應(yīng)之丁, 陳家敏
(同濟(jì)大學(xué) 鐵道與城市軌道交通研究院, 上海 201804)
為適應(yīng)貨運列車(以下簡稱列車)快速、重載的發(fā)展需求,急需對重載列車制動系統(tǒng)進(jìn)行研究.傳統(tǒng)的列車制動試驗臺無法適應(yīng)多種制動性能,在進(jìn)行不同種類列車的制動試驗時,需要更換不同的制動閥.對于長大列車而言,拆卸并更換制動閥的工作量十分巨大,大大增加了新產(chǎn)品研發(fā)或出口列車產(chǎn)品試驗實物成本以及周期.
國內(nèi)外多個團(tuán)隊針對列車空氣制動系統(tǒng)進(jìn)行了研究并取得了一定的成果.文獻(xiàn)[1]中建立了裝有ABDW系列閥的仿真模型,并進(jìn)行了制動特性模擬;文獻(xiàn)[2]中建立了空氣制動系統(tǒng)的仿真模型并對其進(jìn)行了研究;文獻(xiàn)[3-6]中根據(jù)試驗臺的試驗結(jié)果建立了氣動模型,并結(jié)合算法對空氣制動系統(tǒng)進(jìn)行了研究;文獻(xiàn)[7-8]中運用AMESim軟件對城軌列車制動系統(tǒng)進(jìn)行了分析;文獻(xiàn)[9]中對F8型空氣制動機(jī)進(jìn)行了制動性能分析,研究了閥內(nèi)參數(shù)對制動性能的影響;文獻(xiàn)[10]中通過半實物半仿真系統(tǒng)對列車制動系統(tǒng)進(jìn)行了分析,但沒有對再充氣特性進(jìn)行分析.
建立智能化仿真試驗平臺的目標(biāo)是結(jié)合少量制動機(jī)試驗,驗證計算機(jī)控制的可真實模擬列車空氣制動系統(tǒng)的虛擬試驗系統(tǒng).核心的制動過程模型研究,分成氣管路對缸體、氣室與缸體以及多氣室缸體之間等氣動方程特性分析和解算,偏微分方程的氣動方程大多采用特征線法[3],無法實現(xiàn)虛擬試驗系統(tǒng)的實時控制及制動試驗的實現(xiàn).再充氣過程是非常典型的多氣室缸體之間流體的傳遞過程,如能解決這種復(fù)雜結(jié)構(gòu)建模的各種難點,建立反映再充氣工況的數(shù)學(xué)模型,對實際的制動機(jī)控制模擬具有重要意義.因此,從氣體流動連續(xù)方程入手,建立再充氣工況的數(shù)學(xué)模型,并討論再充氣緩解特性.最后,對150輛編組列車不同位置處的再充氣特性和列車管與制動缸作用時間進(jìn)行分析.
為了解除制動系統(tǒng)對列車施加的與列車運行相反的阻力,列車風(fēng)源系統(tǒng)通過列車管再次向儲存一部分空氣的列車管、副風(fēng)缸等充氣的過程稱為“再充氣緩解”.再充氣緩解工況下,各關(guān)聯(lián)缸室間壓力流動情況及平衡關(guān)系與初充氣工況基本一致.再充氣緩解使列車管、副風(fēng)缸壓力再次恢復(fù)至定壓p0,而制動缸則排大氣以達(dá)到緩解列車制動的作用.
“再充氣緩解”是加速緩解風(fēng)缸對列車管的局部增壓.列車再充氣緩解時,首先讓制動缸里的空氣打開加速緩解風(fēng)缸向列車管逆流的充氣通路,然后排入大氣.初充氣工況下,加速緩解風(fēng)缸與列車管的壓力相同;制動時,加速緩解風(fēng)缸由于止回閥的作用空氣不能逆流回副風(fēng)缸而保持壓力恒定.列車管在制動過程中排氣使得列車管壓力降低,導(dǎo)致列車管壓力低于加速緩解風(fēng)缸壓力.當(dāng)制動系統(tǒng)再充氣緩解時,兩者的壓力差使得加速緩解風(fēng)缸內(nèi)空氣可以通過加速緩解閥逆流到列車管,形成對列車管的局部增壓作用.加速緩解作用提高了后部車輛制動系統(tǒng)列車管的增壓速度,從而縮短了再充氣緩解的時間.再充氣緩解簡化模型如圖1所示.
圖1 再充氣緩解模型
列車的120型空氣制動閥屬于氣動閥,閥路之間的信號主要靠空氣進(jìn)行傳遞.由于制動管路和缸室與外界散熱良好,壓力與體積變化可以視為等溫過程,氣體狀態(tài)方程都是適用的.完全氣體狀態(tài)方程為
pV=mRT
(1)
式中:p為絕對壓強(qiáng);V為體積;m為質(zhì)量;R為氣體常數(shù),R=287 N·m·(kg·K)-1;T為熱力學(xué)溫度.
在dt時間內(nèi),充入容器內(nèi)的氣體質(zhì)量
dm1=qm1dt
(2)
式中:qm1是單位時間內(nèi)進(jìn)氣回路流入的質(zhì)量流量.
在dt時間內(nèi),從容器內(nèi)放出的氣體質(zhì)量
dm2=-qm2dt
(3)
式中:qm2為單位時間內(nèi)排氣回路流出的質(zhì)量流量.
質(zhì)量流量qm1和qm2的大小與氣動回路中的流動狀態(tài)有關(guān).當(dāng)回路處于亞聲速流動時,回路中通過的氣體質(zhì)量流量[11]
(4)
亞聲速流動時,氣體的質(zhì)量流量
(5)
式中:S為修正系數(shù).
緩解時,制動缸內(nèi)的空氣排入大氣,松開閘瓦或制動夾鉗,以達(dá)到緩解效果.實際再充氣狀態(tài)時制動缸容積不斷變化,推導(dǎo)出的偏微分方程難以進(jìn)行實時仿真計算.因此,將制動缸充放氣預(yù)先視為定容積容器充放氣,通過氣容放氣特性來近似模擬制動缸排氣特性,其誤差通過S修正.
在制動缸緩解時,將制動缸模型簡化為如圖2所示的模型.圖2中,左邊表示初始壓力為pz的制動缸等效風(fēng)缸,右邊表示標(biāo)準(zhǔn)大氣壓pa下的大氣,制動缸容積為Vz,制動缸排氣的復(fù)雜通路簡化為一個等效的節(jié)流孔.
圖2 制動缸放氣簡化模型
將式(1)代入式(3)可得
(6)
制動缸初始壓力與常用制動時列車管減壓量r有關(guān),pz0=(Vf/Vz)r-100(絕對壓力為(Vf/Vz)r,其中Vf為副風(fēng)缸容積).再充氣過程開始,風(fēng)源系統(tǒng)緩慢向列車管充氣,主活塞在兩側(cè)壓力差作用下移動至再充氣及緩解位,歷時t1,制動缸才開始緩解.
當(dāng)列車管開始再充氣,主活塞還未移至再充氣及緩解位時,制動缸保持初始壓力不變,即t≤t1時,pz=pz0=(Vf/Vz)r-100.當(dāng)該輛車開始緩解時,制動缸向大氣排氣,即t>t1時,制動缸開始減壓.由于制動缸內(nèi)可達(dá)到的最大絕對壓力不超過500 kPa,根據(jù)聲速與亞聲速流動的判定條件,制動缸緩解過程為亞聲速放氣過程.
當(dāng)放氣過程為亞聲速放氣過程時,即1≥pa/pz>b時,消去式(5)和(6)中的qm,經(jīng)積分運算后,由pz0降至pz所需的放氣時間
(7)
由式(7)倒推可知,在容器放氣時,容器內(nèi)的壓力隨時間變化的關(guān)系式為
(8)
其中,
0.258 2
再充氣過程中,列車管的空氣除了來自風(fēng)源系統(tǒng)外,還來自加速緩解風(fēng)缸,即列車管“局部增壓”,目的在于加速列車的緩解作用,提高緩解波速.
再充氣過程開始,風(fēng)源系統(tǒng)緩慢向列車管充氣,主活塞在兩側(cè)壓力差作用下移動至再充氣及緩解位,歷時t1,于是制動缸開始緩解.加速緩解風(fēng)缸中的空氣進(jìn)入列車管,使得列車管內(nèi)壓力在短時間內(nèi)有一個明顯的躍升,“局部增壓”作用時間很短,設(shè)置該時間為t2.此后,列車管空氣主要來自風(fēng)源系統(tǒng).將列車管再充氣及局部增壓模型簡化為如圖3所示的模型.通過氣容充氣特性來近似模擬列車管等效風(fēng)缸的充氣特性,誤差通過S修正.圖3a表示列車管局部增壓時風(fēng)源系統(tǒng)和加速緩解風(fēng)缸同時向列車管充氣的簡化模型,圖3b表示列車管局部增壓作用結(jié)束后風(fēng)源系統(tǒng)向列車管充氣的簡化模型.列車管再充氣時的復(fù)雜通路初步簡化為一個等效的節(jié)流孔.
將式(1)代入式(2)可得
(9)
當(dāng)充氣過程為1 ≥p2/p1>b時,即亞聲速充氣時,消去式(5)和(9)中的qm,經(jīng)積分運算后,由pz0充至pz所需的充氣時間
a 局部增壓
b 列車管再充氣(不含局部增壓)
(10)
由式(10)倒推可知,在向容器充氣時,容器內(nèi)的壓力隨時間變化的關(guān)系式為
(11)
列車管容積
(12)
式中:D1為列車管主管直徑;D2為列車管支管直徑;N為車輛位置;L1為單車列車管主管長度;L2為單車列車管支管長度.
在制動缸緩解之前,風(fēng)源系統(tǒng)就開始向列車管再充氣,即t (13) 式中:pl0為列車管初始壓力;ps為風(fēng)源壓力;D為列車管直徑;L為列車管長度. 在制動缸緩解的同時,加速緩解風(fēng)缸開始向列車管充氣,即t1≤t≤t1+t2時.根據(jù)聲速與亞聲速流動的判定條件,此時列車管再充氣過程是亞聲速充氣過程.列車管局部增壓作用開始時的壓力為pl1,即t=t1時pl的值.由式(11)可知,列車管內(nèi)壓力pl隨時間t的變化為 (14) 式中:加速緩解風(fēng)缸壓力為pj. 當(dāng)加速緩解作用結(jié)束時,列車管空氣依舊主要來自風(fēng)源系統(tǒng)充氣,即t>t1+t2時.根據(jù)聲速與亞聲速流動的判定條件,此時列車管再充氣過程為亞聲速充氣過程,并且加速緩解作用結(jié)束時列車管的壓力為pl2,即t=t1+t2時pl的值.由式(11)可知,列車管內(nèi)壓力pl隨時間t的變化為 (15) 與“制動波速”不同,國內(nèi)還沒有對“緩解波速”有過明確定義.依據(jù)與制動波速相同的定義方法[11],將緩解波速定義為單位時間內(nèi)緩解波沿列車管的傳播長度.與制動波速一樣,緩解波速可以用試驗的方法進(jìn)行測定,計算式如下所示: (16) 式中:Wa為平均緩解波速,m·s-1;LHB為緩解波傳播距離,m,可取為機(jī)車后第一輛車與最后一輛車之間的列車管長度;tHB為緩解波傳播時間,s,當(dāng)風(fēng)源系統(tǒng)經(jīng)機(jī)車自動制動閥排氣時,從列車管開始充氣到最后一個制動缸壓力開始降低為止;ts為機(jī)車后第一輛車列車管開始增壓時間,s;te為機(jī)車最后一輛車制動缸開始減壓時間,s. 圖4為智能化仿真試驗平臺,運用該智能化仿真試驗平臺測試單車和150輛編組列車不同位置處車輛實際制動效果. 圖4 智能化仿真試驗平臺 再充氣緩解仿真曲線與試驗曲線如圖5所示. a 仿真 b 試驗 制動缸緩解前保壓5.20 s,制動缸從225 kPa完全緩解需要27.71 s,總用時32.91 s.列車管壓力曲線出現(xiàn)了一次明顯的躍升,加速緩解風(fēng)缸對列車管具有明顯的局部增壓作用.再充氣緩解工況的仿真結(jié)果和試驗數(shù)據(jù)吻合,仿真的準(zhǔn)確性得到了驗證. 為了研究列車在再充氣緩解工況下不同車輛的緩解特性,常用制動減壓70、100、140 kPa后進(jìn)行再充氣緩解試驗,其中減壓100 kPa后的試驗曲線如圖6所示. 圖6 不同位置處車輛列車管與制動缸壓力試驗曲線 從圖6可以看出: (1) 第1、50、100、150輛車列車管開始增壓的時間分別為1.0、3.2、5.5、7.6 s,基本呈均勻分布,說明緩解工況下空氣波在列車管內(nèi)具有均勻傳播的特性. (2) 各個位置處車輛制動缸開始減壓時間比相同位置處列車管開始增壓時間略晚.四個位置處車輛制動缸與列車管作用時間差約為1.2、1.7、2.0、2.2 s,這是由于120閥主活塞兩側(cè)需要一定的壓力差才能發(fā)生規(guī)定的動作. (3) 第1、50、100、150輛車列車管達(dá)到系統(tǒng)平衡壓力的時間分別約為48、69、82、91 s.造成這種現(xiàn)象的根本原因是制動系統(tǒng)列車管內(nèi)壁、折角塞門及連接軟管的阻尼使得空氣波沿著列車車長方向能量越來越弱,導(dǎo)致由前至后列車管增壓速度越來越慢. 圖7為列車管減壓70、100、140 kPa后再充氣緩解工況下,第1、50、100、150輛車列車管與制動缸作用時間差的試驗結(jié)果. 在相同的減壓條件下,隨著車輛位置后移,列車管與制動缸作用時間差逐漸增加,但增加的幅度越來越?。幌嗤恢锰庈囕v作用時間差隨著列車管減壓量的增加而逐漸減小.列車管與制動缸作用時間差的存在,說明緩解波在制動系統(tǒng)內(nèi)不是均勻傳播的,當(dāng)減壓量一定時,具有先慢后快的傳播特性. 圖7 不同位置處車輛列車管與制動缸作用時間差 結(jié)合制動機(jī)在再充氣緩解工況下的工作原理,分析列車制動機(jī)在再充氣工況下的工作過程,推導(dǎo)氣體狀態(tài)方程,建立列車制動系統(tǒng)再充氣緩解工況的數(shù)學(xué)模型. 利用智能化仿真試驗平臺進(jìn)行再充氣緩解工況試驗,試驗所得曲線與仿真曲線基本吻合,再充氣緩解數(shù)學(xué)模型能準(zhǔn)確地模擬再充氣緩解過程. 結(jié)合模型和試驗,得到150輛編組列車首車和尾車的再充氣緩解過程特征,并測試出不同位置處車輛列車管與制動缸的作用時間差.1.4 緩解波和緩解波速
2 單車模型仿真與試驗
3 150輛編組列車模型仿真分析
4 結(jié)語