李軍 馮世文 曾蕓 謝宇舟 彭昊 潘艷 賀會利 鐘舒紅 胡帥
摘要:【目的】分析大腸桿菌O157:H7氟苯尼考耐藥菌株與敏感菌株的差異表達蛋白,從蛋白組學層面揭示大腸桿菌O157:H7對氟苯尼考耐藥性的產(chǎn)生機制?!痉椒ā刻崛〈竽c桿菌O157:H7氟苯尼考耐藥菌株(RS2-256)和敏感菌株(RS2)的全菌蛋白,經(jīng)同位素標記相對和絕對定量(iTRAQ)標記后進行液相色譜串聯(lián)質(zhì)譜(LC-MS/MS)分析,質(zhì)譜數(shù)據(jù)通過Mascot v2.2鑒定,并根據(jù)COGs數(shù)據(jù)庫對差異表達蛋白進行GO功能注釋和分類?!窘Y(jié)果】RS2菌株獲得3385個肽段,RS2-256菌株獲得3955個肽段,合計7340個肽段,其中6975個肽段為特有肽段,分屬于1039個蛋白。與RS2菌株相比,RS2-256菌株有145個蛋白表達差異顯著(P<0.05),占檢測蛋白總數(shù)的13.96%,其中,上調(diào)表達蛋白有87個、下調(diào)表達蛋白有58個。表達差異蛋白按照功能進行分類,可分為外排泵、轉(zhuǎn)運蛋白、細胞膜形成、應激調(diào)控、核糖體結(jié)構(gòu)、DNA復制、轉(zhuǎn)錄、翻譯、翻譯后修飾、能量產(chǎn)生和轉(zhuǎn)化、氨基酸轉(zhuǎn)運和代謝、輔酶轉(zhuǎn)運和代謝、糖轉(zhuǎn)運和代謝、脂肪代謝、離子轉(zhuǎn)運和代謝、細菌運動性、轉(zhuǎn)座及信號通路共18類;多藥物外排泵亞基AcrA和AcrB、外膜蛋白TolC、外膜蛋白X等52個蛋白的表達變化在3.00倍以上,占表達差異蛋白總數(shù)的35.86%?!窘Y(jié)論】外排泵AcrAB-TolC家族、ABC家族、外膜蛋白、毒性調(diào)節(jié)器B、饑餓蛋白等在大腸桿菌O157:H7對氟苯尼考耐藥性產(chǎn)生過程中發(fā)揮重要作用,同時涉及細菌糖代謝、氨基酸代謝、離子轉(zhuǎn)運、DNA損傷與修復、生物膜及毒素與抗毒素系統(tǒng)等生命活動。
關(guān)鍵詞: 大腸桿菌O157:H7;氟苯尼考;耐藥性;差異表達蛋白;iTRAQ技術(shù)
中圖分類號: S852.612? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2019)04-0875-08
Abstract:【Objective】This study was to identify differentially expressed proteins in Escherichia coli O157:H7 between florfenicol-resistant strain and florfenicol-sensitive strain, and reveal the resistance mechanism of E. coli O157:H7 against flunicol from protein level. 【Method】Complete bacterial proteins were extracted from florfenicol-resistant strain (RS2-256) and florfenicol-sensitive strain(RS2) of E. coli O157:H7, and labelled with isobaric tags for relative and absolute quantification(iTRAQ) reagent. Different expression proteins were identified and quantified with liquid chromatography tandem mass spectrometry(LC-MS/MS). The mass spectrometry data was identified and analyzed with Mascot v2.2. GO functional annotation and classification analysis of differentially expressed proteins were performed according to COGs database. 【Result】The RS2 strain obtained 3385 peptides, and the RS2-256 strain obtained 3955 peptides, a total of 7340 peptides, of which 6975 peptides were specific peptides belonging to 1039 proteins. Compared with RS2 strain, expressions of 145 proteins of RS2-256 strain were significantly different(P<0.05), accounting for 13.96% of the total protein detected, among which 87 proteins were up-regulated and 58 proteins were down-regulated. The differentially expressed proteins could be divided into 18 categories according to their functions:efflux pump, transporters, cell membrane biogenesis, stress control, the structure of the ribosome, DNA replication, transcription, translation, posttranslational modification, energy production and conversion, amino acid transport and metabolism, coenzyme transport and metabolism, sugar transport and metabolism, fat metabolism, ion transport and metabolism, bacterial motility, translocation, signaling pathways and metabolism. The expression of 52 proteins, including multidrug efflux pump subunits acrA and acrB, outer membrane protein TolC and outer membrane protein X, varied more than 3.00 times, accounting for 35.86% of the total number of differentially expressed proteins. 【Conclusion】The results show that various mechanisms such as the efflux pump AcrAB-TolC family, ABC family, outer membrane protein, toxicity regulator B, starvation protein play important roles in the development of resistance of E. coli O157:H7 to fluorbenicol. At the same time, it involves bacterial glucose metabolism, amino acid metabolism, ion transport, DNA damage and repair, biofilm, toxin and antitoxin systems and other life activities.
Key words: Escherichia coli O157:H7; florfenicol; disease resistance; differentially expressed protein; iTRAQ technique
0 引言
【研究意義】大腸桿菌O157:H7是一種人獸共患病原菌,致病力強,通過食源性途徑感染人類后引起腹瀉或出血性腸炎,且極易繼發(fā)溶血性尿毒綜合癥和血栓性血小板減少性紫癜等并發(fā)癥(李軍等,2011)。氟苯尼考是獸醫(yī)臨床上治療細菌性疾病的一種專用抗菌藥物,主要通過與細菌70S核蛋白體50S亞基上的A位點結(jié)合,抑制細菌肽?;D(zhuǎn)移酶的轉(zhuǎn)肽反應,致使肽鏈無法延伸而抑制細菌蛋白合成,發(fā)揮抗菌作用(陳曉慧等,2006)。目前,獸醫(yī)臨床上尚無有效疫苗可用于大腸桿菌病防控,抗菌藥物仍是防治大腸桿菌的首選,但調(diào)查發(fā)現(xiàn)大腸桿菌已對氟苯尼考產(chǎn)生嚴重的耐藥性(馮世文等,2017;余波等,2017)。因此,研究大腸桿菌O157:H7對氟苯尼考產(chǎn)生耐藥的機制,對繼續(xù)發(fā)揮氟苯尼考的抗菌作用極其重要?!厩叭搜芯窟M展】目前,科技人員主要從耐藥基因調(diào)節(jié)、接合轉(zhuǎn)移等層面揭示氟苯尼考耐藥性的產(chǎn)生機制。Tao等(2012)研究證實,estDL136基因編碼的醋酸酯酶可水解氟苯尼考和氯霉素的酰胺鍵,使其失去抗菌活性。此外,以表達estDL136的質(zhì)粒轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細胞可獲得對氟苯尼考和氯霉素的抗性,二者對大腸桿菌的最小抑菌濃度(MIC)由15 mg/L升高至128 mg/L(Tao et al.,2012)。floR和fexA基因是介導氟苯尼考耐藥的主要基因(Wu et al.,2006;Dai et al.,2010;李帆等,2018),其編碼的外排泵能特異性將氟苯尼考泵出體外(Kadlec et al.,2009;馮世文等,2014,2016);而ATP結(jié)合盒轉(zhuǎn)運體家族中的AcrAB-ToLC多藥物外排系統(tǒng)可低水平泵出氟苯尼考,尤其敲除acrB和tolC基因后,細菌對氟苯尼考的敏感性明顯降低(Baucheron et al.,2004)。此外,細菌可通過改變藥物結(jié)合靶位點的結(jié)構(gòu)而對氟苯尼考產(chǎn)生耐藥性。已有研究證實,cfr基因編碼的核糖體RNA甲基轉(zhuǎn)移酶作用于細菌70S核糖體50S亞基的23S rRNA核苷酸A2503位點和C2498位點,在甲基化A2503位點的同時抑制C2498位點甲基化,促使氟苯尼考和氯霉素的結(jié)合位點發(fā)生構(gòu)型改變,而無法發(fā)揮其抑制蛋白合成的作用(Schwarz et al.,2000;Kehrenberg et al.,2005)。【本研究切入點】從蛋白組學層面進行研究不僅可進一步確定基因功能,還能挖掘到一些未知的功能基因。同位素標記相對和絕對定量(isobaric tags for relative and absolute quantitation,iTRAQ)的定量效果好、重復性高,具有高通量、結(jié)果直觀、不限定樣本類型和數(shù)據(jù)可靠的優(yōu)勢,在細菌學研究中主要用于尋找差異表達蛋白(Carvalhais et al.,2015),但至今鮮見采用iTRAQ技術(shù)從蛋白組學層面研究細菌對氟苯尼考的耐藥機制?!緮M解決的關(guān)鍵問題】利用iTRAQ技術(shù)結(jié)合液相色譜串聯(lián)質(zhì)譜(LC-MS/MS)分析大腸桿菌O157:H7氟苯尼考耐藥菌株與敏感菌株間的差異表達蛋白,篩選出可能與耐藥性產(chǎn)生相關(guān)的差異表達蛋白,為深入研究大腸桿菌O157:H7對氟苯尼考產(chǎn)生耐藥的機制提供參考依據(jù)。
1 材料與方法
1. 1 試驗材料
大腸桿菌O157:H7氟苯尼考敏感菌株RS2(MIC為4 μg/mL)由廣西獸醫(yī)生物技術(shù)重點實驗室分離鑒定并保存提供(李軍等,2011),大腸桿菌O157:H7氟苯尼考耐藥菌株RS2-256(MIC為256 μg/mL)為RS2菌株經(jīng)氟苯尼考誘導后獲得(馮世文等,2015)。氟苯尼考原粉(含量99.9%)由廣西大學動物科學技術(shù)學院獸醫(yī)藥理與毒理學實驗室提供;MHA和MHB培養(yǎng)基購自北京陸橋技術(shù)股份有限公司;蛋白提取試劑RIPA裂解液、丙酮、過硫酸銨和SDS等購自美國Bio-Rad公司;iTRAQ? Reagent 8 Plex Chemistry試劑盒和TEAB等試劑購自美國ABI公司;Triple TOF 5600質(zhì)譜儀購自美國AB Sciex公司。
1. 2 蛋白樣品制備
將RS2和RS2-256菌株復蘇后,挑取單一菌落接種于MHB培養(yǎng)基上,37 ℃培養(yǎng)6 h后,按培養(yǎng)基總體積的10%進行接種。其中,RS2-256菌株處于氟苯尼考壓力下培養(yǎng),培養(yǎng)液含64 μg/mL氟苯尼考。37 ℃下?lián)u床(200 r/min)培養(yǎng),每隔1 h用微量分光光度計測定培養(yǎng)基的OD600,繪制菌株生長曲線。于生長對數(shù)期分別取RS2和RS2-256菌株培養(yǎng)液,經(jīng)低溫離心后收集菌體,滅菌預冷PBS洗滌3次,棄上清液,收集沉淀。參照謝宇舟等(2012)的方法提取RS2和RS2-256菌株的總蛋白。
1. 3 蛋白酶解及iTRAQ標記
每組蛋白樣品取100 μg,按20∶1(蛋白∶酶)的比例加入胰蛋白酶,37 ℃酶解4 h;重復1次,37 ℃再酶解8 h。真空凍干肽段后,加入含0.1% SDS的50% TEAB復溶。按iTRAQ? Reagent 8 Plex Chemistry試劑盒說明進行肽段標記,以iTRAQ 8 Plex 126標記RS2-256菌株、iTRAQ 8 Plex 127標記RS2菌株。
1. 4 標記肽段SCX分離和LC-MS/MS分析
加入8倍體積的SCX-A液,調(diào)節(jié)pH至3.0。用清水清洗柱子,平衡,除鹽,用0.1% FA復溶,最后進行LC-MS/MS分析。
1. 5 蛋白鑒定和定量分析
應用Mascot v2.2進行蛋白鑒定;依據(jù)蛋白豐度水平進行判定,當差異達2.00倍以上且顯著性檢驗P小于0.05時視為差異表達蛋白。
1. 6 生物信息學分析
根據(jù)COGs數(shù)據(jù)庫對差異表達蛋白進行GO功能注釋和分類分析。
2 結(jié)果與分析
2. 1 大腸桿菌O157:H7的生長曲線
RS2菌株培養(yǎng)1 h后,培養(yǎng)基的OD600開始上升,之后呈對數(shù)生長,培養(yǎng)5 h后隨時間推移,培養(yǎng)基的OD600緩慢上升并趨于穩(wěn)定(圖1)。RS2-256菌株接種于含氟苯尼考的MHB培養(yǎng)液中,在前3 h呈緩慢生長趨勢,為適應期;培養(yǎng)3~6 h呈快速生長,為對數(shù)期;之后隨時間推移,培養(yǎng)基的OD600緩慢上升,并趨于穩(wěn)定。根據(jù)大腸桿菌O157:H7的生長曲線,均在培養(yǎng)5 h時收集RS2和RS2-256菌株用于提取菌體蛋白。
2. 2 iTRAQ標記蛋白圖譜整體分析結(jié)果
RS2和RS2-256菌株的蛋白樣品經(jīng)iTRAQ標記后,采用Triple TOF 5600質(zhì)譜儀進行LC-MS/MS分析,結(jié)果獲得48850張肽段圖譜,其中,RS2菌株獲得3385個肽段,RS2-256菌株獲得3955個肽段,合計7340個肽段。此外,有6975個肽段為特有肽段,分屬于1039個蛋白。
2. 3 表達差異蛋白分析結(jié)果
設(shè)定蛋白豐度水平差異在2.00倍以上且P<0.05,視為差異表達(Liu et al.,2013)。統(tǒng)計結(jié)果顯示,與RS2菌株相比,RS2-256菌株有145個蛋白表達差異顯著(P<0.05,下同),占檢測蛋白總數(shù)的13.96%,其中,上調(diào)表達蛋白有87個、下調(diào)表達蛋白有58個。表達差異蛋白按照功能進行分類,可分為外排泵、轉(zhuǎn)運蛋白、細胞膜形成、應激調(diào)控、核糖體結(jié)構(gòu)、DNA復制、轉(zhuǎn)錄、翻譯、翻譯后修飾、能量產(chǎn)生和轉(zhuǎn)化、氨基酸轉(zhuǎn)運和代謝、輔酶轉(zhuǎn)運和代謝、糖轉(zhuǎn)運和代謝、脂肪代謝、離子轉(zhuǎn)運和代謝、細菌運動性、轉(zhuǎn)座及信號通路共18類(表1)。多藥物外排泵亞基AcrA和AcrB、外膜蛋白TolC、外膜蛋白X等52個蛋白的表達變化在3.00倍以上,占表達差異蛋白總數(shù)的35.86%(52/145)。其中,上調(diào)比例最顯著的為多藥物外排泵亞基AcrB,上調(diào)14.93倍;下調(diào)比例最顯著的為多糖輸出蛋白Wza,下調(diào)8.87倍(表2)。
3 討論
藥物外排泵是引起細菌對抗生素耐藥的重要機制,其中,AcrAB-TolC外排泵屬于耐藥結(jié)節(jié)細胞分化(RND)家族,由AcrA、AcrB和TolC 3部分組成(Yang et al.,2003)。AcrAB-TolC外排泵是大腸桿菌最主要的外排泵(Notka et al.,2002),當大腸桿菌AcrAB-TolC外排泵過量表達時,其對氯霉素、四環(huán)素、新霉素、紅霉素、氯比西林、氟喹諾酮類、β-內(nèi)酰胺類和利福平等藥物的耐藥性隨之增強(Zgurskaya et al.,1999;田亞凱,2018)。Baucheron等(2004)研究證實,鼠傷寒沙門氏菌acrB和tolC基因被敲除后,其對氟苯尼考的敏感性明顯降低。本課題組前期研究表明,在主動外排泵抑制劑CCCP存在的情況下,豬源大腸桿菌O157:H7氟苯尼考耐藥菌株對氟苯尼考的MIC從256 μg/mL下降至64 μg/mL(馮世文等,2016)。綜合大腸桿菌O157:H7氟苯尼考耐藥菌株的AcrB、AcrA和TolC蛋白較氟苯尼考敏感菌株分別上調(diào)14.93、8.05和4.05倍,推測AcrAB-TolC外排泵在大腸桿菌O157:H7對氟苯尼考耐藥性產(chǎn)生機制中發(fā)揮重要作用。
ABC家族是所有轉(zhuǎn)運體家族中最龐大的一類轉(zhuǎn)運體,通過偶聯(lián)ATP水解釋放的能量轉(zhuǎn)移底物(Davidson et al.,2008)。在細菌中,ABC轉(zhuǎn)運體參與營養(yǎng)物質(zhì)的攝取或細菌毒素的分泌,以及將抗生素泵出細胞使其具有抗藥性,其中,MsbA外排系統(tǒng)與多藥抗性有關(guān)(Singh et al.,2016),YojI轉(zhuǎn)運體負責小抗菌肽J25的外排(Socías et al.,2009),macAB系統(tǒng)則與大環(huán)內(nèi)酯類藥物外排有關(guān)(Lu and Zgurskaya,2012)。本研究結(jié)果顯示,大腸桿菌O157:H7氟苯尼考耐藥菌株的ABC轉(zhuǎn)運ATP結(jié)合蛋白uup、YojI、YbiT,以及假定磷脂ABC轉(zhuǎn)運結(jié)合蛋白MlaB、ABC轉(zhuǎn)運周質(zhì)結(jié)合蛋白YtfQ、ABC轉(zhuǎn)運精氨酸結(jié)合蛋白、假定ABC轉(zhuǎn)運體ATP結(jié)合蛋白YcjV的表達上調(diào)2.22~3.45倍,提示大腸桿菌O157:H7的ABC轉(zhuǎn)運體可能發(fā)揮著將氟苯尼考泵出細胞外的作用。
大腸桿菌外膜蛋白與其耐藥性密切相關(guān)(張麗芳和羅薇,2014),如外膜蛋白缺失或突變菌株對銀納米抗菌劑的抵抗力較野生菌菌株提高4.00~8.00倍(Radzig et al.,2012)。大腸桿菌重要的外膜蛋白有OmpA、OmpC、OmpF和PhoE等(Pagès et al.,2008;俱雄等,2017),其中,OmpC在抗生素進入細菌發(fā)揮藥效的過程中發(fā)揮重要作用,在大腸桿菌多重耐藥菌株中OmpC mRNA和OmpC蛋白均呈高表達(董輝等,2016)。外膜蛋白OmpF是大腸桿菌的主要膜孔通道,也是抗生素進入細菌的主要通道,當OmpF基因缺失導致細菌表面的通透性降低而發(fā)揮耐藥作用(崔艷艷等,2013)。外膜蛋白X(OmpX)折疊成具有跨膜結(jié)構(gòu)域的結(jié)構(gòu),從細胞表面突出,而影響其與外部蛋白的結(jié)合(Choutko et al.,2011),并參與通道、抗生素抗性和信號轉(zhuǎn)導等(Meng et al.,2016)。本研究結(jié)果表明,與大腸桿菌O157:H7氟苯尼考敏感菌株相比,大腸桿菌O157:H7氟苯尼考耐藥菌株有9個外膜蛋白上調(diào)2.00~4.05倍,而有6個外膜蛋白下調(diào)2.00~3.52倍。其中,大腸桿菌O157:H7氟苯尼考耐藥菌株的OmpX和OmpA分別上調(diào)3.02和2.87倍,而OmpC和OmpF分別下調(diào)2.06和3.52倍。
在大腸桿菌中,Bam復合物由1個膜結(jié)合蛋白(Bama)和4個脂蛋白(Bamb、Bamc、Bamd和Bame)組成,Bam復合物催化組裝外膜蛋白(OPMs)的基本過程,但其更多的功能仍未知(Kim et al.,2011)。在本研究中,大腸桿菌O157:H7氟苯尼考耐藥菌株的外膜蛋白BamB、BamD和BamE上調(diào)2.00~3.16倍,說明這3個外膜蛋白可能通過影響大腸桿菌O157:H7外膜蛋白的形成及結(jié)構(gòu)變化,促進菌株對氟苯尼考產(chǎn)生耐藥性。腸桿菌科的Rcs系統(tǒng)能調(diào)節(jié)細菌夾膜異多糖酸合成及細菌鞭毛基因、抗酸性基因等的表達,其主要功能是調(diào)節(jié)細菌的毒力和應激(葉立娜和瞿滌,2018)。外膜脂蛋白RcsF是Rcs系統(tǒng)感受信號的重要輔助蛋白,在外膜缺陷信號傳導過程中發(fā)揮重要作用(Castanié-Cornet et al.,2006)。本研究發(fā)現(xiàn),大腸桿菌O157:H7氟苯尼考耐藥菌株的外膜脂蛋白RcsF表達上調(diào)2.77倍,說明在氟苯尼考的壓力下,菌株誘發(fā)Rcs系統(tǒng)進行信號轉(zhuǎn)導,通過調(diào)節(jié)外膜蛋白和耐藥基因表達等方式而抵抗氟苯尼考。外膜蛋白Slp在宿主免疫逃避、營養(yǎng)物質(zhì)獲取及細菌應激反應的調(diào)節(jié)過程中發(fā)揮關(guān)鍵作用(Hooda et al.,2017)。SlyB是外膜的主要蛋白,有助于維持細胞膜的完整性(Plesa et al.,2006)。本研究發(fā)現(xiàn),大腸桿菌O157:H7氟苯尼考耐藥菌株的外膜脂蛋白Slp表達上調(diào)2.87倍,其中SlyB蛋白表達上調(diào)2.12倍,推測大腸桿菌O157:H7外膜蛋白在調(diào)節(jié)氟苯尼考應激過程中發(fā)揮重要作用。
毒性調(diào)節(jié)器B(Modulator of drug activity B,MdaB)是NADPH氧化還原酶DT-黃素氧化還原蛋白家族的假定成員,能提供針對醌類化合物的細胞保護。據(jù)報道,在0.2~0.3 mmol/L甲萘醌作用下,MdaB在大腸桿菌胞質(zhì)部分中表達上調(diào)20.00倍以上(Hayashi et al.,1990)。攜帶編碼MdaB基因大腸桿菌的生長不受甲萘醌的影響,但MdaB或重組MdaB的過表達致使大腸桿菌耐受四環(huán)素、阿霉素、DMP 840和依托泊苷(Adams and Jia,2006)。本研究結(jié)果表明,大腸桿菌O157:H7氟苯尼考耐藥菌株的MdaB蛋白表達上調(diào)2.86倍,NADH泛醌氧化還原酶亞基G表達上調(diào)4.47倍,推測大腸桿菌O157:H7通過超表達MdaB和NADH泛醌氧化還原酶,促進電子傳遞進入呼吸鏈使機體處于低氧化狀態(tài),而增加對氟苯尼考的抗性。
饑餓蛋白主要負責細胞的饑餓存活和耐受性,如饑餓狀態(tài)下指數(shù)生長期大腸桿菌對熱刺激、氧化壓力、滲透壓、紫外線和抗生素等的耐受性提高。有研究發(fā)現(xiàn),在細菌饑餓早期加入氯霉素可阻遏蛋白合成,使細胞活性急劇降低;但在細菌進入全面饑餓狀態(tài)后加入氯霉素,對細菌生長的影響甚微(Giard et al.,1996)。在抗生素加入早期,細菌生長受到抑制,即這一應激條件與饑餓過程類似,致使細菌的基因表達和代謝發(fā)生改變,表現(xiàn)為有應激蛋白產(chǎn)生甚至某些針對性基因發(fā)生突變,而產(chǎn)生耐藥性。本研究發(fā)現(xiàn),大腸桿菌O157:H7氟苯尼考耐藥菌株的饑餓蛋白B表達上調(diào)3.38倍,提示與菌株的氟苯尼考耐藥性密切相關(guān),但具體機制有待進一步探究。
4 結(jié)論
外排泵AcrAB-TolC家族、ABC家族、外膜蛋白、毒性調(diào)節(jié)器B、饑餓蛋白等在大腸桿菌O157:H7對氟苯尼考耐藥性產(chǎn)生過程中發(fā)揮重要作用,同時涉及細菌糖代謝、氨基酸代謝、離子轉(zhuǎn)運、DNA損傷與修復、生物膜及毒素與抗毒素系統(tǒng)等生命活動。
參考文獻:
陳曉慧,劉明春,焦陽. 2006. 氟苯尼考的研究應用進展[J]. 中國家禽,28(14):50-52. [Chen X H,Liu M C,Jiao Y. 2006. Research and application progress of flurbenicol[J]. China Poultry,28(14):50-52.]
崔艷艷,高洪,嚴玉霖,趙汝,盧琴,李祥峰,邵志勇,臧雅婷. 2013. 大腸埃希菌外膜蛋白F與細菌耐藥性研究進展[J]. 動物醫(yī)學進展,34(6):164-166. [Cui Y Y,Gao H,Yan Y L,Zhao R,Lu Q,Li X F,Shao Z Y,Zang Y T. 2013. Progress on outer membrane protein F of E.coli and drug resistance[J]. Progress in Veterinary Medicine,34(6):164-166.]
董輝,鐘利,林茹,趙慧崢,趙志軍. 2016. 臨床分離大腸埃希菌多重耐藥菌株與外膜蛋白的相關(guān)研究[J]. 中國抗生素雜志,41(5):369-373. [Dong H,Zhong L,Lin R,Zhao H Z,Zhao Z J. 2016. Study of the outer membrane proteins in multiple drug-resistant strains of Escherichia coli of clinical separation[J]. Chinese Journal of Antibiotics,41(5):369-373.]
馮世文,李軍,潘艷,彭昊,胡帥,楊威,陳澤祥. 2017. 廣西豬源致病性大腸桿菌對抗菌藥物的耐藥性變化分析[J]. 南方農(nóng)業(yè)學報,48(2):350-356. [Feng S W,Li J,Pan Y,Peng H,Hu S,Yang W,Chen Z X. 2017. Analysis of antimicrobial resistance of pathogenic Escherichia coli isolated from porcine in Guangxi[J]. Journal of Southern Agriculture,48(2):350-356.]
馮世文,李軍,曾蕓,楊威,陳澤祥,潘艷,彭昊. 2016. 大腸桿菌O157:H7對氟苯尼考耐藥機制的初步研究[J]. 中國人獸共患病學報,32(3):271-275. [Feng S W,Li J,Zeng Y,Yang W,Chen Z X,Pan Y,Peng H. 2016. Antibiotic resistance mechanism of Escherichia coli O157:H7 against florfenicol[J]. Chinese Journal of Zoonoses,32(3):271-275.]
馮世文,李軍,曾蕓,楊威,陳澤祥,潘艷,彭昊. 2015. 大腸桿菌O157:H7體外氟苯尼考耐藥誘導及對抗菌藥物敏感性變化研究[J]. 中國畜牧獸醫(yī),42(12):3315-3322. [Feng S W,Li J,Zeng Y,Yang W,Chen Z X,Pan Y,Peng H. 2015. Study on florfenicol-resistant induction in vitro and changes of drug sensitivity of swine E. coli O157:H7[J]. China Animal Husbandry & Veterinary Medicine,42(12):3315-3322.]
馮世文,曾蕓,李軍,楊威,陳澤祥. 2014. 細菌對氟苯尼考的耐藥機制研究[J]. 黑龍江畜牧獸醫(yī),(3):52-54. [Feng S W,Zeng Y,Li J,Yang W,Chen Z X. 2014. Study on the resistance mechanism of bacteria to florfenicol[J]. Heilongjiang Animal Science and Veterinary Medicine,(3):52-54.]
俱雄,黨亞鋒,劉祥,丁銳,陳琛,馮自立,張辰露. 2017. 大腸桿菌外膜蛋白OmpC的生物信息學分析及表位多肽疫苗的重組預測[J]. 河南農(nóng)業(yè)大學學報,51(1):94-100. [Ju X,Dang Y F,Liu X,Ding R,Chen C,F(xiàn)eng Z L,Zhang C L. 2017. Bioinformatic analysis of E. coli OmpC and recombinant prediction of epitope peptide vaccine[J]. Journal of Henan Agricultural University,51(1):94-100.]
李帆,羅行煒,劉建華,梁軍,賀丹丹,潘玉善,苑麗,胡功政. 2018. 豬源沙門氏菌多藥外排泵oqxAB和氟苯尼考耐藥基因floR的檢測分析[J]. 江西農(nóng)業(yè)學報,30(11):82-85. [Li F,Luo X W,Liu J H,Liang J,He D D,Pan Y S,Yuan L,Hu G Z. 2018. Detection and analysis of multi-drug efflux pump oqxAB and florfenicol-tolerant gene floR in swine-derived Salmonella typhimurium[J]. Acta Agriculturae Jiangxi,30(11):82-85.]
李軍,禤雄標,謝宇舟,謝永平,彭昊,陳澤祥,胡帥,馬春霞,楊威,許力干,潘艷. 2011. 廣西畜禽大腸桿菌O157:H7流行病學調(diào)查[J]. 中國人獸共患病學報,27(12):1151-1155. [Li J,Xuan X B,Xie Y Z,Xie Y P,Peng H,Chen Z X,Hu S,Ma C X,Yang W,Xu L G,Pan Y. 2011. Epidemiologic survey on Escherichia coli O157:H7 isolated from domestic animals domestic birds in Guangxi[J]. Chinese Journal of zoonoses,27(12):1151-1155.]
田亞凱. 2018. 犬源大腸桿菌質(zhì)粒介導的喹諾酮類藥物耐藥基因的檢測及藥物敏感性分析[J]. 江西農(nóng)業(yè)學報,30(4):79-82. [Tian Y K. 2018. Detection of plasmid-media-ted quinolone-resistant genes in Escherichia coli isolated from dogs and analysis of their drug sensitivity[J]. Acta Agriculturae Jiangxi,30(4):79-82.]
謝宇舟,密克,李軍,陳澤祥,彭昊,馬春霞,禤雄標,胡帥,許力干,謝永平,楊威,閉炳芬,潘艷. 2012. 豬源大腸桿菌O157:H7菌體蛋白雙向電泳方法的建立[J]. 中國畜牧獸醫(yī),48(10):31-33. [Xie Y Z,Mi K,Li J,Chen Z X,Peng H,Ma C X,Xuan X B,Hu S,Xu L G,Xie Y P,Yang W,Bi B F,Pan Y. 2012. Establishment of two-dimensional electrophoresis assay for proteome analysis of Escherichia coli O157:H7[J]. Chinese Journal of Veterinary Medicine,48(10):31-33.]
葉立娜,瞿滌. 2018. 腸桿菌科細菌的Rcs信號轉(zhuǎn)導系統(tǒng)——毒力、應激[J]. 微生物與感染,13(2):114-121. [Ye L N,Qu D. 2018. Rcs signal transduction system in Enterobacteriacea bacteria:Associated virulence and stress reaction[J]. Journal of Microbes and Infections,13(2):114-121.]
余波,楊莉,姜玲玲,徐景峨,周思旋,楊粵黔. 2017. 豬源大腸桿菌氟苯尼考耐藥基因SYBR Green I熒光定量PCR檢測試劑盒的研制[J]. 河南農(nóng)業(yè)科學,46(11):152-156. [Yu B,Yang L,Jiang L L,Xu J E,Zhou S X,Yang Y Q. 2017. A SYBR GreenⅠreal-time quantitative PCR kit for detection of florfenicol resistance gene floR of Escherichia coli from swine[J]. Journal of Henan Agricultural Sciences,46(11):152-156.]
張麗芳,羅薇. 2014. 外膜蛋白的結(jié)構(gòu)、功能及應用研究進展[J]. 中國畜牧獸醫(yī),41(10):55-61. [Zhang L F,Luo W. 2014.? Reaserch progress on structure,function and application of outer membrane protein[J]. China Animal Husbandry & Veterinary Medicine,41(10):55-61.]
Adams M A,Jia Z. 2006. Modulator of drug activity B from Escherichia coli:Crystal structure of a prokaryotic homologue of DT-diaphorase[J]. Journal of Molecular Biology,359(2):455-465.
Baucheron S,Tyler S,Boyd D,Mulvey M R,Chaslus-Dancla E,Cloeckaert A . 2004. AcrAB-TolC directs efflux-media-ted multidrug resistance in Salmonella enterica serovar typhimurium DT104[J]. Antimicrobial Agents and Chemotherapy,48(10):3729-3735.
Carvalhais V,Cerca N,Vilanova M,Vitorino R. 2015. Proteomic profile of dormancy within Staphylococcus epidermidis biofilms using iTRAQ and label-free strategies[J]. Applied Microbiology and Biotechnology,99(6):2751-2762.
Castanié-Cornet M P,Cam K,Jacq A. 2006. RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli[J]. Journal of Bacteriology,188(12):4264-4270.
Choutko A,Gl?ttli A,F(xiàn)ernández C,Hilty C,Wüthrich K,van Gunsteren W F. 2011. Membrane protein dynamics in different environments:Simulation study of the outer membrane protein X in a lipid bilayer and in a micelle[J]. European Biophysics Journal,40(1):39-58.
Dai L,Wu C M,Wang M G,Wang Y,Wang Y,Huang S Y,Xia L N,Li B B,Shen J Z. 2010. First report of the multidrug resistance gene cfr and the phenicol resisrance gene fexA in a Bacillus spp. strain from swine feces[J]. Antimicrobial Agents and Chemotherapy,54(9):3953-3955.
Davidson A L,Dassa E,Orelle C,Chen J. 2008. Structure,function,and evolution of bacterial ATP-binding cassette systems[J]. Microbiology and Molecular Biology Reviews,72(2):317-364.
Giard J C,Hartke A,F(xiàn)lahaut S,Benachour A,Boutibonnes P,Auffray Y. 1996. Starvation-induced multiresistance in Enterococcus faecalis JH2-2[J]. Current Microbiology,32(5):264-271.
Hayashi M,Hasegawa K,Oguni Y,Unemoto T. 1990. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli[J]. Biochimica et Biophysica Acta,1035(2):230-236.
Hooda Y,Shin H E,Bateman T J,Moraes T F. 2017. Neisserial surface lipoproteins:Structure,function and biogenesis[J]. Pathogens and Disease,75(2). doi:10.1093/femspd/ftx010.
Kadlec K,Ehricht R,Monecke S,Steinacker U,Kaspar H,Mankertz J,Schwarz S. 2009. Diversity of antimicrobial resistance pheno- and genotypes of methicillin-resistant Staphylococcus aureus ST398 from diseased swine[J]. The Journal of Antimicrobial Chemotherapy,64(6):1156-1164.
Kehrenberg C,Schwarz S,Jacobsen L,Hansen L H,Vester B. 2005. A new mechanism for chloramphenicol,florfenicol and clindamycin resistance:Methylation of 23S ribosomal RNA at A2503[J]. Molecular Microbiology,57(4):1064-1073.
Kim K H,Kang H S,Okon M,Escobar-Cabrera E,McIntosh L P,Paetzel M. 2011. Structural characterization of Esche-richia coli BamE,a lipoprotein component of the β-barrel assembly machinery complex[J]. Biochemistry,50(6):1081-1090.
Liu J,Bai J,Lu Q,Zhang L L,Jiang Z H,Michal,He Q D, Jiang P. 2013. Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification(iTRAQ) labeling app-roach revealed first proteome profiles of pulmonary alveo-lar macrophages infected with porcine circovirus type 2[J]. Journal of Proteomics,79:72-86. doi:10.1016/j.jprot.2012.11.024.
Lu S,Zgurskaya H I. 2012. Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter[J]. Molecular Microbiology,86(5):1132-1143.
Meng X,Liu X,Zhang L,Hou B,Li B,Tan C,Li Z,Zhou R,Li S. 2016. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X[J]. The Journal of Veterinary Medical Science,78(8):1261-1267.
Notka F,Linde H J,Dankesreiter A,Niller H H,Lehn N. 2002. A C-terminal 18 amino acid deletion in MarR in clinical isolate of Escherichia coli reduces MarR binding properties and increases the MIC of ciprofloxacin[J]. the Journal of Antimicrobial Chemotherapy,49(1):41-47.
Pagès J M,James C E,Winterhalter M. 2008. The porin and the permeating antibiotic:A selective diffusion barrier in gram-negative bacteria[J]. Nature Reviews. Microbiology,6(12):893-903.
Plesa M,Hernalsteens J P,Vandenbussche G,Ruysschaert J M,Cornelis P. 2006. The SlyB outer membrane lipoprotein of Burkholderia multivorans contributes to membrane integrity[J]. Research in Microbiology,157(6):582-592.
Radzig M A,Nadtochenko V A,Koksharova O A,Kiwi J,Lipasova V A,Khmel I A. 2012. Antibacterial effects of silver nanoparticles on gram-negative bacteria:Influence on the growth and biofilms formation,mechanisms of action[J]. Colloids and Surfaces,102:300-306. doi:10.1016/j.colsurfb.2012.07.039.
Schwarz S,Werckenthin C,Kehrenberg C. 2000. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri[J]. Antimicrobial Agents and Chemotherapy,44(9):2530-2533.
Singh H,Velamakanni S,Deery M J,Howard J,Wei S L,van Veen H W. 2016. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled[J]. Nature Communications,7:12387. doi:10.1038/ncomms12387.
Socías S B,Vincent P A,Salomón R A. 2009. The leucine-responsive regulatory protein,Lrp,modulates microcin J25 intrinsic resistance in Escherichia coli by regulating expression of the YojI microcin exporter[J]. Journal of Bacteriology,191(4):1343-1348.
Tao W,Lee M H,Wu J,Kim N H,Kim J C,Chung, E S,Hwang E C,Lee S W. 2012. Inactivation of chloramphe-nicol and florfenicol by a novel chloramphenicol hydrolase[J]. Applied and Environmental Microbiology,78(17):6295-6301.
Wu B B,Xia C,Du X D,Cao X Y,Shen J Z. 2006. Influence of anti-floR antibody on florfenicol accumulation in florfenicol-resistant Escherichia coli and enzyme-linked immu-nosorbent assay for detection of florfenicol-resistant E. coli isolates[J]. Journal of Clinical Microbiology,44(2):378-382.
Yang S,Clayton S R,Zechiedrich E L. 2003. Relative contributions of the AcrAB,MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli[J]. The Journal of Antimicrobial Chemotherapy,51(3):545-556.
Zgurskaya H I,Nikaido H I. 1999. Bypassing the periplasm:Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America,96(13):7190-7195.
(責任編輯 蘭宗寶)