滿玲娟 張樺 姚正培 宗興風(fēng) 李志強(qiáng)
摘要:【目的】分析梭梭同化枝及其葉苞狀蟲癭的轉(zhuǎn)錄組差異,為揭示梭梭葉苞狀蟲癭形成的分子機(jī)制及梭梭害蟲防治提供理論參考?!痉椒ā恳运笏笸捌淙~苞狀蟲癭為材料,利用Illumina HiSeq 2000高通量測(cè)序平臺(tái)對(duì)其進(jìn)行轉(zhuǎn)錄組測(cè)序及差異表達(dá)基因分析,并通過(guò)測(cè)定可溶性糖和葉綠素含量驗(yàn)證分析結(jié)果?!窘Y(jié)果】轉(zhuǎn)錄組測(cè)序共獲得159147條Unigenes,平均長(zhǎng)度為551 bp,N50為752 bp,在Swissport、GO、Pfam、NR、NT、KOG/COG和KEGG等數(shù)據(jù)庫(kù)均被注釋的Unigenes有8521條(5.35%),至少在1個(gè)數(shù)據(jù)庫(kù)注釋的Unigenes有66714條(41.91%),共有49066條Unigenes(30.83%)與物種匹配成功。以q value<0.005且|log2FoldChange|>1為條件,共篩選出3444條差異表達(dá)的Unigenes,其中,有1299條上調(diào)表達(dá),2145條下調(diào)表達(dá)。與梭梭同化枝相比,梭梭葉苞狀蟲癭上調(diào)表達(dá)差異基因富集在代謝過(guò)程、有機(jī)物代謝過(guò)程、催化活性、碳代謝作用和核糖體代謝等通路,下調(diào)表達(dá)基因富集在細(xì)胞、細(xì)胞組成、胞內(nèi)細(xì)胞成分和細(xì)胞器、嘧啶代謝、細(xì)胞周期、DNA復(fù)制、光合作用及苯丙烷和類黃酮生物合成等過(guò)程。不同發(fā)育期梭梭葉苞狀蟲癭中的可溶性糖含量高于梭梭同化枝,而葉綠素含量均低于梭梭同化枝,進(jìn)一步驗(yàn)證梭梭葉苞狀蟲癭的糖代謝相關(guān)基因上調(diào)表達(dá)而光合作用相關(guān)基因下調(diào)表達(dá)的轉(zhuǎn)錄組分析結(jié)果?!窘Y(jié)論】梭梭葉苞狀蟲癭中核糖體數(shù)量增加,翻譯過(guò)程加快,代謝水平提高,糖代謝產(chǎn)物積累,但其光合作用降低,伸長(zhǎng)與生長(zhǎng)減慢,推測(cè)其通過(guò)吸收利用同化枝的養(yǎng)分以滿足自身需求。
關(guān)鍵詞: 梭梭;葉苞狀蟲癭;轉(zhuǎn)錄組分析;可溶性糖含量;葉綠素含量
中圖分類號(hào): S792.99? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)08-1657-08
Differential expression analysis of transcriptome of assimilating branches and leafy-bracted galls of Haloxylon ammodendron
MAN Ling-juan, ZHANG Hua*, YAO Zheng-pei, ZONG Xing-feng, LI Zhi-qiang
(College of Agronomy, Xinjiang Agricultural University, Urumqi? 830052, China)
Abstract:【Objective】The transcriptome difference of the leafy-bracted gall and assimilating branch of Haloxylon ammodendron was analyzed to provided a theoretical reference for exploring the molecular mechanism of leafy-bracted gall formation and the pest control of H. ammodendron. 【Method】The experimental materials were the assimilating branches of H. ammodendron and the leafy-bracted gall. The transcriptome was sequenced using Illumina HiSeq 2000 high-throughput sequencing platform,and differential expression gene was analyzed. The soluble sugar and chlorophyll contents of them were measured to confirm the results of transcriptome analysis. 【Result】A total of 159147 Unigenes were obtained with average length of 551 bp. Their N50 was 752 bp. In Swissport, GO, Pfam, NR, NT, KOG/COG and KEGG,8521 Unigenes(5.35%) were successfully annotated in all databases, 66714 Unigenes(41.91%) were annotated in at least one database,and 49066 Unigenes(30.83%) were successfully matched to species in total. Using q value<0.005 and |log2FoldChange|>1 as screening condition,3444 Unigenes were differentially expressed,among which 1299 were up-regulated and 2145 were down-regulated. Compared with the assimilating branches of H. ammodendron,the up-regulated genes in gall were mainly enriched in metabolic processes,organic substance metabolic process,catalytic activities,carbohydrate metabolic process and ribosome pathway,while the down-regulated genes were enriched in cells,cell component,intracellular component and organelle,pyrimidine metabolism,cell cycle,DNA replication,photosynthesis,phenylpropanoid biosynthesis and flavonoid biosynthesis. The soluble sugar content in galls of different developmental stages was higher than that of assimilating branches,while the chlorophyll content was lower than that of assimilating branches. The results further confirmed that the genes related to sugar metabolism were up-regulated,but the genes related to photosynthesis were down-regulated in transcriptome analysis. 【Conclusion】The number of ribosomes in the leafy-bractedgall of H. ammodendron increases,the translation process accelerates,the metabolic level increases,and the glycometabolic metabolites accumulates,but its photosynthesis decreases,its elongation and growth slow down. It is inferred that the gall can supply its own needs by absorbing and utilizing the nutrients of assimilating branches.
Key words: Haloxylon ammodendron; leafy-bracted gall; transcriptome analysis; soluble sugar content; chlorophyll content
0 引言
【研究意義】梭梭(Haloxylon ammodendron)為藜科(Chenopodiaceae)梭梭屬(Haloxylon)植物,其葉片退化為鱗狀葉,由同化枝進(jìn)行光合作用,生長(zhǎng)在沙丘、鹽漬土及礫質(zhì)戈壁等地,能耐受高溫、干旱、鹽堿、風(fēng)蝕的惡劣環(huán)境,具有防風(fēng)固沙的生態(tài)保護(hù)作用(俞闐,2012;Long et al.,2014)。木虱(Psyllidae)可嚴(yán)重危害梭梭生長(zhǎng),其在梭梭同化枝上引起的蟲癭外形類似葉苞狀,被稱為梭梭葉苞狀蟲癭(姜夢(mèng)輝等,2017)。蟲癭是因昆蟲、病菌等刺激誘導(dǎo)寄主植物產(chǎn)生的一種畸形瘤狀物或突起(邵淑霞等,2012;Carneiro et al.,2017),其形成和發(fā)育是植物與昆蟲共同作用的結(jié)果,明確其形成過(guò)程對(duì)探討生物間協(xié)同進(jìn)化和減少昆蟲對(duì)寄主的危害十分重要(王光鉞等,2010;申潔等,2016)。因此,利用轉(zhuǎn)錄組測(cè)序分析梭梭同化枝及其蟲癭的基因表達(dá)差異有助于深入探究蟲癭生長(zhǎng)發(fā)育及形成的分子機(jī)制,對(duì)分析木虱與梭梭的進(jìn)化關(guān)系及開(kāi)展梭梭林蟲害防治具有重要意義?!厩叭搜芯窟M(jìn)展】通過(guò)轉(zhuǎn)錄組測(cè)序可獲取特定生長(zhǎng)狀況下某組織或細(xì)胞的轉(zhuǎn)錄本信息,從而分析基因的表達(dá)情況,現(xiàn)已發(fā)展成為深入挖掘未知基因的重要手段(劉永杰,2016;Hrdlickova et al.,2017;唐玉娟等,2018)。目前,利用該技術(shù)開(kāi)展了大量關(guān)于蟲癭的研究工作。如桃金娘葉片及其蟲癭的轉(zhuǎn)錄組測(cè)序結(jié)果表明,蟲癭形成與生長(zhǎng)素響應(yīng)基因相關(guān)(Bailey et al.,2015);白蠟蟲真蛹的轉(zhuǎn)錄組測(cè)序結(jié)果表明,白蠟蟲蛹期生理活動(dòng)與蛋白降解和Wnt信號(hào)通路等相關(guān)(于淑惠等,2016);長(zhǎng)葉木姜子及其杯狀癭的轉(zhuǎn)錄組測(cè)序結(jié)果表明,杯狀癭內(nèi)能量或營(yíng)養(yǎng)相關(guān)基因的改變促使其光合作用降低,可溶性糖含量升高(Shih et al.,2018);榆樹(shù)葉片及其蟲癭的轉(zhuǎn)錄組測(cè)序結(jié)果表明,蟲癭的形成與糖代謝、次生代謝、植物激素信號(hào)轉(zhuǎn)導(dǎo)等代謝通路相關(guān)(李軒和黃智鴻,2019);葡萄葉片及其蟲癭的轉(zhuǎn)錄組測(cè)序結(jié)果表明,蟲癭的形成與形成層分生組織、生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)等途徑相關(guān)(Schultz et al.,2019)。關(guān)于梭梭葉苞狀蟲癭的相關(guān)研究主要集中在蟲癭的形態(tài)和生態(tài)學(xué)方面,李粉蓮等(2012)研究發(fā)現(xiàn),梭梭葉苞狀蟲癭內(nèi)有異色胖木虱、梭梭胖木虱、矮胖木虱和顯赫胖木虱4種木虱;姜夢(mèng)輝等(2017)通過(guò)對(duì)梭梭同化枝及其葉苞狀蟲癭進(jìn)行野外和顯微結(jié)構(gòu)觀察,將蟲癭的生長(zhǎng)發(fā)育分為生長(zhǎng)期、形成期和衰亡期3個(gè)階段,且蟲癭表皮細(xì)胞的葉綠體較梭梭同化枝少?!颈狙芯壳腥朦c(diǎn)】至今,鮮見(jiàn)有關(guān)梭梭葉苞狀蟲癭形成機(jī)制及轉(zhuǎn)錄組差異表達(dá)分析的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以梭梭同化枝及其葉苞狀蟲癭為材料,對(duì)其進(jìn)行轉(zhuǎn)錄組測(cè)序及差異表達(dá)基因分析,并通過(guò)測(cè)定可溶性糖和葉綠素含量驗(yàn)證分析結(jié)果,旨在了解蟲癭的發(fā)育機(jī)理及對(duì)梭梭生長(zhǎng)的影響,為揭示梭梭葉苞狀蟲癭形成的分子機(jī)制及害蟲防治提供理論參考。
1 材料與方法
1. 1 試驗(yàn)材料
在新疆古爾班通古特沙漠南緣選取生長(zhǎng)健康且高度基本一致的梭梭植株,采集梭梭同化枝及其生長(zhǎng)期和形成期的葉苞狀蟲癭為試驗(yàn)材料(圖1),液氮速凍后置于超低溫冰箱保存?zhèn)溆谩RIzol植物總RNA提取試劑盒購(gòu)自北京全式金生物技術(shù)有限公司,DNase I(RNase-free)試劑盒購(gòu)自Thermo公司,其他生化試劑均購(gòu)自新疆皓博晟達(dá)生物科技有限公司。主要儀器設(shè)備:DYY-6B型電泳儀(北京六一儀器廠)、Agilent Bioanalyzer 2100生物芯片分析儀(Agilent,美國(guó))、NanoDrop 1000分光光度計(jì)(Thermo,美國(guó))和722型可見(jiàn)分光光度計(jì)(上海菁華科技儀器有限公司)。
1. 2 轉(zhuǎn)錄組測(cè)序
利用TRIzol植物總RNA提取試劑盒分別提取梭梭同化枝及其葉苞狀蟲癭的總RNA,用1.0%瓊脂糖凝膠電泳檢測(cè)其質(zhì)量。經(jīng)DNase I(RNase-free)試劑盒純化,使用Agilent Bioanalyzer 2100生物芯片分析儀和NanoDrop 1000分光光度計(jì)分別檢測(cè)總RNA的純度及濃度。分別將檢測(cè)合格的同化枝總RNA溶液及生長(zhǎng)期和形成期的葉苞狀蟲癭總RNA等體積混合液送至北京諾禾致源生物信息科技有限公司進(jìn)行轉(zhuǎn)錄組測(cè)序。測(cè)序得到的原始序列raw reads經(jīng)過(guò)濾除雜得到高質(zhì)量clean reads,再利用Trinity對(duì)clean reads進(jìn)行拼接和組裝,最終獲得的Unigenes作為后續(xù)分析的參考序列(Grabherr et al.,2011)。
1. 3 轉(zhuǎn)錄組功能注釋
獲得的Unigenes與NR、NT、Pfam、KOG/COG、Swissprot、GO和KEGG等數(shù)據(jù)庫(kù)比對(duì)注釋。其中,根據(jù)Nr數(shù)據(jù)庫(kù)注釋結(jié)果可得到與Unigenes比對(duì)的物種分布圖,并基于NR和Pfam數(shù)據(jù)庫(kù)注釋信息,使用Blast2GO對(duì)Unigenes進(jìn)行GO功能注釋及分類(Conesa et al.,2005)。根據(jù)KEGG數(shù)據(jù)庫(kù)將參與各代謝通路的Unigenes進(jìn)行分類。
1. 4 基因表達(dá)水平分析及差異表達(dá)基因篩選
參考Li和Dewey(2011)的方法,利用RSEM(bowtie2為默認(rèn)參數(shù))將每個(gè)樣品的clean reads與參考序列進(jìn)行比對(duì)分析,統(tǒng)計(jì)與參考序列匹配成功的clean reads,獲得各樣品比對(duì)到每個(gè)基因的read count數(shù)目,對(duì)其進(jìn)行FPKM(每百萬(wàn)fragments中來(lái)自某一基因每千堿基長(zhǎng)度的fragments數(shù)目)轉(zhuǎn)換,當(dāng)FPKM>0.3時(shí)判定為基因表達(dá)。
使用TMM將read count數(shù)據(jù)標(biāo)準(zhǔn)化處理后,以DEGseq進(jìn)行差異表達(dá)分析:篩選出閾值為q value (校正后的p value)<0.005且|log2FoldChange|>1的基因,當(dāng)基因的log2FoldChange>0,則認(rèn)為該基因表達(dá)上調(diào),反之,則認(rèn)為該基因表達(dá)下調(diào)(Anders and Huber,2010)。使用GOseq方法對(duì)獲得的差異表達(dá)基因(Differentially expressed genes,DEGs)進(jìn)行GO富集分析(Young et al.,2010);同時(shí)采用KOBAS 2.0進(jìn)行KEGG富集分析(Kanehisa et al.,2008)。
1. 5 可溶性糖和葉綠素含量的測(cè)定
為證實(shí)轉(zhuǎn)錄組測(cè)序結(jié)果的準(zhǔn)確性,分別測(cè)定梭梭同化枝及其葉苞狀蟲癭中的可溶性糖和葉綠素含量。采集梭梭同化枝及不同發(fā)育期的葉苞狀蟲癭(圖2),采用蒽酮比色法測(cè)定其可溶性糖含量(張樺,2014),采用乙醇丙酮混合液浸提法測(cè)定其葉綠素含量(徐芬芬等,2010),各樣品均設(shè)3個(gè)重復(fù)。
2 結(jié)果與分析
2. 1 轉(zhuǎn)錄組測(cè)序結(jié)果
梭梭同化枝及其葉苞狀蟲癭的轉(zhuǎn)錄組測(cè)序結(jié)果如表1所示,GC含量分別為41.57%和43.70%,Q30為91%,表明測(cè)序數(shù)據(jù)質(zhì)量較好,可用于后續(xù)分析。高質(zhì)量clean reads經(jīng)拼接組裝后獲得轉(zhuǎn)錄本序列,取每條基因中最長(zhǎng)的轉(zhuǎn)錄本作為Unigene,最終獲得159147條Unigenes,平均長(zhǎng)度為551 bp,N50為752 bp,其中序列長(zhǎng)度最短為201 bp,最長(zhǎng)為13228 bp,200~500 bp的序列有113933條,大于2 kb的序列有6296條。
2. 2 Unigenes的功能注釋結(jié)果
統(tǒng)計(jì)在各數(shù)據(jù)庫(kù)注釋的Unigenens數(shù)目,結(jié)果表明,159147條Unigenes中,在NR數(shù)據(jù)庫(kù)注釋的Unigenes有49128條(30.86%),在Swissport、GO、Pfam、Nt、KOG/COG和KEGG等數(shù)據(jù)庫(kù)注釋的Unigenens分別有43404條(27.27%)、43396條(27.26%)、42925條(26.97%)、29768條(18.70%)、27121條(17.04%)和20561條(12.91%),在以上7個(gè)數(shù)據(jù)庫(kù)均被注釋的Unigenes有8521條(5.35%),至少在1個(gè)數(shù)據(jù)庫(kù)注釋的Unigenes有66714條(41.91%)。
與Nr數(shù)據(jù)庫(kù)中已知物種序列進(jìn)行比對(duì)分析,發(fā)現(xiàn)共有49066條Unigenes(30.83%)與物種匹配成功,其中匹配序列數(shù)量最多的為甜菜(Beta vulgaris)25025條(51.00%),其次為林煙草(Nicotiana sylvestris)2368條(4.80%)、絨毛狀煙草(N. tomentosiformis)2263條(4.60%)、大麥(Hordeum vulgare)974條(2.00%)和藍(lán)隱藻(Guillardia theta)701條(1.40%),與其他物種匹配序列共計(jì)17735條(36.10%),有110081條(69.17%)未匹配成功。
2. 3 差異表達(dá)基因的GO富集分析結(jié)果
根據(jù)Nr注釋信息,對(duì)Unigenes進(jìn)行GO分類,結(jié)果發(fā)現(xiàn)共有43396條Unigenens注釋到生物過(guò)程(Biological process)、分子功能(Molecular function)和細(xì)胞組分(Cellular component)中的56個(gè)亞類。以q value<0.005且|log2FoldChange|>1為條件,共篩選出3444條差異表達(dá)的Unigenes,其中1299條上調(diào)表達(dá)、2145條下調(diào)表達(dá)。差異表達(dá)基因的GO富集分析結(jié)果顯示,有3819條Unigenes注釋到生物過(guò)程的20個(gè)亞類,560條Unigenes注釋到細(xì)胞組分的9個(gè)亞類,1448條Unigenes注釋到分子功能的20個(gè)亞類。
將GO富集分類中前10個(gè)富集項(xiàng)(q value<0.05)在圖3中依次列出。與梭梭同化枝相比,梭梭葉苞狀蟲癭上調(diào)表達(dá)基因在生物過(guò)程類型中主要富集于代謝過(guò)程、有機(jī)物代謝過(guò)程、有機(jī)氮復(fù)合代謝和氧化還原等過(guò)程;在細(xì)胞組分類型中主要富集于細(xì)胞質(zhì)、核糖體、核糖核蛋白復(fù)合體等;在分子功能類型中主要富集于催化活性和氧化活性等功能方面,說(shuō)明梭梭葉苞狀蟲癭較其同化枝的代謝水平高。與梭梭同化枝相比,梭梭葉苞狀蟲癭下調(diào)表達(dá)基因在生物過(guò)程類型中主要富集于細(xì)胞成分組織或生物的發(fā)生、核糖體及核蛋白體發(fā)生、細(xì)胞或亞細(xì)胞成分的運(yùn)動(dòng)、光合作用和微管等過(guò)程;在細(xì)胞組分類型中主要富集于細(xì)胞、細(xì)胞器、細(xì)胞成分和微管等組分;在分子功能類型中主要富集于DNA結(jié)合、結(jié)構(gòu)分子活性、核糖體結(jié)構(gòu)成分和微管蛋白結(jié)合等功能方面,說(shuō)明梭梭葉苞狀蟲癭光合作用下降,細(xì)胞的伸長(zhǎng)與生長(zhǎng)受到影響。
2. 4 差異表達(dá)基因的KEGG通路分析結(jié)果
差異表達(dá)基因主要參與五類KEGG通路,分別為細(xì)胞過(guò)程、環(huán)境信息處理、遺傳信息處理、代謝和有機(jī)系統(tǒng)。其中,在細(xì)胞過(guò)程通路中,參與運(yùn)輸與分解代謝的相關(guān)基因最多,為1107條;在環(huán)境信息處理通路中,參與信號(hào)轉(zhuǎn)導(dǎo)和膜轉(zhuǎn)運(yùn)的相關(guān)基因較多,分別為475和149條;在遺傳信息處理通路中,參與翻譯的相關(guān)基因最多,為2627條,其次為參與蛋白質(zhì)折疊、分類和降解過(guò)程、轉(zhuǎn)錄及復(fù)制與修復(fù)的相關(guān)基因,分別為1718、1041和392條;在代謝通路中,參與碳水化合物代謝的相關(guān)基因最多,為2005條,其次為參與新陳代謝、氨基酸代謝和能量代謝的相關(guān)基因分別為1500、1337和1121條;在有機(jī)系統(tǒng)通路中,參與環(huán)境適應(yīng)的相關(guān)基因最多,為639條。
差異表達(dá)基因參與的代謝通路在表2中按照q value依次列出。與梭梭同化枝相比,梭梭葉苞狀蟲癭中上調(diào)表達(dá)基因主要富集在核糖體代謝通路,其次為核糖體、乙醛酸和二羧酸代謝、脂肪酸降解、碳代謝作用和脂肪酸代謝等通路,推測(cè)這些基因上調(diào)表達(dá)會(huì)引起梭梭葉苞狀蟲癭糖代謝產(chǎn)物的積累。下調(diào)表達(dá)基因主要富集在光合作用、光合作用天線蛋白、DNA復(fù)制、細(xì)胞周期、嘧啶代謝作用、苯丙烷類生物合成和類黃酮生物合成等通路,表明與梭梭同化枝比較,梭梭葉苞狀蟲癭的光合效率降低,同時(shí)細(xì)胞分裂和木質(zhì)素合成受影響。
2. 5 梭梭同化枝和葉苞狀蟲癭的可溶性糖和葉綠素含量測(cè)定結(jié)果
分別對(duì)梭梭同化枝及其葉苞狀蟲癭進(jìn)行可溶性糖和葉綠素含量測(cè)定,結(jié)果如圖4所示。隨著梭梭葉苞狀蟲癭的生長(zhǎng),可溶性糖含量呈先升高后降低的變化趨勢(shì),其中Ha-D1和Ha-D2葉苞狀蟲癭的可溶性糖含量顯著高于同化枝(P<0.05,下同),但Ha-D1、Ha-D2和Ha-D3葉苞狀蟲癭的葉綠素含量均顯著低于同化枝??梢?jiàn),與梭梭同化枝相比,梭梭葉苞狀蟲癭的可溶性糖含量較高,葉綠素含量較低,進(jìn)一步驗(yàn)證梭梭葉苞狀蟲癭的糖代謝相關(guān)基因上調(diào)表達(dá)而光合作用相關(guān)基因下調(diào)表達(dá)的轉(zhuǎn)錄組分析結(jié)果。
3 討論
本研究的梭梭同化枝和葉苞狀蟲癭轉(zhuǎn)錄組測(cè)序及功能注釋結(jié)果顯示,159147條Unigenes中,在NR、NT、Pfam、KOG/COG、Swissprot、GO和KEGG等數(shù)據(jù)庫(kù)中均被注釋的Unigenens有8521條(5.35%),至少在1個(gè)數(shù)據(jù)庫(kù)注釋的Unigenens有66714條(41.91%),但僅有49066條Unigenes(30.83%)與物種匹配,表明梭梭同化枝和葉苞狀蟲癭中仍有大量未知的Unigenes,這些序列可能編碼新蛋白。Bailey等(2015)對(duì)桃金娘葉片及其蟲癭進(jìn)行轉(zhuǎn)錄組差異分析,結(jié)果表明,在正常桃金娘葉片中存在未表達(dá)卻因蟲癭形成而重新啟動(dòng)的基因。同樣,本研究發(fā)現(xiàn)只在梭梭葉苞狀蟲癭中表達(dá)的Unigenes有530條,推測(cè)這些Unigenes是與葉苞狀蟲癭形成有關(guān)的特異表達(dá)序列,為今后挖掘相關(guān)基因提供了參考。
蟲癭通過(guò)消耗較高的能量以維持其旺盛的生長(zhǎng)和新陳代謝,導(dǎo)致寄主植物組織的結(jié)構(gòu)和功能發(fā)生改變,光合作用減弱(Carneiro et al.,2017)??扇苄蕴菫橹参锷L(zhǎng)提供能量并構(gòu)成結(jié)構(gòu)物質(zhì),在植物生長(zhǎng)過(guò)程中發(fā)揮重要作用(Ma et al.,2017)。前人研究發(fā)現(xiàn),荔枝和無(wú)患子的蟲癭中可溶性糖含量比正常葉片高,說(shuō)明可溶性糖是蟲癭代謝、發(fā)育及昆蟲生長(zhǎng)的營(yíng)養(yǎng)物質(zhì)(Huang et al.,2015;Oliveira et al.,2017)。本研究的GO富集分析和KEGG通路分析結(jié)果顯示,梭梭葉苞狀蟲癭上調(diào)表達(dá)差異基因主要富集在代謝過(guò)程、有機(jī)物代謝過(guò)程、催化活性、碳水化合物代謝和核糖體代謝等通路,說(shuō)明梭梭葉苞狀蟲癭中核糖體數(shù)量增加,翻譯過(guò)程加快,代謝水平提高,糖代謝產(chǎn)物積累,為梭梭葉苞狀蟲癭及若蟲的生長(zhǎng)提供能量和條件,與不同發(fā)育階段梭梭葉苞狀蟲癭的可溶性糖含量均高于梭梭同化枝的結(jié)果相互印證。此外,本研究發(fā)現(xiàn)不同發(fā)育階段梭梭葉苞狀蟲癭的葉綠素含量均低于梭梭同化枝,與梭梭葉苞狀蟲癭下調(diào)表達(dá)基因富集在光合作用和光合作用天線蛋白的結(jié)果相互印證,表明葉苞狀蟲癭的光合作用降低。前人研究也發(fā)現(xiàn),櫻桃和無(wú)患子葉片的蟲癭內(nèi)葉綠素含量較低,光合作用下降(Larson,1998;Oliveira et al.,2017),與本研究結(jié)果基本一致。梭梭葉苞狀蟲癭的光合作用降低,代謝活性升高,推測(cè)其通過(guò)吸收利用梭梭同化枝的養(yǎng)分以滿足自身需求。
微管在植物生長(zhǎng)發(fā)育中參與細(xì)胞內(nèi)運(yùn)輸、細(xì)胞運(yùn)動(dòng)及分裂過(guò)程,同時(shí)構(gòu)成細(xì)胞骨架,維持細(xì)胞形態(tài),且參與合成植物中的纖維素和木質(zhì)素等(邱鴻和于榮,2009;饒國(guó)棟和張建國(guó),2013),而苯丙烷類代謝產(chǎn)物可進(jìn)一步轉(zhuǎn)化成類黃酮、木質(zhì)素等,在植物木質(zhì)化和自我保護(hù)過(guò)程中發(fā)揮重要作用(Grace and Logan,2000;孟雪嬌,2011;王星等,2017)。本研究的GO富集分析和KEGG通路分析結(jié)果顯示,下調(diào)表達(dá)基因富集在微管及其過(guò)程、微管運(yùn)動(dòng)及其活性、微管結(jié)合、微管蛋白結(jié)合、結(jié)構(gòu)分子活性、苯丙烷和類黃酮生物合成、細(xì)胞周期和DNA復(fù)制等過(guò)程。這些基因與細(xì)胞分裂、運(yùn)動(dòng)和伸長(zhǎng)生長(zhǎng)相關(guān),其表達(dá)量降低不利于營(yíng)養(yǎng)物質(zhì)的長(zhǎng)距離運(yùn)輸、細(xì)胞伸長(zhǎng)及形態(tài)維持,可能是造成梭梭葉苞狀蟲癭較短小的主要原因,而苯丙烷、類黃酮等次生代謝產(chǎn)物合成相關(guān)基因的表達(dá)量降低,可能是導(dǎo)致梭梭葉苞狀蟲癭質(zhì)地較軟且木質(zhì)化程度下降的主要因素。但關(guān)于葉苞狀蟲癭是如何影響梭梭同化枝正常生長(zhǎng)而形成現(xiàn)有形態(tài)、如何改變次生代謝而利于幼蟲生長(zhǎng)均有待進(jìn)一步研究。
4 結(jié)論
梭梭葉苞狀蟲癭中核糖體數(shù)量增加,翻譯過(guò)程加快,代謝水平提高,糖代謝產(chǎn)物積累,但其光合作用降低,伸長(zhǎng)生長(zhǎng)減慢,推測(cè)其通過(guò)吸收利用同化枝的養(yǎng)分以滿足自身的需求。
參考文獻(xiàn):
姜夢(mèng)輝,姚正培,任燕萍,姜子焱,谷月好,王波,張樺. 2017. 梭梭葉苞狀蟲癭結(jié)構(gòu)特征和生長(zhǎng)發(fā)育研究[J]. 西北植物學(xué)報(bào),37(9):1749-1755. [Jiang M H,Yao Z P,Ren Y P,Jiang Z Y,Gu Y H,Wang B,Zhang H. 2017. Study on the structure characteristics and growth and development of leafy galls in Haloxylon ammodendron[J]. Acta Bota-nica Boreali-Occidentalia Sinica,37(9):1749-1755.]
李粉蓮,吳雪海,王佩玲,梁虎軍,王鑫,王利軍,張建萍. 2012. 梭梭木虱發(fā)生規(guī)律及其影響因子[J]. 生態(tài)學(xué)報(bào),32(8):2311-2319. [Li F L,Wu X H,Wang P L,Liang H J,Wang X,Wang L J,Zhang J P. 2012. The occurrence regularity of psyllid in Haloxylon spp and its influencing factors[J]. Acta Ecologica Sinica,32(8):2311-2319.]
李軒,黃智鴻. 2019. 榆樹(shù)葉片形成蟲癭過(guò)程中轉(zhuǎn)錄組學(xué)分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),38(2):737-746. [Li X,Huang Z H. 2019. Transcriptome analysis in the process of insect gall formation of Elm leaves[J]. Genomics and Applied Biology,38(2):737-746.]
劉永杰. 2016. 玉米抗禾谷鐮刀菌的轉(zhuǎn)錄組分析[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué). [Liu Y J. 2016. Transcriptome analysis of maize resistance to Fusariiim graminearum[D]. Beijing:China Agricultural University.]
孟雪嬌. 2011. 黃瓜苯丙烷類代謝關(guān)鍵酶活性及基因表達(dá)的研究[D]. 哈爾濱:哈爾濱師范大學(xué). [Meng X J. 2011. The study on activities of cucumber phenylpropanoid metabolism’s key enzymes and gene expression[D]. Harbin:Harbin Normal University.]
邱鴻,于榮. 2009. 微管和微絲的相互作用[J]. 細(xì)胞生物學(xué)雜志,31(4):476-480. [Qiu H,Yu R. 2009. The interactions of microtubules and microfilaments[J]. Chinese Journal of Cell Biology,31(4):476-480.]
饒國(guó)棟,張建國(guó). 2013. 植物微管蛋白基因研究進(jìn)展[J]. 世界林業(yè)研究,26(3):17-20. [Rao G D,Zhang J G. 2013. Advances of studies on plant tubulin gene[J]. World Fores-try Research,26(3):17-20.]
邵淑霞,阮楨媛,楊子祥,陳曉鳴. 2012. 蟲癭—昆蟲與植物互作的奇特產(chǎn)物[J]. 環(huán)境昆蟲學(xué)報(bào),34(3):363-369. [Shao S X,Ruan Z Y,Yang Z X,Chen X M. 2012. Insect galls:The peculiar product of the interaction between plants and in-sects[J]. Journal of Environmental Entomo-logy,34(3):363-369.]
申潔,董穎穎,王義平. 2016. 蟲癭與其生物群落及寄主植物間的關(guān)系[J]. 環(huán)境昆蟲學(xué)報(bào),38(2):445-450. [Shen J,Dong Y Y,Wang Y P. 2016. The relationships between insects galls and its biological community and their host plants[J]. Journal of Environmental Entomology,38(2):445-450.]
唐玉娟,黃國(guó)弟,羅世杏,周俊岸,莫永龍,李日旺,趙英,張宇,宋恩亮,寧琳. 2018. 芒果2個(gè)不同花芽分化時(shí)期轉(zhuǎn)錄組分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(7):1257-1264. [Tang Y J,Huang G D,Luo S X,Zhou J A,Mo Y L,Li R W,Zhao Y,Zhang Y,Song E L,Ning L. 2018. Transcriptome of Mangifera indica L. in two different flower bud differentiation stages[J]. Journal of Southern Agriculture,49(7):1257-1264.]
王光鉞,王義平,吳鴻. 2010. 蟲癭與致癭昆蟲[J]. 昆蟲知識(shí),47(2):419-424. [Wang G Y,Wang Y P,Wu H. 2010. Gall and gall-former insects[J]. Chinese Bulletin of Entomology,47(2):419-424.]
王星,羅雙霞,于萍,羅蕾,趙建軍,王彥華,申書興,陳雪平. 2017. 茄科蔬菜苯丙烷類代謝及相關(guān)酶基因研究進(jìn)展[J]. 園藝學(xué)報(bào),44(9):1738-1748. [Wang X,Luo S X,Yu P,Luo L,Zhao J J,Wang Y H,Shen S X,Chen X P. 2017. Advances in phenylaprapanoid metabolism and its enzyme genes in Solanaceae vegetables[J]. Acta Horticulturae Sinica,44(9):1738-1748.]
徐芬芬,葉利民,徐衛(wèi)紅,鄭靜萍. 2010. 小白菜葉綠素含量的測(cè)定方法比較[J]. 北方園藝,(23):32-34. [Xu F F,Ye L M,Xu W H,Zheng J P. 2010. Comparison of methods of chlorophyll extraction in Chinese cabbage[J]. Northern Horticulture,(23):32-34.]
于淑惠,亓倩,孫濤,王雪慶,楊璞,馮穎. 2016. 白蠟蟲雄蟲真蛹轉(zhuǎn)錄組分析[J]. 林業(yè)科學(xué)研究,29(3):413 417. [Yu S H,Qi Q,Sun T,Wang X Q,Yang P,F(xiàn)eng Y. 2016. Transcriptome analysis of male white wax scale pupae[J]. Fore-st Research,29(3):413-417.]
俞闐. 2012. 荒漠植物梭梭對(duì)地表高溫脅迫的響應(yīng)及“花后生殖休眠”現(xiàn)象的研究[D]. 南京:南京農(nóng)業(yè)大學(xué). [Yu T. 2012. Study on H. ammondendron for response to land surface temperature stress and phenomenon of reproductive dormancy after flower[D]. Nanjing:Nanjing Agricultural University.]
張樺. 2014. 生物化學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國(guó)農(nóng)業(yè)出版社. [Zhang H. 2014. Biochemical experimental guidance[M]. Beijing:China Agriculture Press.]
Anders S,Huber W. 2010. Differential expression analysis for sequence count data[J]. Genome Biology,11(10):R106.
Bailey S,Percy D M,Hefer C A,Cronk Q C. 2015. The transcriptional landscape of insect galls:Psyllid(Hemiptera) gall formation in Hawaiian Metrosideros polymorpha(Myrtaceae)[J]. BMC Genomics,16:943. doi:https://doi.org/10.1186/s12864-015-2109-9.
Carneiro R G S,Isaias R M S,Moreira A S F P,Oliveira D C. 2017. Reacquisition of new meristematic sites determines the development of a new organ,the cecidomyiidae gall on Copaifera langsdorffii desf.(Fabaceae)[J]. Frontiers in Plant Science,8:1622.
Conesa A,Gotz S,Garcia-Gomez J M,Terol J,Talon M,Robles M. 2005. Blast2GO:A universal tool for annotation,visualization and analysis in functional genomics research[J]. Bioinformatics,21(18):3674-3676.
Grabherr M G,Haas B J,Yassour M,Levin J Z,Thompson D A,Amit I,Adiconis X,F(xiàn)an L,Raychowdhury R,Zeng Q D,Chen Z,Mauceli E,Hacohen N,Gnirke A,Rhind N,Birren B W,Nusbaum C,Lindblad-Toh K,F(xiàn)riedman N,Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnol,29(7):644-652.
Grace S C,Logan B A. 2000. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway[J]. Phi-losophical Transactions of the Royal Society of London,Series B,Biological Sciences,355(1402):1499-1510.
Hrdlickova R,Toloue M,Tian B. 2017. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdiscip Rev RNA,8(1):10. doi:10.1002/wrna.1364.
Huang M Y,Huang W D,Chou H M,Chen C C,Chen P J,Chang Y T,Yang C M. 2015. Structural,biochemical,and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata[J].
BMC Plant Biology,15:61. doi:https://doi.org/10.1186/
s12870015-0446-0.
Kanehisa M,Araki M,Goto S,Hattori1 M,Hirakawa M,Itoh M,Katayama T,Kawashima S,Okuda S,Tokimatsu T and Yamanishi Y. 2008. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research,36:480-484.
Larson K C. 1998. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts[J]. Oecologia,115(1):161-166.
Li B,Dewey C N. 2011. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,12:323.
Long Y,Zhang J W,Tian X J,Wu S S,Zhang Q,Zhang J P,Dang Z H,Wu X. 2014. De novo assembly of the desert tree Haloxylon ammodendron(C. A. Mey.) based on RNA-Seq data provides insight into drought response,gene discovery and marker identification[J]. BMC Genomics,15(1):1111-1122.
Ma Q J,Sun M H,Lu J,Liu Y J,Hu D G,Hao Y J. 2017. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes[J]. Plant Physiology,174(4):2348-2362.
Oliveira D C,Moreira A,Isaias R,Martini V,Rezende U C. 2017. Sink status and photosynthetic rate of the leaflet galls induced by Bystracoccus mataybae(Eriococcidae) on Matayba guianensis(Sapindaceae)[J]. Frontiers in Plant Science,8:1249. doi:10.3389/fpls.2017.01249.
Schultz J C,Edger P P,Body M,Appel H. M. 2019. A galling insect activates plant reproductive programs during gall development[J]. Scientific Reports,9(1):1833.
Shih T H,Lin S H,Huang M Y,Sun C W,Yang C M. 2018. Transcriptome profile of cup-shaped galls in Litsea acumi-nata leaves[J]. PLoS One,13(10):e0205265.
Young M D,Wakefield M J,Smyth G K,Oshlack A. 2010. Gene ontology analysis for RNA-seq:Accounting for selection bias[J]. Genome Biology,11:R14. doi:https://doi.org/10.1186/gb-2010-11-2-r14.
(責(zé)任編輯 陳 燕)