李艷 劉樹林
摘要:提出了一種輸出具有LC濾波電路的本安Buck變換器,使得在特定的電氣性能指標(biāo)要求下,可不提高變換器工作頻率,但能減小變換器內(nèi)部的電感量及電容量,達(dá)到提升該變換器本質(zhì)安全性能的目的。深入分析了該拓?fù)潆娐吩陔姼须娏鬟B續(xù)模式(CCM)時(shí)的輸出紋波電壓,指出輸出紋波電壓最大值是在輸入電壓最大,負(fù)載電阻為CCM與DCM的臨界電阻時(shí)取得。根據(jù)最大輸出紋波電壓指標(biāo)要求,在給定的動(dòng)態(tài)范圍內(nèi),得出了本安Buck變換器電感、電容參數(shù)的設(shè)計(jì)方法。為了說明改進(jìn)型Buck變換器相比于傳統(tǒng)型Buck變換器的優(yōu)勢(shì),在相同的輸出紋波電壓指標(biāo)要求下,對(duì)傳統(tǒng)型及改進(jìn)型Buck變換器的電感、電容取值進(jìn)行了比較分析,得出所提出的改進(jìn)型Buck變換器采用較小的電感、電容即可滿足電氣性能指標(biāo)要求,因而可提高其本安性能。因此,通過在Buck變換器的輸出附加LC濾波電路,不僅能有效提高本安Buck變換器的輸出功率,還能減小其體積。給出了設(shè)計(jì)實(shí)例,仿真與實(shí)驗(yàn)結(jié)果驗(yàn)證了改進(jìn)電路拓?fù)淅碚摲治龅恼_性及減小目標(biāo)電感、電容量的可行性。
關(guān)鍵詞:本質(zhì)安全;改進(jìn)型Buck變換器;低通濾波器;紋波電壓;輸出功率
中圖分類號(hào):TN 624文獻(xiàn)標(biāo)志碼:A
DOI:10.13800/j.cnki.xakjdxxb.2019.0225文章編號(hào):1672-9315(2019)02-0360-06
0引言
本質(zhì)安全是應(yīng)用在井下、化工廠等易燃、易爆危險(xiǎn)性環(huán)境中電氣電子設(shè)備的最佳防爆型式[1-3]。由于其高轉(zhuǎn)換效率、寬輸入動(dòng)態(tài)范圍、體積小、重量輕等優(yōu)點(diǎn),開關(guān)電源成為本安防爆電源的最佳形式,并引起越來越多研究者的關(guān)注。隨著工礦企業(yè)智能化的不斷推進(jìn),安全等級(jí)的不斷提高,本安型設(shè)備正被廣泛推廣使用,而用電裝置的核心控制芯片所需的電壓逐漸降低,對(duì)低壓大功率本安變換器的需求也逐漸增大[4-9]。
根據(jù)IEC定義,本質(zhì)安全電路是指“在規(guī)定的實(shí)驗(yàn)條件下,正常工作或規(guī)定的故障狀態(tài)下產(chǎn)生的電火花和熱效應(yīng)均不能點(diǎn)燃規(guī)定的爆炸性氣體混合物的電路”[4]。然而,電感和電容是開關(guān)變換器中的主要儲(chǔ)能元件,在電感分?jǐn)嗷蛘咻敵龆搪窌r(shí),會(huì)產(chǎn)生電火花。本安電路是通過限制電感分?jǐn)喾烹娕c輸出短路等火花放電能量,使易燃易爆氣體不被引爆。因此,設(shè)計(jì)本質(zhì)安全開關(guān)變換器的關(guān)鍵是:在滿足電氣性能指標(biāo)的前提下,使變換器中的電感、電容值盡可能的小[10-12]。
為了在較低開關(guān)頻率條件下,減小本安Buck變換器中的電感量和電容量,研究者做了大量的研究。對(duì)于傳統(tǒng)Buck變換器,文獻(xiàn)[5]對(duì)其工作模式以及輸出紋波電壓進(jìn)行了詳細(xì)的分析,并且給出了電感、電容的設(shè)計(jì)方法。但是為了滿足電氣性能指標(biāo)要求,所設(shè)計(jì)出的電感、電容值都比較大,致使其本安輸出功率限制在比較小的范圍[13-18]。雖然可以通過增加開關(guān)頻率來減小Buck變換器的電感量與電容量,但是,隨著開關(guān)頻率的提高,開關(guān)損耗也增大了[19-23]。
文獻(xiàn)[8]應(yīng)用交錯(cuò)并聯(lián)磁集成技術(shù),設(shè)計(jì)耦合系數(shù),可以增大等效電氣電感,同時(shí)減小等效本質(zhì)安全電感以實(shí)現(xiàn)本安。但是該電路并沒有減小相應(yīng)的電容參數(shù),而且由于電路中有2個(gè)開關(guān)管、2個(gè)電力二極管及耦合電感等器件,增加了電路的復(fù)雜度[24-25]。
為了解決上述問題,文中提出了一種高階變換電路拓?fù)?。該拓?fù)浣Y(jié)構(gòu)是在傳統(tǒng)Buck變換電路的輸出端級(jí)聯(lián)一組LC低通濾波電路。改進(jìn)型的開關(guān)變換拓?fù)淇梢栽诓惶岣唛_關(guān)頻率的前提下,減小變換電路中的電感量與電容量,且能滿足相應(yīng)的電氣性能指標(biāo)要求。在給定的動(dòng)態(tài)范圍,對(duì)所提出的變換電路的輸出紋波電壓進(jìn)行了深入分析,得出了CCM的最大輸出紋波電壓。并給出了滿足電氣性能指標(biāo)的電感、電容選擇依據(jù)。給出設(shè)計(jì)實(shí)例,在相同的電氣性能指標(biāo)要求下,對(duì)比分析了傳統(tǒng)Buck變換電路與改進(jìn)型Buck變換電路電感、電容參數(shù)值的大小,仿真與實(shí)驗(yàn)結(jié)果體現(xiàn)了改進(jìn)型Buck變換電路的優(yōu)越性。
1改進(jìn)型Buck變換器的組成
傳統(tǒng)與改進(jìn)型Buck變換器的原理圖分別如圖1及圖2所示。對(duì)比兩電圖發(fā)現(xiàn),改進(jìn)型變換拓?fù)涫窃趥鹘y(tǒng)Buck變換電路的輸出級(jí)聯(lián)一個(gè)二階LC LPF而組成。圖中Vi為輸入直流電壓;vC,vC1,vC2分別為電容C,C1,C2兩端的電壓;Vo為變換電路的輸出電壓;Io為輸出電流。
5結(jié)論
1)提出了一種改進(jìn)型本安Buck開關(guān)變換電路拓?fù)?
2)得出了在CCM工作模態(tài)下,改進(jìn)型Buck變換電路的輸出紋波電壓表達(dá)式,指明其分別隨著輸入電壓和負(fù)載電阻的增加而增加,且當(dāng)輸入電壓最大,負(fù)載電阻為CCM與DCM臨界電阻時(shí)達(dá)到最大值;
3)推導(dǎo)得出了滿足電氣性能指標(biāo)要求的改進(jìn)型Buck變換電路拓?fù)渲须姼?、電容參?shù)的設(shè)計(jì)依據(jù);
4)對(duì)比分析了傳統(tǒng)型與改進(jìn)型Buck電路電感量與電容量的大小,得出:在相同的電氣性能指標(biāo)要求下,傳統(tǒng)Buck電路的電感量及電容量比改進(jìn)型Buck變換電路總電感量與總電容量大很多;
5)說明了改進(jìn)型Buck電路可在電感、電容量較小的前提下,同時(shí)滿足電氣性能及本安要求。
參考文獻(xiàn)(References):
[1]LIU Shulin,LIU Jian,YANG Yinlin,et al.Design of intrinsically safe buck DC/DC converters[C]//Proceedings of the Eighth International Conference on Electrical Machines & Systems,Nanjing,China,2005:1327-1331.
[2]于月森,何慧君,張望,等.Buck三電平變換器本質(zhì)安全特性的分析[J].煤礦機(jī)械,2013,34(6):92-94.
YU Yuesen,HE Huijun,ZHANG Wang,et al.Analysis on intrinsically safe properties of buck threelevel converter[J].Coal Mine Machinery,2013,34(6):92-94.
[3]Arsha B U,Ramesh K P.Higher order sliding mode control based dutyratio controller for the DC/DC buck converter with constant power loads[C]//In Proceedings of the International Conference on Electrical,Electronics,and Optimization Techniques(ICEEOT),Tamil Nadu,India,2016:478-483.
[4]Eckhoff P K.Minimum Ignition Energy(MIE):a basic ignition sensitivity parameter in design of intrinsically safe electrical apparatus for explosive dust clouds[J].Journal of Loss Prevention in the Process Industries,2002(15):305-310.
[5]劉樹林,崔強(qiáng),李勇.Buck變換器的輸出短路火花放電能量及輸出本質(zhì)安全判據(jù)[J].物理學(xué)報(bào),2013,62(16):438-447.
LIU Shulin,CUI Qiang,LI Yong.Output shortcircuit spark discharging energy and output intrinsic safety criterion of Buck converters[J].Acta Physica Sinica,2013,62(16):438-447.
[6]劉樹林,劉健,寇蕾.Buck變換器的紋波電壓分析及其應(yīng)用[J].電工技術(shù)學(xué)報(bào),2007,22(2):91-97.
LIU Shulin,LIU Jian,KOU Lei.Analysis of output ripple voltage of Buck DC/DC converter and its application[J].Transactions of China Electrotechnical Society,2007,22(2):91-97.
[7]付園園,姚素英,徐江濤,等.Buck DCDC變換器電感的優(yōu)化設(shè)計(jì)[J].南開大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,45(6):33-40.
FU Yuanyuan,YAO Suying,XU Jiangtao,et al.Optimization of inductance for Buck DCDC converter[J].Acta Scientiarum Naturalium Universitatis Nankaiensis,2012,45(6):33-40.
[8]楊玉崗,祁鱗,李龍華.交錯(cuò)并聯(lián)磁集成Buck變換器本質(zhì)安全性輸出紋波電壓的分析[J].電工技術(shù)學(xué)報(bào),2014,29(6):181-188.
YANG Yugang,QI Lin,LI Longhua.Analysis of output ripple voltage of essential safety for interleaving magnetics buck converter[J].Transactions of China Electrotechnical Society,2014,29(6):181-188.
[9]陳鳴,李舒然,陳方林.Buck變換器輸入/輸出濾波相關(guān)問題研究[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,55(1):75-79.
CHEN Ming,LI Shuran,CHEN Fanglin.The input and output filtering of Buck converter[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(1):75-79.
[10]劉健,劉樹林,楊銀玲,等.Buck變換器的輸出本質(zhì)安全特性分析及優(yōu)化設(shè)計(jì)[J].中國(guó)電機(jī)工程學(xué)報(bào),2005,25(19):52-57.
LIU Jian,LIU Shulin,YANG Yinling,et al.Output intrinsically safe behavior of Buck converters and its optimal design[J].Proceedings of the CSEE,2005,25(19):52-57.
[11]LIU Shulin,LIU Jian,LI Yan.Equivalentresistance based analysis of inductor disconnected discharge behavior for intrinsic safety Buck converters[J].Journal of Coal Science & Engineering,2008,14(3):485-488.
[12]LIU Shulin,LI Yan,LIU Li.Analysis of output voltage ripple of Buck DCDC converter and its design[C]//The 2nd Conference on Power Electronics and Intelligent Transportation System,2009:112-115.
[13]YANG Yong,JIANG Yachao,LI Xingdong,et al.Optimal design of voltagecontrolled voltage source secondorder unit gain Butterworth lowpass filter[C]//2011 International Conference on Electric Information and Control Engineering(ICEICE),2011:4318-4321.
[14]Wazir M,Mohammad U,Muhammad A,et al.Performance analysis of analog butterworth low pass filter as compared to chebyshev TypeⅠ filter,chebyshev TypeⅡ filter and elliptical filter[J].Circuits and Systems,2014(5):209-216.
[15]Nguyen V,Tran V,Choi W,et al.Analysis of the output ripple of the DCDC boost charger for LiIon batteries[J].Journal of Power Eletronics,2014,14(1):135-142.
[16]Nardo A,F(xiàn)emia N,Petrone G,et al.Optimal buck converter output filter design for pointofload applications[J].IEEE Transactions on Industrial Electronics,2010,57(4):1330-1341.
[17]Babaei E,Mahmoodieh M E S,Sabahi M.Investigating Buck DCDC converter operation in different operational modes and obtaining the minimum output voltage ripple considering filter size[J].Journal of Power Electronics,2011,11(6):793-800.
[18]劉樹林,汪子為,鐘明航,等.基于Matlab的Boost變換器輸出本安性能評(píng)價(jià)系統(tǒng)[J].煤炭學(xué)報(bào),2017(S1):282-287.
LIU Shulin,WANG Ziwei,ZHONG Minghang,et al.Evaluating system based on Matlab for outputintrinsic safety performance of Boost converter[J].Journal of China Coal Society,2017(S1):282-287.
[19]劉樹林,馬一博,文曉明,等.輸出本安BuckBoost變換器的最危險(xiǎn)輸出短路放電工況研究[J].電工技術(shù)學(xué)報(bào),2015,30(14):253-260.
LIU Shulin,MA Yibo,WEN Xiaoming,et al.Research on the most dangerous output shortcircuit discharge conditions of output intrinsic safety BuckBoost converters[J].Transactions of China Electrotechnical Society,2015,30(14):253-260.
[20]Juan Rodríguez,Diego G Lamar,Pablo F? Miaja,et al.Reproducing singlecarrier digital modulation Schemes for VLC by controlling the first switching harmonic of the DCDC power converter output voltage ripple[J].IEEE Transactions on Power Electronics,2018,33(9):7994-8010.
[21]陳國(guó)杰,周有平,李斌.Buck恒流電源的輸出紋波分析與優(yōu)化設(shè)計(jì)[J].核電子學(xué)與探測(cè)技術(shù),2015,35(5):422-425.
CHEN Guojie,ZHOU Youping,LI Bin.Analysis on output ripple and optimal design of Buck constant current power supply[J].Nuclear Electronics & Detection Technology,2015,35(5):422-425.
[22]WingTo Fan,Ken KuenFaat Yuen,Henry ShuHung Chung,et al.Power semiconductor filter:use of series-pass device in switching converters for filtering input current harmonics[J].IEEE Transactions on Power Electronics,2016,31(3):2053-2068.
[23]HU Wei,ZHANG Fangying,XU Yawu.Output voltage ripple analysis and design considerations of intrinsic safety flyback converter based on energy transmission modes[J].Journal of Power Electronics,2014,14(5):908-917.
[24]Babaei E,Nesaz S R,Khasraghi K J.Assessment of stepup DCDC converter with high voltage ratio in different operational modes[J].Arabian Journal for Science and Engineering,2014,39(3):2033-2043.
[25]CUI Baochun,CHENG Hong,WANG Cong,et al.Analysis of discharge spark energy in Buck converter of a continuous mode of inductive current[J].Journal of China University of Mining & Technology,2006,16(4):514-517.