国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類非線性離散擾動系統(tǒng)的反周期解

2019-09-10 07:22孟鑫

摘要:研究了一類具有指數(shù)型二分性非線性離散擾動系統(tǒng)的反周期解.應(yīng)用Banach不動點定理,給出了非線性離散擾動系統(tǒng)存在唯一反周期解的充分條件,并通過例子說明了主要結(jié)論在實際問題中的應(yīng)用.

關(guān)鍵詞:擾動系統(tǒng); 指數(shù)型二分性; 反周期解;Banach不動點定理

中圖分類號:0175.7

文獻(xiàn)標(biāo)志碼:A DOI: 10.3969/j.issn.1000-5641.2019.06.001

0 引言

指數(shù)型二分性是線性自治方程雙曲率概念在非自治方程中的推廣,它是研究非線性微分方程以及非自治離散動力系統(tǒng)的重要工具.指數(shù)型二分性理論是由Lyapunov和Poincare最先提出的,隨后指數(shù)型二分性理論被廣泛應(yīng)用到微分方程定性與穩(wěn)定性等領(lǐng)域之中[1-4].離散動力系統(tǒng)的指數(shù)型二分性理論同樣是眾多學(xué)者所研究的重要問題,關(guān)于指數(shù)型二分性在離散動力系統(tǒng)中的應(yīng)用,已經(jīng)有了一些基本的結(jié)論[5-9].

近年來,反周期系統(tǒng)的反周期解問題引起了國內(nèi)外一些學(xué)者的關(guān)注[10-17].動力系統(tǒng)的反周期問題常出現(xiàn)在物理過程的數(shù)學(xué)模型中以及偏微分方程和抽象微分方程的研究中.但是,由于離散動力系統(tǒng)不僅可能存在一些更復(fù)雜的動力學(xué)行為,并且缺少必要的研究工具.所以關(guān)于離散動力系統(tǒng)反周期解問題的研究結(jié)果不多見.如文獻(xiàn)[10-11].

[參考文獻(xiàn)]

[1]COPPEL W A. Dichotomies in Stability Theory [M]. New York: Springer-Verlag, 1978.

[2]CHURCH K, LIU X. Bifurcation of bounded solutions of impulsive differential equations [J] . International Journalof Bifurcation and Chaos, 2016, 26(14): 1-20.

[3]PINTO M. Dichotomy and existence of periodic solutions of quasilinear functional differential equations [J].Nonlinear Analysis, 2010, 72(3): 1227-1234.

[4]RODRIGUES H M, SILVERIA M. On the relationship between exponential dichotomies and the Fredholmalternative [J]. J Differential Equations, 1988, 73(3): 78-81.

[5] BEREZANSKY L, BRAVERMAN E. On exponential dichotomy, Bohl-Perron type thorems and stability ofdifference equations [J]. J Math Anal Appl, 2005, 304(2): 511-530.

[6]DRAGICEVIC D. A note on the nonuniform exponential stability and dichotomy for nonautonomous differenceequations [J]. Linear Algebra and Its Applications, 2018, 552(1): 105-126.

[7]AULBACH B, MINH N. The concept of spctral dichotomy for linear difference equations [J] . J Math Anal Appl,1994, 185(2): 275-287.

[8]HUY N T, MINH N V. Exponential dichotomy of difference equations and applications to evolution equations on the half-line [Jl Computers & Mathematics with Applications, 2001, 42(3/5): 301-311.

[9]ZHANG J, FAN M, ZHU H. Existence and roughness of exponential dichotomies of linear dynamic equations ontime scales [J]. Computers & Mathematics with Applications, 2010, 59(8): 2658-2675.

[10]AGARWAL R P, CABADA A, OTERO-ESPINAR V. Existence and uniqueness results for n-th order nonlineardifference equations in presence of lower and upper solutions [Jl Arch Inequal Appl, 2003: 1(3/4): 421-431.

[11] AGARWAL R P, CABADA A, OTERO-ESPINAR V, et al. Existence and uniqueness of solutions for anti- periodic difference equations [J]. Arch Inequal Appl, 2004, 2(4): 397-412.

[12] KUANG J, YANG Y. Variational approach to anti-periodic boundary value problems involving the discretep-Laplacian [J]. Boundary Value Problems, 2018(1): 86.

[13] LU X, YAN P, LIU D. Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations withdelays [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(11): 3593-3598.

[14] CHEN Y Q, CHO J, O'REGAN D. Anti-periodic solutions for evolution equations [J]. Math Nachr, 2005: 278(4) :356362.

[15] HADJIAN A, HEIDARKHANI S. Existence of one non-trivial anti-periodic solution for second-order impulsivedifferential inclusions [Jl Mathematical Methods in the Applied Science, 2017, 40(14): 5009-5017.

[16] PU H, YANG J. Existence of anti-periodic solutions with symmetry for some high-order ordinary differentialequations [J]. Boundary Value Problems, 2012(1): 108.

[17] CHEN Z. Global exponential stability of anti-periodic solutions for neutral type CNNs with D operator [J].International Journal of Machine Learning and Cybernetics, 2018, 9(7): 1109-1115.

收稿日期:2018-09-13

基金項目:國家自然科學(xué)基金(10971084);吉林省教育廳“十三五”科學(xué)技術(shù)項目(JJKH20170368KJ);吉林師范大學(xué)博士啟動項目(吉師博2016002號)

作者簡介:孟鑫,男,博士,副教授,研究方向為動力系統(tǒng).E-mail: mqym@sina.cn.

黄大仙区| 武邑县| 迭部县| 庆阳市| 徐州市| 迁安市| 龙山县| 福海县| 四会市| 高雄市| 盘山县| 旬阳县| 天津市| 孝义市| 五常市| 灵山县| 福贡县| 历史| 新疆| 额尔古纳市| 改则县| 蒲城县| 信宜市| 上蔡县| 汪清县| 雷山县| 云浮市| 兴宁市| 双鸭山市| 台州市| 天全县| 游戏| 宜都市| 威信县| 裕民县| 松滋市| 镇雄县| 丹棱县| 雷山县| 筠连县| 太康县|