于學(xué)茹 王巨媛 王翠蘋 田曉飛 孫樹臣 王萍 徐汝悅 翟勝
摘 要:稀土氧化物納米顆粒(Rare Earth Oxide Nanoparticles,REO NPs)具有納米毒性和金屬毒性的雙重效應(yīng),其毒性效應(yīng)、生態(tài)環(huán)境風(fēng)險(xiǎn)引起國內(nèi)外學(xué)者的廣泛關(guān)注。隨著納米技術(shù)的快速發(fā)展,納米顆粒必然通過各種途徑進(jìn)入環(huán)境,給生態(tài)環(huán)境與人類健康造成危害。因此,研究REO NPs在環(huán)境介質(zhì)中的遷移轉(zhuǎn)化及其對植物的毒性效應(yīng)機(jī)制,對REO NPs合理應(yīng)用及其生態(tài)安全評價(jià)具有重要的理論價(jià)值和實(shí)踐指導(dǎo)意義。本文通過查閱文獻(xiàn)資料,總結(jié)了在水培、土培條件下REO NPs對蔬菜和農(nóng)作物毒性效應(yīng)、毒性機(jī)理及其影響因素,并在此基礎(chǔ)上就REO NPs毒性效應(yīng)和機(jī)理研究進(jìn)行了展望。REO NPs毒性效應(yīng)主要表現(xiàn)為:(1)抑制根系生長發(fā)育;(2)抑制葉綠素合成進(jìn)而影響光合效率和生物量。毒性機(jī)理主要包括:(1)REO NPs溶出離子直接致毒或與礦質(zhì)營養(yǎng)離子發(fā)生競爭,抑制營養(yǎng)吸收;(2)REO NPs破壞細(xì)胞選擇透性、產(chǎn)生活性氧自由基、使細(xì)胞膜發(fā)生脂質(zhì)過氧化而喪失功能;(3)REO NPs附著于組織表面,阻礙水分、營養(yǎng)物質(zhì)運(yùn)輸和離子交換。影響REO NPs毒性的因子主要包括REO NPs特性(如溶解性、帶電性、粒徑大小及形狀)、植物本身敏感性或耐受性、環(huán)境條件(如酸堿性、帶電性等)。REO NPs的毒性效應(yīng)研究存在選擇的污染物類型較少,主要針對幼苗期的植物,少有分子生物學(xué)、土培方式、全環(huán)境條件研究等問題,后期可從上述方面進(jìn)行深入研究。
關(guān)鍵詞:REO NPs;植物;毒性效應(yīng);毒性機(jī)理;影響因素
中圖分類號:X 501;X 503文獻(xiàn)標(biāo)識碼:A文章編號:1008-0384(2019)06-739-09
Abstract: Rare earth oxide nanoparticles (REO NPs) have caught the attention by scientists worldwide as they can potentially harm the environment due to the toxicity associated with the particle size as well as the chemical property. With the advancement of nanotechnology, NPs inevitably enter the environment through various channels causing detrimental effects on the environment and human health. Therefore, studying the translocation and transformation of REO NPs in media and the response mechanism of plants toward the toxicity carries important theoretical and practical significance for the material applications and ecological security. This article summarizes the mechanism and affecting factors associated with the toxicity of REO NPs on the crops cultivated on soil or hydroponics and discusses the prospects of future research and utilization of the NPs. Currently, the toxic effects induced by REO NPs on plants were believed to include (1) the inhibition of root growth and development and (2) the retardation of chlorophyll synthesis reducing the photosynthetic efficiency and biomass accumulation. The toxicity mechanisms focused by various studies were mainly on (1) the functions directly caused by the dissolved REO NPs ions or their competing with other mineral ions on nutrient absorption, (2) the obstruction of selective cellular permeability, the production of oxygen free radicals, and the lipid peroxidation of cell membrane, and (3) the adherence of particles on surface of the plant tissues interfering normal water and nutrients transportation and ion exchange. Major factors that affect the toxicity might encompass the properties of REO NPs (such as, solubility, electrification, particle size, and shape), the sensitivity or tolerance of a plant to REO NPs, and the environmental conditions (such as, acidity, alkalinity, electrification, etc.).The study on toxic effects of REO NPs has fewer types of selected pollutants, mainly for plants in seedling stage, and fewer study on molecular biology, soil culture methods, and all environmental conditions. In the later stage, we can conduct in-depth research from the above aspects.
Key words: REO NPs; crops; phytotoxicity effect; phytotoxicity mechanism; affecting factors
0 引言
納米材料(Nanomaterial)是至少一維在1~100 nm的材料;納米顆粒(Nanoparticles, NPs)是至少二維在1~100 nm的材料[1]。NPs獨(dú)特的尺寸、表面積、結(jié)晶性及表面電荷等特殊的理化性質(zhì) [2-3]使其有異于其他材料,更容易被生物吸收利用,從而影響生物生長發(fā)育[4]。納米材料對生物效應(yīng)的研究結(jié)果[5-6]表明,即使在較低濃度下,金屬碳納米管也會引發(fā)肉芽腫的形成,中高濃度的碳納米管會損害老鼠的肺組織,產(chǎn)生肺部氣囊。2005年,英、美等國制訂并啟動了NPs環(huán)境行為與生態(tài)效應(yīng)的研究計(jì)劃。2009年8月,Gilbert[7]對NPs致人死亡事件進(jìn)行了討論,Song等[8]研究發(fā)現(xiàn),工作環(huán)境中存在的大量NPs致使兩名工人肺部損傷而死亡。從此,NPs的生態(tài)毒理效應(yīng)成為國內(nèi)外學(xué)者的研究熱點(diǎn)[9]。開展納米顆粒的環(huán)境行為及其生態(tài)毒性效應(yīng)與機(jī)理意義重大。
稀土元素氧化物是指元素周期表中原子序數(shù)為57到71的15種鑭系元素氧化物,以及與鑭系元素化學(xué)性質(zhì)相似的鈧(Sc)和釔(Y)共17種元素的氧化物,在石油、化工、冶金、紡織、陶瓷、玻璃、永磁材料等領(lǐng)域廣泛應(yīng)用,隨著科技的進(jìn)步和應(yīng)用技術(shù)的不斷突破,稀土氧化物的價(jià)值將越來越大。作為一種新型納米材料,稀土氧化物納米顆粒(REO NPs)廣泛應(yīng)用于拋光粉、發(fā)光材料和汽車尾氣凈化等方面[10-11]。在生產(chǎn)、使用過程中,REO NPs會通過不同途徑進(jìn)入水、大氣和土壤環(huán)境,進(jìn)而發(fā)生吸附、團(tuán)聚、沉淀、解析、生物吸收或累積等環(huán)境行為[12],而吸附在植物根系表面的REO NPs會通過質(zhì)外體或共質(zhì)體進(jìn)入植物體內(nèi),使植物致毒進(jìn)而對生態(tài)環(huán)境和人類健康造成威脅[13]。目前,納米顆粒毒理學(xué)的研究主要集中在金屬單質(zhì)及金屬氧化物 [14-19],關(guān)于REO NPs對植物毒性效應(yīng)、毒性機(jī)理以及影響因子研究相對較少 [20-22]。因此,REO NPs的遷移轉(zhuǎn)化行為、生物可利用性和生態(tài)毒性效應(yīng)急需開展廣泛而深入的研究。本文在查閱相關(guān)文獻(xiàn)的基礎(chǔ)上,闡述不同類型REO NPs對植物的毒性效應(yīng)、致毒機(jī)理及其影響因子,并結(jié)合目前研究存在的問題和不足,對后期研究方向進(jìn)行展望。
1 REO NPs對植物的毒性效應(yīng)
通過查閱已有文獻(xiàn)資料,總結(jié)出REO NPs毒性機(jī)制主要包括:(1)有毒物質(zhì)的釋放(有毒金屬離子);(2)誘導(dǎo)活性氧(Reactive Oxygen? Species,ROS)產(chǎn)生,破壞細(xì)胞膜結(jié)構(gòu),干擾植物抗氧化系統(tǒng),損傷細(xì)胞器;(3)附著于組織表面,阻礙水分、營養(yǎng)物質(zhì)運(yùn)輸和離子交換,具體見圖1、表1,影響植物正常的代謝等等 [23-25]。
1.1 REO NPs溶出離子致毒
REO NPs可以溶解出一定量的金屬離子,當(dāng)金屬離子達(dá)到一定濃度時(shí),對植物產(chǎn)生毒性效應(yīng)。溶解出的金屬離子濃度較低時(shí)對植物沒有顯著的毒性效應(yīng),此時(shí)毒性效應(yīng)可能來源于NPs本身獨(dú)特的性質(zhì)。因此,REO NPs可通過其自身和溶解出的金屬離子產(chǎn)生毒性效應(yīng),但不同REO NPs對植物的毒性作用機(jī)理不同。Ma等[26]研究發(fā)現(xiàn),La2O3 NPs和CeO2 NPs分別處理黃瓜,高濃度的La2O3 NPs表現(xiàn)出明顯的毒性效應(yīng),CeO2 NPs未表現(xiàn)出毒性,且培養(yǎng)液中La2O3 NPs溶解出的La3+明顯高于CeO2NPs溶解出的Ce3+,因此推測La2O3 NPs對黃瓜的毒性來源于溶解出的La3+。Zhang[27]和Rui等[20]發(fā)現(xiàn),對于靈敏度較高的生菜來說,CeO2 NPs釋放的Ce3+是造成其毒性的原因。Miralles等[21]報(bào)道指出CeO2 NPs產(chǎn)生植物毒性的關(guān)鍵因素是Ce3+的釋放。在植物生長過程中,根系會分泌大量有機(jī)酸(檸檬酸、乙酸、草酸等)[28]及還原性物質(zhì)(還原糖、酚類化合物)[29],這些物質(zhì)會促進(jìn)NPs的溶解,如反應(yīng)式(1)、(2)、(3)[26]。但Chen等[22]研究發(fā)現(xiàn)Nd2O3 NPs在1/5 Hoagland溶液中能夠溶解出Nd3+,同時(shí)設(shè)置溶出Nd3+濃度試驗(yàn)處理,但結(jié)果發(fā)現(xiàn)Nd2O3 NPs對南瓜的毒性是由NPs本身引起而非溶解出的Nd3+。這可能是由于不同REO NPs的溶解性、溶出離子毒性、植物敏感性以及環(huán)境條件不同所致。
1.2 REO NPs吸附吸收致毒
NPs具有較大的比表面積,更容易吸附在植物表面。較小的粒徑,使其更容易進(jìn)入細(xì)胞內(nèi)部,與細(xì)胞器相互作用,影響生物正常的生理代謝。Ma等[48]研究發(fā)現(xiàn),2 000 mg·L-1的La2O3 NPs暴露在水培黃瓜體系,通過TEM-EDS發(fā)現(xiàn),在細(xì)胞間隙、胞間層以及細(xì)胞內(nèi)部的細(xì)胞質(zhì)和大液泡內(nèi)均檢測到La元素,P和La的相關(guān)性為0.997 6,原子比接近1,證實(shí)以LaPO4的形式存在。Chen等[22]發(fā)現(xiàn),100 mg·L-1 Nd2O3NPs能夠進(jìn)入細(xì)胞,造成葉綠體膜的損傷,從而導(dǎo)致南瓜葉片黃化。Rui等[20]在探究磷酸鹽對植物組織中CeO2 NPs轉(zhuǎn)化的影響時(shí)發(fā)現(xiàn),有無磷酸鹽存在時(shí),分別在黃瓜外表皮和細(xì)胞間隙、大液泡檢測到針刺狀的CePO4。Zhao等[51]通過FITC標(biāo)記CeO2? NPs,在玉米根表皮、內(nèi)皮、皮層和木質(zhì)部發(fā)現(xiàn)CeO2 NPs,地上部也檢測到Ce,從而得出結(jié)論,CeO2NPs通過蒸騰作用進(jìn)入轉(zhuǎn)運(yùn)系統(tǒng)并通過木質(zhì)部的驅(qū)動進(jìn)行轉(zhuǎn)移。Rico等[52]也發(fā)現(xiàn),Ce可以被根部吸收并且轉(zhuǎn)移到可食用的組織。
1.3 REO NPs誘導(dǎo)產(chǎn)生活性氧致毒
目前研究普遍認(rèn)為活性氧(Reactive Oxygen Species,ROS)、氧化脅迫以及脂質(zhì)過氧化是納米顆粒產(chǎn)生毒性效應(yīng)的重要機(jī)制之一[52-53]。Cabiscol等[54]報(bào)道,NPs能夠產(chǎn)生ROS,引起脂質(zhì)過氧化,使細(xì)胞膜的透性發(fā)生改變,從而影響植物對營養(yǎng)物質(zhì)的獲取。金屬離子對植物細(xì)胞的生化過程,電子傳遞鏈的干擾會產(chǎn)生ROS[55]。NPs本身的活性較強(qiáng),在吸收能量或接觸生物體內(nèi)的電子供體時(shí)也會導(dǎo)致細(xì)胞內(nèi)ROS的產(chǎn)生[56]。一般情況下,基態(tài)氧會轉(zhuǎn)化成1O2、O-2、OH·、H2O2等物質(zhì)[57-58]。C60和ZnO等納米顆粒在光照條件下,能夠發(fā)生如下反應(yīng)[式(4)],產(chǎn)生ROS[59]。通過檢測ROS濃度,可探究NPs的暴露對植物毒理學(xué)影響 [58, 60-63]。生物體內(nèi)的ROS如果不能及時(shí)清除,將會對生物體產(chǎn)生氧化脅迫,導(dǎo)致膜脂過氧化、細(xì)胞器損傷、細(xì)胞結(jié)構(gòu)破壞、DNA損傷,產(chǎn)生遺傳毒性[40]等。這一過程主要包括3個階段 [13,64]:①低水平的氧化脅迫,轉(zhuǎn)錄引子Nrf2調(diào)節(jié)抗氧化酶、解毒酶等組成的抗氧化防御系統(tǒng),抵抗過氧化脅迫;②高水平的氧化脅迫,ROS刺激細(xì)胞中敏感性的酶,發(fā)出保護(hù)性的促炎反應(yīng);③最高水平的氧化脅迫,膜脂質(zhì)過氧化,線粒體損傷,細(xì)胞功能喪失,直至引起細(xì)胞的調(diào)亡。Ma等[65]報(bào)道,1 000、2 000 ppm CeO2 NPs處理擬南芥,葉綠素含量較對照分別降低60%、85%,其中擬南芥中谷胱甘肽的表達(dá)也發(fā)生改變。Majumdar等[66]發(fā)現(xiàn),CeO2 NPs可以通過干擾菜豆的抗氧化防御機(jī)制從而產(chǎn)生植物毒性。
植物和納米顆粒相互作用的過程中,NPs會吸附到植物根表,由于NPs較小的粒徑,因此植物組織的NPs可能會阻塞細(xì)胞壁小孔、胞間連絲和木質(zhì)部導(dǎo)管,影響水分、礦質(zhì)離子和有機(jī)物的運(yùn)輸[67-68],致使植物無法正常生長發(fā)育。
進(jìn)入環(huán)境中的REO NPs會受到環(huán)境因素的影響,從而改變REO NPs對植物的毒性效應(yīng)。REO NPs影響毒性效應(yīng)的因素主要包括:REO NPs自身性質(zhì)[69]、植物類型、環(huán)境因素(pH、DOM)等。Lee等[70]發(fā)現(xiàn),暴露介質(zhì)能夠明顯影響NPs生物毒性。此外,NPs濃度、暴露時(shí)間同樣影響NPs對植物的毒性效應(yīng)。
2.1 REO-NPs自身性質(zhì)的影響
納米級的粒徑,使REO NPs具有獨(dú)特的物理化學(xué)性質(zhì)。植物細(xì)胞壁、細(xì)胞膜、各類細(xì)胞器膜孔徑等也處于這一級別[71]。因此,與其他大顆粒材料相比,NPs可以直接透過細(xì)胞壁和細(xì)胞膜孔徑進(jìn)入植物細(xì)胞內(nèi)部,改變細(xì)胞膜透性,破壞細(xì)胞膜完整性,與細(xì)胞內(nèi)細(xì)胞器(內(nèi)質(zhì)網(wǎng)、液泡和吞噬體)[4]相互作用,隨后導(dǎo)致細(xì)胞和遺傳水平的毒性 [65,72]。另外,NPs也可以通過內(nèi)吞作用[64,73]或者主動運(yùn)輸[74]等方式進(jìn)入細(xì)胞內(nèi)部。
REO NPs表面帶有一定量的電荷 [75-76],因此,粒子與粒子之間、粒子與其他固體之間受到范德華引力和靜電作用影響,進(jìn)一步?jīng)Q定REO NPs在懸浮液中的存在狀態(tài)[77]。Limbach等[78]通過測量Zeta電位發(fā)現(xiàn),Hoagland′s溶液的離子能夠改變NPs的表面電荷,導(dǎo)致NPs快速形成大塊團(tuán)聚體。Chen等[22]研究發(fā)現(xiàn),單寧酸能夠吸附在Nd2O3 NPs表面,使NPs表面帶負(fù)電荷,加之植物根系表面附著的大量由D-半乳糖醛酸殘基組成的水合多糖使其也帶負(fù)電,兩者表面的負(fù)電荷從而降低了吸附在根表的Nd2O3 NPs含量,最終降低Nd2O3 NPs的毒性效應(yīng)。
2.2 植物類型對REO-NPs的毒性效應(yīng)影響
在基因和環(huán)境的共同作用下,植物具有不同的生理特征和組織結(jié)構(gòu),表現(xiàn)出不同的敏感性和耐受性。Ma等[25]通過不同植物根的伸長試驗(yàn),探究了4種REO NPs (CeO2、La2O3、Gd2O3、Yb2O3)對高等植物的潛在影響。2 000 mg·L-1 La2O3、Gd2O3、Yb2O3 NPs抑制了蘿卜、油菜、西紅柿、生菜、小麥、甘藍(lán)和黃瓜的根伸長,然而,從毒性大小來看,對生菜產(chǎn)生的毒性效應(yīng)明顯大于油菜和小麥。CeO2? NPs作為唯一的四價(jià)稀土氧化物,在相同濃度的處理下,只對生菜產(chǎn)生了明顯的抑制,對油菜和小麥物均沒有產(chǎn)生影響。Schwabe等[38]研究發(fā)現(xiàn),在CeO2 NPs處理下,小麥地上部未檢測到Ce元素,而在南瓜地上部卻檢測到含量比較高的Ce。Lópezmoreno等[79]研究發(fā)現(xiàn),相同濃度CeO2 NPs處理后,促進(jìn)了玉米和黃瓜根的生長,但卻抑制了苜蓿和番茄根的生長。也有相關(guān)報(bào)道發(fā)現(xiàn),土壤以CeO2形式存在的Ce在根際發(fā)生絡(luò)合反應(yīng)和氧化還原反應(yīng)致使玉米很難吸收CeO2[80-82]。
2.3 環(huán)境因子對REO-NPs毒性效應(yīng)的影響
目前,針對NPs毒性效應(yīng)的研究基本都在培養(yǎng)條件容易控制的實(shí)驗(yàn)室進(jìn)行,研究結(jié)果與外界環(huán)境條件可能會有一定的偏差。在自然水體中,進(jìn)入環(huán)境的納米顆粒會受到自然環(huán)境因素(如pH、DOM等)的影響,因此,NPs在環(huán)境中的遷移性和生物轉(zhuǎn)化也會因環(huán)境的改變而改變。DOM普遍存在于土壤和自然水體中,研究表明,低分子量的DOM可以增加REO NPs的懸浮性[83]。這主要是因?yàn)镈OM能夠吸附在NPs表面,改變NPs的表面電荷[84],使靜電力和空間排斥力增大,進(jìn)而提高NPs在環(huán)境中的穩(wěn)定性[85],最終影響NPs的在環(huán)境中的遷移和轉(zhuǎn)化[86]。研究表明,聚丙烯酸可通過增加空間排斥力來提高CeO2 NPs的穩(wěn)定性[75,87]。Schwabe等[38]研究發(fā)現(xiàn),檸檬酸能夠降低蘿卜組織對CeO2 NPs的積累,促進(jìn)蘿卜根系的生長,提高生物量。同樣的結(jié)果也出現(xiàn)在Collin等[88]的研究中,富里酸和阿拉伯樹膠均能夠降低CeO2 NPs在南瓜和小麥根部的積累。Zhao等[51]研究發(fā)現(xiàn),海藻酸包裹的CeO2 NPs增加了Ce在玉米根部的積累,但是和裸露的CeO2 NPs相比,前者降低了地上部Ce的含量。NPs的比表面積[89]及DOM的性質(zhì)[77,80]共同影響DOM吸附量。
REO NPs的植物毒性效應(yīng)也受到pH的影響,目前的文獻(xiàn)報(bào)道,植物根系分泌的有機(jī)酸會改變根系周圍環(huán)境的化學(xué)成分 [90-92]。Schwabe等[38]發(fā)現(xiàn),無論是CeO2 NPs單獨(dú)處理,還是CeO2 +有機(jī)質(zhì),小麥組pH升高,zeta電位降低,團(tuán)聚體增大;而南瓜組則株降低了pH值,CeO2+GA及CeO2 + FA的粒徑基本恒定,CeO2 NPs對小麥和南瓜均未產(chǎn)生毒性效應(yīng)。
3 REO NPs植物毒性研究存在問題及后期研究方向
3.1 存在問題
目前,稀土氧化物納顆粒生態(tài)毒理學(xué)研究取得了不少研究成果,但在REO NPs對植物毒性效應(yīng)及機(jī)理方面仍需進(jìn)行廣泛深入的研究,主要有以下幾個方面的問題:
(1)關(guān)于REO NPs毒性效應(yīng)及機(jī)理的研究中,選擇的污染物類型較少,以CeO2、La2O3 NPs居多,Nd2O3、Gd2O3、Yb2O3等稀土氧化物研究較少。
(2)目前,針對受試體主要為處于幼苗期的植物,生長周期較短,對植物整個生命周期的研究很少。
(3)在探究REO NPs機(jī)理時(shí),主要通過植物的一些生長、生理指標(biāo)反映其毒性效應(yīng)和機(jī)制,缺乏從分子生物學(xué)等微觀角度(如基因、蛋白組學(xué)等)深層次機(jī)理解釋。
(4)在目前的研究中,主要采取水培的方式來探究REO NPs對植物的毒性效應(yīng),而土培的研究相對較少;
(5)外界環(huán)境條件對REO NPs的環(huán)境行為及其生態(tài)毒性效應(yīng)影響很大,關(guān)于不同環(huán)境條件下REO NPs的環(huán)境遷移轉(zhuǎn)化與毒性機(jī)理研究較少。
3.2 后期研究方向
因此,關(guān)于REO NPs的相關(guān)研究后期可以從以下幾個方面展開:
(1)加強(qiáng)利用同步輻射X射線吸收近邊結(jié)構(gòu)(XANEs)研究不同REO NPs處理下植物組織中NPs的存在形態(tài),為更加清晰地闡述REO NPs的致毒機(jī)理提供充分的依據(jù)。
(2)開展植物全生命周期生物指標(biāo)、分子生物學(xué)研究,從基因、蛋白組學(xué)等角度進(jìn)行研究,為闡明REO-NPs毒性機(jī)理提供深層次的科學(xué)解釋。
(3)強(qiáng)化采用土培方式開展研究,彌補(bǔ)當(dāng)前土培研究的不足,為探究REO NPs在土壤中遷移轉(zhuǎn)化及植物毒性效應(yīng)提供更多數(shù)據(jù)資料和參考,也可以使研究成果更易于指導(dǎo)生產(chǎn)實(shí)踐。
(4)加強(qiáng)外界環(huán)境條件對REO NPs的環(huán)境行為、生態(tài)毒性效應(yīng)及機(jī)理的研究,探明不同環(huán)境條件下REO NPs的環(huán)境行為及其生態(tài)毒性效應(yīng)。
參考文獻(xiàn):
[1]LEAD J R, BATLEY G E, ALVAREZ P J J, et al.Nanomaterials in the environment: behavior, fate, bioavailability, and effects-an updated review,2018:2029-2063.
[2]AUFFAN M, ACHOUAK W, ROSE J, et al.Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli[J]. Environmental Science & Technology, 2008,42(17):6730-6735.
[3]AUFFAN M, ROSE J, PROUX O, et al.Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity[J]. Langmuir, 2008,24(7):3215-3222.
[4]NEL A, XIA T, MDLER L, et al.Toxic potential of materials at the nanolevel[J]. Science, 2006,311(5761):622-627.
[5]GEOFF B.Nanotechnology: A little knowledge[J]. Nature, 2003,424(6946):246-248.
[6]SERVICE R.American Chemical Society meeting. Nanomaterials show signs of toxicity[J]. Science (New York, NY), 2003, 300(5617):243.
[7]NATASHA G.Nanoparticle safety in doubt[J]. Nature, 2009,460(7258):937.
[8]SONG Y, LI XDU X.Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma[J]. European Respiratory Journal, 2009,34(3):559-567.
[9]OBERDRSTER G, OBERDRSTER EOBERDRSTER J.Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspectives, 2005,113(7):823-839.
[10]PATIL S, KUIRY S, SEAL S, et al.Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating[J]. Journal of Nanoparticle Research, 2002,4(5):433-438.
[11]CORMA A, ATIENZAR P, GARCIA H, et al.Hierarchically mesostructured doped CeO2 with potential for solar-cell use[J]. Nature Materials, 2004,3(6):394.
[12]JUDY J D, UNRINE J MBERTSCH P M.Evidence for biomagnification of gold nanoparticles within a terrestrial food chain[J]. Environmental Science & Technology, 2010,45(2):776-781.
[13]王震宇, 趙建, 李娜, 等, 人工納米顆粒對水生生物的毒性效應(yīng)及其機(jī)制研究進(jìn)展[J]. 環(huán)境科學(xué), 2010,31(6):1409-1418.
WANG Z Y, ZHAO J, LI N, et al. Review of Ecotoxicity and Mechanism of Engineered Nanoparticles to Aquatic Organisms[J]. Environmental Science, 2010,31(6):1409-1418.(in Chinese)
[14]MA? X, GEISER-LEE J, DENG Y, et al.Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation[J]. Science of the Total Environment, 2010,408(16):3053-3061.
[15]STEGEMEIER J P, COLMAN B P, SCHWAB F, et al.Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles[J]. Environmental Science & Technology, 2017,51(9):4936-4943.
[16]LIN D,XING B.Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environmental Science & Technology, 2008,42(15):5580-5585.
[17]王震宇, 于曉莉, 高冬梅, 等, 人工合成納米 TiO2和 MWCNTs 對玉米生長及其抗氧化系統(tǒng)的影響[J]. 環(huán)境科學(xué), 2010,31(2). 480-487.
WANG Z Y,YU X L,GAO D M,et al.Effect of nano-rutile TiO2 and multi-walled carbon nanotubeson the growth of maize(Zeamays L.)seedlings and the relev antantioxidant response [J]. Environmental Science, 2010,31(2). 480-487.(in Chinese)
[18]ASLI SNEUMANN P M.Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant Cell & Environment, 2009,32(5):577-584.
[19]金盛楊, 王玉軍, 汪鵬, 等, 納米氧化銅對小麥根系生理生化行為的影響[J]. 土壤, 2011,43(4):605-610.
JIN S Y, WANG Y J, WANG P, et al.Effects of CuO Nanoparticles on Physiological and Biochemical Behaviors of Wheat (Triticum aestivum L.) Root [J]. Soils, 2011,43(4):605-610.(in Chinese)
[20]RUI Y, ZHANG P, ZHANG Y, et al.Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate[J]. Environmental Pollution, 2015,198:8-14.
[21]MIRALLES P, CHURCH T LHARRIS A T.Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science & Technology, 2012,46(17):9224-9239.
[22]CHEN G, MA C, MUKHERJEE A, et al.Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response[J]. Nanotoxicology, 2016,10(9): 1243-1253.
[23]LIMAN R, ACIKBAS YCIGˇERCI? H, Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests[J]. Ecotoxicology and Environmental Safety, 2019, 168:408-414.
[24]ZHANG Z, HE X, ZHANG H, et al.Uptake and distribution of ceria nanoparticles in cucumber plants[J]. Metallomics, 2011, 3(8): 816-822.
[25]MA Y, KUANG L, HE X, et al.Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 2010, 78(3): 273-279.
[26]MA Y, ZHANG P, ZHANG Z, et al.Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber[J]. Nanotoxicology, 2015, 9(2): 262-270.
[27]ZHANG P, MA Y H,ZHANG Z Y.Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation, in Nanotechnology and Plant Sciences[J]. Springer,? 2015:77-99.
[28]JONES D L.Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205(1): 25-44.
[29]WANG Z, XIE X, ZHAO J, et al.Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.)[J]. Environmental Science & Technology, 2012, 46(8): 4434-4441.
[30]ZHAO L, SUN Y, HERNANDEZ-VIEZCAS J A, et al.Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels[J]. Environmental Science & Technology, 2015, 49(5): 2921-2928.
[31]ZHAO L, PENG B, HERNANDEZ-VIEZCAS J A, et al.Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation[J]. ACS Nano, 2012, 6(11): 9615-9622.
[32]RAHMAN N A,AROSLI W I W. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn[J]. Journal of King Saud University-Science, 2014, 26(2): 119-127.
[33]LIU Y, XU L,DAI Y. Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.)[C]//in IOP Conference Series: Earth and Environmental Science, 2018, IOP Publishing.
[34]YUE L, MA C, ZHAN X, et al.Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction[J]. Environmental Science: Nano, 2017, 4(4): 843-855.
[35]ZHANG W, MUSANTE C, WHITE J C, et al. Bioavailability of cerium oxide nanoparticles to Raphanus ??? sativus L. in two soils.[J]. Plant physiology and biochemistry, 2017,110: 185-193.
[36]TRUJILLO-REYES J, VILCHIS-NESTOR A, MAJUMDAR S, et al.Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings[J]. Journal of Hazardous Materials, 2013, 263, 677-684.
[37]LPEZ-MORENO M L, DE LA ROSA G, HERNNDEZ-VIEZCAS J , et al.Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environmental Science & Technology, 2010, 44(19): 7315-7320.
[38]SCHWABE F, SCHULIN R, LIMBACH L K, et al.Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture[J]. Chemosphere, 2013, 91(4): 512-520.
[39]PRIESTER J H, GE Y, MIELKE R E, et al.Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption[J]. Proceedings of the National Academy of Sciences, 2012, 109(37): E2451-E2456.
[40]WANG Q, MA X, ZHANG W, et al.The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety[J]. Metallomics, 2012, 4(10): 1105-1112.
[41]ZHAO L, SUN Y, HERNANDEZ-VIEZCAS J A, et al.Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study[J]. Journal of Agricultural and Food Chemistry, 2013, 61(49): 11945-11951.
[42]MA Y, ZHANG P, ZHANG Z, et al. Where does the transformation of precipitated ceria nanoparticles in ??? hydroponic plants take place?[J]. Environmental Science & Technology, 2015,49(17): 10667-10674.
[43]ZHANG P, MA Y, LIU S, et al. Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured ??? romaine lettuce[J]. Environmental Pollution, 2017,220:1400-1408.
[44]MA Y, HE X, ZHANG P, et al. Xylem and phloem based transport of CeO2 nanoparticles in hydroponic ??? cucumber plants[J]. Environmental Science & Technology, 2017,51(9):5215-5221.
[45]ZHANG P, MA Y, ZHANG Z, et al. Species-specific toxicity of ceria nanoparticles to Lactucaplants[J]. Nanotoxicology, 2015,9(1): 1-8.
[46]BARRIOS A C, RICO C M, TRUJILLO-REYES J, et al. Effects of uncoated and citric acid coated cerium ??? oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants[J]. Science of the ??? Total Environment, 2016,563: 956-964.
[47]RICO C M, JOHNSON M G, MARCUS M A, et al.Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure[J]. Environmental Science: Nano, 2017, 4(3): 700-711.
[48]MA Y, HE X, ZHANG P, et al.Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus)[J]. Nanotoxicology, 2011, 5(4): 743-753.
[49]DE LA TORRE ROCHE R, SERVIN A, HAWTHORNE J, et al. Terrestrial trophic transfer of bulk and ??? nanoparticle La2O3 does not depend on particle size[J]. Environmental Science & Technology, 2015,49(19):11866-11874.
[50]ZHANG P, MA Y, ZHANG Z, et al.Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus)[J]. Environmental Science & Technology, 2012, 46(3): 1834-1841.
[51]ZHAO L, PERALTA-VIDEA J R, VARELA-RAMIREZ A, et al.Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism[J]. Journal of Hazardous Materials, 2012, 225, 131-138.
[52]RICO C M, MORALES M I, BARRIOS A C, et al.Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains[J]. Journal of Agricultural and Food Chemistry, 2013, 61(47): 11278-11285.
[53]OBERDRSTER G, STONE VDONALDSON K.Toxicology of nanoparticles: a historical perspective[J]. Nanotoxicology, 2007, 1(1): 2-25.
[54]CABISCOL CATAL E, TAMARIT SUMALLA J,ROS SALVADOR J.Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. International Microbiology the Official Journal of the Spanish Society for Microbiology, 2000, 3(1): 3-8.
[55]SHARMA S SDIETZ K-J.The relationship between metal toxicity and cellular redox imbalance[J]. Trends in Plant Science, 2009, 14(1): 43-50.
[56]KOVACIC P,SOMANATHAN R.Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(12): 7919-7930.
[57]GILL S STUTEJA N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant physiology and Biochemistry, 2010, 48(12): 909-930.
[58]SHARMA P, JHA A B, DUBEY R S, et al.Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botany, 2012,2012.
[59]LEE J, FORTNER J D, HUGHES J B, et al.Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation[J]. Environmental Science & Technology, 2007, 41(7): 2529-2535.
[60]BEGUM P,F(xiàn)UGETSU B.Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant[J]. Journal of Hazardous Materials, 2012, 211(14):S119.
[61]NAIR R, VARGHESE S H, NAIR B G, et al.Nanoparticulate material delivery to plants[J]. Plant Science, 2010, 179(3): 154-163.
[62]RICO C M, MORALES M I, MCCREARY R, et al.Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings[J]. Environmental Science & Technology, 2013, 47(24): 14110-14118.
[63]RICO C M, HONG J, MORALES M I, et al.Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging[J]. Environmental Science & Technology, 2013, 47(11): 5635-5642.
[64]XIA T, KOVOCHICH M, LIONG M, et al.Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2007, 2(1): 85-96.
[65]MA C, CHHIKARA S, XING B, et al.Physiological and molecular response of Arabidopsis thaliana L. to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 768-778.
[66]MAJUMDAR S, PERALTA-VIDEA J R, BANDYOPADHYAY S, et al.Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms[J]. Journal of Hazardous Materials, 2014, 278:279-287.
[67]PERALTA-VIDEA J R, HERNANDEZ-VIEZCAS J A, ZHAO L, et al.Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants[J]. Plant Physiology and Biochemistry, 2014, 80:128-135.
[68]張海, 彭程, 楊建軍, 等. 金屬型納米顆粒對植物的生態(tài)毒理效應(yīng)研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2013(3): 885-892.
ZHANG H, PENG C, YANG J J,et al. Eco-toxicological effect of metal-based nanoparticles on plants: Research progress[J].Chinese Journal of Applied Ecology,2013(3):885-892.(in Chinese)
[69]KHODAKOVSKAYA M V, DE SILVA K, BIRIS A S, et al.Carbon nanotubes induce growth enhancement of tobacco cells[J]. ACS Nano, 2012, 6(3): 2128-2135.
[70]LEE W-M, KWAK J IAN Y-J.Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity[J]. Chemosphere, 2012, 86(5): 491-499.
[71]PORTER A E, GASS M, MULLER K, et al.Direct imaging of single-walled carbon nanotubes in cells[J]. Nature Nanotechnology, 2007, 2(11): 713.
[72]JIA G, WANG H, YAN L, et al.Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene[J]. Environmental Science & Technology, 2005, 39(5): 1378-1383.
[73]MAYSINGER D, LOVRIC' J, EISENBERG A, et al.Fate of micelles and quantum dots in cells[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65(3): 270-281.
[74]ORR G, PANTHER D J, PHILLIPS J L, et al.Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells[J]. ACS Nano, 2007, 1(5): 463-475.
[75]LIMBACH L K, BEREITER R, MULLER E, et al.Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency[J]. Environmental Science & Technology, 2008, 42(15): 5828-5833.
[76]LIMBACH L K, LI Y, GRASS R N, et al.Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations[J]. Environmental Science & Technology, 2005, 39(23): 9370-9376.
[77]HOTZE E M, PHENRAT TLOWRY G V.Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment[J]. Journal of Environmental Quality, 2010, 39(6): 1909-1924.
[78]LIMBACH L K, GRASS R NSTARK W J.Physico-chemical differences between particle-and molecule-derived toxicity: Can we make inherently safe nanoparticles?[J]. CHIMIA International Journal for Chemistry, 2009, 63(1-2): 38-43.
[79]LPEZ-MORENO M L, DE LA ROSA G, HERNáNDEZ-VIEZCAS J A, et al.XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species[J]. Journal of Agricultural and Food Chemistry, 2010, 58(6): 3689.
[80]BIRBAUM K, BROGIOLI R, SCHELLENBERG M, et al.No evidence for cerium dioxide nanoparticle translocation in maize plants[J]. Environmental Science & Technology, 2010, 44(22): 8718-8723.
[81]WYTTENBACH A, FURRER V, SCHLEPPI P, et al.Rare earth elements in soil and in soil-grown plants[J]. Plant and Soil, 1998, 199(2): 267-273.
[82]XU X, ZHU W, WANG Z, et al.Accumulation of rare earth elements in maize plants (Zea mays L.) after application of mixtures of rare earth elements and lanthanum[J]. Plant and Soil, 2003, 252(2): 267-277.
[83]NAVARRO E, BAUN A, BEHRA R, et al.Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17(5): 372-386.
[84]QUIK J T, LYNCH I, VAN HOECKE K, et al.Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water[J]. Chemosphere, 2010, 81(6): 711-715.
[85]DOMINGOS R F, TUFENKJI N,WILKINSON K J.Aggregation of titanium dioxide nanoparticles: role of a fulvic acid[J]. Environmental Science & Technology, 2009, 43(5): 1282-1286.
[86]GHOSH S, MASHAYEKHI H, BHOWMIK P, et al.Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids[J]. Langmuir, 2009, 26(2): 873-879.
[87]SEHGAL A, LALATONNE Y, BERRET J-F, et al.Precipitation Redispersion of Cerium Oxide Nanoparticles with Poly (acrylic acid): Toward Stable Dispersions[J]. Langmuir, 2005, 21(20): 9359-9364.
[88]COLLIN B, OOSTVEEN E, TSYUSKO O V, et al.Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans[J]. Environmental Science & Technology, 2014, 48(2): 1280-1289.
[89]YANG KXING B.Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution, 2009, 157(4): 1095-1100.
[90]HYUNG H,KIM J-H.Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12): 4416-4421.
[91]ROVIRA A D.Plant root exudates[J]. The Botanical Review, 1969, 35(1): 35-57.
[92]JONES D L,DARRAH P R.Role of root derived organic acids in the mobilization of nutrients from the rhizosphere[J]. Plant and Soil, 1994, 166(2): 247-257.
(責(zé)任編輯:張 梅)