domain, FDFD)。但從提高精度和魯棒性的考慮,分步傅里葉變換法(Split Step Fourier Method, SSFM)在數(shù)值求解拋物型波動方程更得到廣泛應用[3,10-11] 。由于傅里葉變換在處理時變、空變等非平穩(wěn)環(huán)境時具有局限性[12],因此,以小波變換為重要內容的調和分析在數(shù)值求解拋物型波動方程領域的研究正成為新的熱點[13]。如文獻[14]基于周期性Daubechies小波,采用一種Galerkin投影方法,通過求解波動拋物型方程,研究了一種對流層電波傳播建模方法。但這種Galerkin 建模方法計算成本大,為此,文獻[15]研究了一種新穎分步小波方法(Split Step Wavelet Method, SSWM),求解對流層環(huán)境下二維拋物線電波傳播方程,在對流層電波傳播建模方面取得了很好的效果。
此外,從無線通信、雷達系統(tǒng)分析和設計優(yōu)化看,對流層電波傳播特性分析和建模分析軟件非常重要。例如,基于分步傅里葉變換法,人們開發(fā)了許多計算軟件,如綜合折射效應預測系統(tǒng) (Integrated Refraction Effects Prediction System, IREPS)、工程折射效應預報系統(tǒng)(Engineers Refractive Effects Prediction System, EREPS)、戰(zhàn)術電子支援系統(tǒng)(Tactical Electronic Support System, TESS )等[16-18]。而基于分步傅里葉變換法,Ozgun等[18]采用Matlab開發(fā)了具有圖形用戶界面(Graphical User Interface, GUI)的軟件工具PETOOL,用于分析和可視化輸出對流層電波傳播特性。但目前鮮少有基于分步小波變換的對流層電波傳播特性分析和建模軟件的研究。因此,基于Matlab平臺,在分析基于SSWM的對流層電波傳播建模的基礎上,本文開發(fā)了一種開源的分析軟件,該軟件友好,可選擇不同環(huán)境下的折射率,能在傳播距離和高度二維平面上可視化輸出電波傳播特性。
1 求解波動拋物型方程
1.1 對流層環(huán)境下的波動拋物型方程
一般地,如記電磁場分量ψ(x,z)=u(x,z)exp(jk0t),根據(jù)麥克斯韋理論,可得二維空間波動拋物型方程。如:忽略時諧因子和后向傳播,并記場分量為u(x,z),作近軸近似,得如下平面上二維波動拋物型方程[15]:
1.2 分步小波法(SSWM)
SSWM采用一種具有周期小波函數(shù)的鏡像處理方法,鏡像處理[15]后,求解式(1)涉及到的積分區(qū)域則從z∈[0,zmax]變?yōu)閦∈[-zmax,zmax]。這樣,利用小波展開,待求解場分量u(x,z)可表示為如下離散形式:
1.3.3 初始條件的確定
對于x=0處初始場,可通過天線輻射模式f(p)和天線孔徑分布函數(shù)A(z)的傅里葉變換對關系確定。對于完全導體邊界,場分量在邊界將消失,應用鏡像理論,式(15)成立:
4 結語
從無線通信、雷達系統(tǒng)分析和設計優(yōu)化出發(fā),通過研究分步小波變換求解二維拋物型波動方程的數(shù)值方法,本文開發(fā)了基于Matlab的分步小波變換求解對流層電波傳播特性的交互式分析軟件。其中,針對分步小波變換不能自動處理有損地表面的邊界條件的問題,提出了一種采用離散混合傅里葉變換的處理方法。分析結果表明:分步小波變換法比分步傅里葉變換法具有更好的收斂性;而開發(fā)的對流層電波傳播特性分析軟件,圖形用戶界面友好,操作簡單、靈活,并可實現(xiàn)對流層電波傳播特性數(shù)據(jù)的可視化輸出。最后,應用開發(fā)的軟件,分析了標準環(huán)境和蒸發(fā)波導兩種環(huán)境下的電波傳播特性,結果表明:傳播損耗隨傳播距離增加而增加,傳播損耗與天線高度和仰角密切相關,天線仰角越小,傳播損耗也越小;天線高度越大,傳播損耗也越小。此外,蒸發(fā)波導環(huán)境下的傳播損耗比標準大氣環(huán)境下的傳播損耗要小。
參考文獻 (References)
[1] 張金鵬.海上對流層波導的雷達海雜波/GPS信號反演方法研究[D].西安:西安電子科技大學,2013:6.(ZHANG J P. Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals [D]. Xian: Xidian University, 2013: 6.)
[2] 肖金光,劉曉娣,周新力,等.基于PE的海洋蒸發(fā)波導寬帶通信信道建模方法[J].計算機仿真,2015,32(11):216-220.(XIAO J G, LIU X D, ZHOU X L, et al. A method of modeling wideband channel in sea evaporation duct communication based on PE [J]. Computer Simulation, 2015, 32(11): 216-220.)
[3] 陳瑩.拋物線方程法求解電波傳播問題快速算法研究[D].南京:南京郵電大學,2016:13-24.(CHEN Y. Research on fast algorithm for solving electromagnetic wave propagation problem with parabolic equation method [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016: 13-24.)
[4] KARIMIAN A, YARDIM C, GERSTOFT P, et al. Refractivity estimation from sea clutter: an invited review [J]. Radio Science, 2011, 46(6): 1-16.
[5] 邱志勇.對流層電磁波傳播的拋物型方程法研究[D].鄭州:鄭州大學,2015:23-29.(QIU Z Y. Study on electromagnetic wave propagation parabolic equation method in tropospheric atmosphere [D]. Zhengzhou: Zhengzhou University, 2015: 23-29.)
[6] ENGQUIST B, MAJDA A. Numerical radiation boundary conditions for unsteady transonic flow [J]. Journal of Computational Physics, 1981, 40(1): 91-103.
[7] SINKIN O V, HOLZLOHNER R, ZWECK J, et al. Optimization of the split-step Fourier method in modeling optical-fiber communications systems [J]. Journal of Lightwave Technology, 2003, 21(1): 61-68.
[8] APAYDIN G, SEVGI L. Propagation modeling and path loss prediction tools for high frequency surface wave radars [J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2014, 18(3): 469-484.
[9] 周春海.二維波動方程的全變分正則化正反演方法研究[D].哈爾濱:哈爾濱工程大學,2016:37-46.(ZHOU C H. Research on the total variation regularization simulation and inversion method of two-dimensional wave equations [D]. Harbin: Harbin Engineering University, 2016: 37-46.)
[10] 李德鑫,楊日杰,王元誠,等.不規(guī)則地形條件下雙向DMFT電波傳播特性算法研究[J].航空學報,2012,33(2):297-305.(LI D X, YANG R J, WANG Y C, et al. Study on two-way DMFT algorithm of predicting radio propagation characteristics in irregular terrain environment [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 297-305.)
[11] BAO W, CAI Y. Mathematical theory and numerical methods for Bose-Einstein condensation [J]. Kinetic & Related Models, 2013, 6(1): 1-135.
[12] 林艷.傅里葉變換和小波分析在地震勘探中的處理[D].成都:成都理工大學,2012:9-10.(LIN Y. Fourier transformation and wavelet analysis application in seismic exploration [D]. Chengdu: Chengdu University of Technology, 2012: 9-10.)
[13] IQBAL A, JEOTI V. A split step wavelet method for radiowave propagation modelling in tropospheric ducts [C]// Proceedings of the 2011 IEEE International RF & Microwave Conference. Piscataway, NJ: IEEE, 2011: 67-70.
[14] IQBAL A, JEOTI V. A novel wavelet-galerkin method for modeling radio wave propagation in tropospheric ducts [J]. Progress in Electromagnetics Research B , 2012, 36: 35-52.
[15] IQBAL A, JEOTI V. An improved split-step wavelet transform method for anomalous radio wave propagation modeling [J]. Radio Engineering, 2014, 23(4): 987-996.
[16] 張永棟.基于拋物方程的電波傳播問題研究[D].長沙:國防科學技術大學,2011:1.(ZHANG Y D. Analysis of radio propagation using parabolic wave equation [D]. Changsha: National University of Defense Technology, 2011: 1.)
[17] PAULUS R A. Practical application of an evaporation duct model [J]. Radio Science, 1985, 20(4): 887-896.
[18] OZGUN O, APAYDIN G, KUZUOGLU M, et al. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain [J]. Computer Physics Communications , 2011, 182(12): 2638-2654.
[19] BULUT F. An alternative approach to compute wavelet connection coefficients [J]. Applied Mathematics Letters, 2016, 53: 1-9.
[20] ARRIDGE S R, BETCKE M M, HARHANEN L. Iterated preconditioned LSQR method for inverse problems on unstructured grids [J]. Inverse Problems, 2014, 30(7): 075009-1-075009-27.
[21] 黃穎.電波傳播預測計算中的準三維拋物線方程法[D].南京:南京郵電大學,2017:11-22.(HUANG Y. Quasi three dimensional parabolic equation method for prediction of radio wave propagation [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017: 11-22.)
[22] MUMFORD D. Pattern theory: a unifying perspective [M]// Perception as Bayesian Inference. New York: Cambridge University Press, 1996: 25-62.
[23] LI X F, WANG Z L, LIU H J. Optimizing initial chirp for efficient femtosecond wavelength conversion in silicon waveguide by split-step Fourier method [J]. Applied Mathematics and Computation, 2012, 218(24): 11970-11975.
[24] 劉帥,李智.分步傅里葉算法在求解拋物型波動方程中的應用及精度分析[C]//第13屆中國系統(tǒng)仿真技術及其應用學術年會論文集.北京:中國自動化學會系統(tǒng)仿真專業(yè)委員會、中國系統(tǒng)仿真學會仿真技術應用專業(yè)委員會,2011:5.(LIU S, LI Z. Application of split-step Fourier transformation method in parabolic type wave equation and its error analysis [C]// Proceedings of the 13th China System Simulation Technology and its Application Annual Conference. Beijing: Chinese Association of Automation System Simulation Committee, China System Simulation Society Simulation Technology Application Committee, 2011: 5.)
[25] KARIMIAN A,YARDIM C, GERSTOFT P, et al. Refractivity estimation from sea clutter: an invited review [J]. Radio Science, 2011, 46(6): 1-16.
[26] 徐高晨.復雜環(huán)境下高頻電波傳播的拋物線方程方法研究[D].西安:西安理工大學,2016:50-59.(XU G C. Parabolic equation method of high frequency radio wave propagation in complex environment [D]. Xian: Xian University of Technology, 2016: 50-59.)
[27] 趙春麗.基于蒸發(fā)波導的雷達電磁盲區(qū)特性與補盲策略研究[D].新鄉(xiāng):河南師范大學,2017:9-17.(ZHAO C L. Research of radar blind zone and correction strategy based on evaporation duct [D]. Xinxiang: Henan Normal University, 2017: 9-17.)
[28] 張愛麗,王艷軍,張瑜.蒸發(fā)波導測量儀器的精度分析與檢驗[J].西安電子科技大學學報(自然科學版),2012,39(4):191-196.(ZHANG A L, WANG Y J, ZHANG Y. Test and analysis of accuracy of the evaporation duct measuring instrument [J]. Journal of Xidian University (Natural Science), 2012, 39(4): 191-196.)