王曉昕 李科 陳孟嬌 李佳欣 喬德才 侯莉娟
摘? ? 要:通過觀察運動疲勞后大鼠黑質致密區(qū)DA能神經元局部場電位(local field potential, LFPs)及D2DR干預后皮層M1-紋狀體通路電活動變化情況,分析黑質DA能神經元各頻段放電及D2DR介導的皮層M1-紋狀體通路信息傳遞的變化,探討D2DR介導的黑質-紋狀體DA系統(tǒng)在皮層M1區(qū)信息輸出中的作用機制。方法:采用Wistar大鼠建立運動疲勞模型,隨機分為電生理組(n=6)、D2DR激動劑干預組(n=6)及TH蛋白表達組(n=9),TH蛋白表達組內又根據不同的運動階段分為對照組(CG)、7 d力竭運動即刻組(7FG)及7 d重復力竭運動24 h恢復組(24RG)。采用在體多通道實時同步記錄技術,結合實時視頻錄像記錄M1-紋狀體及黑質LFPs,分析黑質不同頻段在運動疲勞前后放電變化、D2DR激動劑作用后各頻段放電情況;采用免疫組化檢測紋狀體背外側區(qū)TH蛋白在運動疲勞前后的表達情況。結果:1)與CG比較,7FG紋狀體背外側區(qū)TH蛋白表達降低,差異具有顯著性(P<0.05)。2)與CG比較,7FG黑質致密區(qū)θ頻段(4~7 Hz)、α頻段(7~13 Hz)及β頻段(15~30 Hz)PSD值升高;與7FG比較,24RG的PSD值降低,且差異均具有顯著性(P<0.05);3)D2DR激動劑干預后,大鼠皮層M1區(qū)及紋狀體在7 d重復力竭運動后,α頻段與β頻段PSD值均出現(xiàn)升高,且與CG相比,差異具有顯著性(P<0.05);與7FG比較,恢復24 h以后PSD值顯著降低(P<0.05)。結論:D2DR作為DA信號系統(tǒng)的關鍵受體,調節(jié)黑質-紋狀體DA通路電活動,影響皮層綜合信息輸出,可視為延緩運動疲勞現(xiàn)象產生的藥物干預靶點。
關鍵詞:運動疲勞;D2DR;皮層-紋狀體;黑質致密區(qū);神經元電活動
中圖分類號:G 804.2? ? ? ? ? 學科代碼:040302? ? ? ? ? ?文獻標識碼:A
Abstract:Objective: The Local field potential (LFPs) was observed in the substantia nigra compact and electrical activity change in corticostriatal pathway after D2DR intervention in exercise-induced fatigue rats. We analyzed the changes of DA neuron discharge and D2DR? mediated corticostriatal pathway information transmission. To explore the mechanism of D2D2 mediated DA system in the information output of cortical M1 region. Methods: Wistar rats were used to establish the model of exercise-induced fatigue. The rats were divided into control group (CG), 7 days fatigue group (7FG) and 24 hour recovery group (24RG). We used in vivo multichannel recording technology to record electrical activity in the M1, striatum and substantia nigra compact of rats and observed the electrophysiological changes after D2DR intervention. We also detected the expression of TH proteins in the dorsolateral striatum before and after exercise-induced fatigue by immunohistochemistry. Results: 1) Compared with group CG, the expression of TH protein in the dorsolateral area of striatum was significantly decreased in group 7FG (P<0.05). 2) Compared with the CG group, the power spectral density of the θ, α and β band of the SNc was increased after seven days of exhaustion exercise (P < 0.05). After 24 hours of recovery, the PSD value decreased significantly compared with the 7FG group(P<0.05). 3) Compared with the CG group the power spectral density of alpha (7-13Hz) and beta (15-30Hz) bands in the M1 region and striatum was increased in 7FG after injection D2DR agonist (P < 0.05). Conclusion: As a key receptor for the DA signal system, D2DR regulates the electrical activity of the nigrostriatal DA pathway and affects the comprehensive information output of the cortex, which can be regarded as a target for exercise-induced fatigue.
Keywords:exercise-induced fatigue; D2DR; corticostriatal; SNc; neural activity
基底神經節(jié)是皮層下一群相互聯(lián)系的核團的總稱,包括紋狀體、黑質、蒼白球、丘腦底核,對運動的調節(jié)及學習認知功能起到重要的作用[1-3]。其中黑質致密區(qū)投射到紋狀體的DA能神經元構成了中腦DA神經元上行通路中的一條,末梢支配紋狀體,從而協(xié)調小腦及基底神經節(jié)功能,對運動控制起到關鍵的調控作用。DA通過位于紋狀體的D1DR和D2DR平衡錐體外系運動功能,對直接通路起到興奮效應,對間接通路起到去抑制效應,均能起到易化運動區(qū)的作用。研究表明,在正常的衰老過程中,運動行為協(xié)調性顯著下降[4-5],紋狀體D2DR明顯減少[6],而提高老年人DA能神經活動則可以改善這種變化[7-9],這表明DA系統(tǒng)損傷可能導致運動功能障礙。
筆者所在實驗室的前期研究發(fā)現(xiàn),運動疲勞后,大鼠黑質致密區(qū)DA能神經元電活動興奮性和活動規(guī)律性降低[10],新紋狀體神經元自發(fā)放電頻率發(fā)生改變,高頻放電神經元數(shù)量明顯增加[11];且紋狀體中DA代謝水平顯著上升[12],D2DR水平有明顯升高,D1DR則沒有變化[13],DA能神經元主要通過D2DR對紋狀體的電活動進行調節(jié)[14],表明黑質DA神經元電活動的變化對紋狀體功能的調節(jié)起到重要作用,且通過紋狀體影響皮層M1區(qū)運動信息的輸出。2005年,Shi [15]使用頻譜分析技術處理多巴胺神經元的自發(fā)電信號時,發(fā)現(xiàn)近半數(shù)自發(fā)放電存在低頻振蕩現(xiàn)象,且這種低頻振蕩活動還能觸發(fā)神經元的爆發(fā)式放電,且此現(xiàn)象必須在完整的神經回路中才可以觀察到,所以低頻振蕩也被認為是研究腦區(qū)之間功能聯(lián)系和信息交流的新電生理學方法[16]。因此,本研究擬采用在體多通道陣列梯度微電極,結合同步記錄技術,分析大鼠黑質致密區(qū)低頻振蕩活動及D2DR干預后皮層M1和紋狀體神經元集群的電活動變化,從DA神經振蕩及皮層M1—紋狀體通路電變化入手探討運動疲勞后D2DR介導的皮層M1信息輸出變化在運動疲勞中樞機制中的調節(jié)作用。
1.1 實驗動物與分組
雄性Wistar大鼠(240~260 g)由北京維通利華實驗動物科技有限公司(SCXK(京)2012-0001)提供,分籠飼養(yǎng)、自由飲食,動物房溫度20~25 ℃,濕度45 %~50 %。大鼠適應性飼養(yǎng)2~3 d后,隨機分為電生理組(n=6)、D2DR激動劑干預組(n=6)及TH蛋白表達組(n=9),TH蛋白表達組內單獨進行相應實驗。針對實驗不同運動時期,TH蛋白表達組內分為對照組(control group,CG)、7 d力竭運動即刻組(7-day fatigue group,7FG)及7 d力竭運動24 h恢復組(24-hour recovery,24RG)3個實驗組,如圖1所示。
1.2? 實驗技術與方法
1.2.1? 大鼠運動疲勞跑臺模型建立
實驗前大鼠進行為期3 d的適應性跑臺訓練,20 min/d。CG大鼠在跑臺中自由運動與FG大鼠一次力竭等長時間,排除由于跑臺因素對大鼠腦區(qū)電活動產生的干擾;7FG大鼠完成7 d重復力竭運動記錄原始信號;24RG在7 d力竭運動之后恢復24 h記錄原始信號。大鼠疲勞模型通過本實驗室改良過后的Bedford遞增負荷運動方案建立[17],如圖2所示。
運動方案分成三級遞增負荷[18-19]:1)一級負荷:運動速度為8.2 m/min,運動時間15 min;2)二級負荷:運動速度為15 m/min,運動時間15 min;3)三級負荷:運動速度為20 m/min,運動至力竭。
1.2.2? 大鼠皮層-紋狀體及黑質部位陣列微絲電極植入
適應性飼養(yǎng)3 d后的大鼠腹腔注射10%水合氯醛(0.35 g/kg體質量)進行麻醉,固定于雙臂數(shù)顯腦立體定位儀上,對大鼠顱頂范圍進行剃毛、消毒、剪皮,根據George Paxinos大鼠腦立體定位圖譜[20]確定皮層M1-紋狀體坐標范圍(AP:0.5~1.5 mm,R:2.3~3.5 mm)、黑質坐標(AP:-4.8~-5.8 mm,R:1.5~2.5 mm),并完成開窗手術,植入16導梯度陣列微絲電極(Stablohm 675,直徑35 μm,間距200 μm)。暴露的腦組織處用生物硅膠封口,牙科水泥固定。術后大鼠單籠飼養(yǎng),自由飲食,腹腔注射青霉素防止感染。
1.2.3? 大鼠皮層-紋狀體及黑質部位在體電信號的記錄
電生理組及D2DR激動劑干預組大鼠在力竭運動后,即刻通過Cerebus-128信號采集裝置記錄腦電信號,采樣頻率定為2 kHz;通過lowpass250 Hz濾波得到LFPs原始電信號,Neuromotive系統(tǒng)實時跟蹤大鼠自主活動,30 min/次。
1.2.4? 組織切片定位
信號采集結束后,植入陣列電極的大鼠用4%多聚甲醛進行灌流、取腦,對皮層M1、STR、SNc所在腦區(qū)進行冠狀切片(40? μm),Olympus顯微鏡拍片并觀察電極位置(如圖3所示)。剔除電極沒有落入規(guī)定區(qū)域的大鼠信號,進入電生理數(shù)據統(tǒng)計分析的大鼠共11只合計176通道(電生理組5只80通道,D2DR激動劑干預組6只96通道)。
1.2.5? 紋狀體背外側 TH蛋白免疫組織化學檢測
TH蛋白表達組大鼠力竭運動即刻采用4%多聚甲醛溶液灌流固定,斷頭取腦,根據大鼠腦立體定位圖譜取紋狀體背外側部腦組織,置于4%PFA中固定24 h;然后脫水、包埋并修塊、切片、貼片;一抗、二抗孵育,使用PBS緩沖液沖洗;DAB(二氨基聯(lián)苯胺)顯色,蘇木素復染,中性樹膠加蓋蓋玻片封片。
1.3? 數(shù)據處理
利用Neuro Explorer 5 x86 & Matlab 2015a平臺分析整理采集到的原始電生理數(shù)據;Olympus顯微鏡采集免疫組化切片圖像,Image Pro Plus 6.0統(tǒng)計分析陽性細胞平均光密度(average opticaldensity,AOD)值;采用SPSS 20.0軟件進行統(tǒng)計學分析,Sigmaplot 12.5軟件做圖,各組實驗結果都以平均數(shù)±標準差來進行表示。電生理及免疫組化指標組間均數(shù)均采用單因素方差分析進行比較,均值差異統(tǒng)一選擇LSD/Tamhanes T2檢驗進行分析;以P<0.05表示差異之間具有顯著性。
2.1? 運動疲勞對大鼠紋狀體背外側TH表達影響
取3組大鼠紋狀體背外側區(qū)進行免疫組織化學檢測,TH蛋白表達水平如圖4所示,免疫組化切片的染色結果當中陽性細胞呈現(xiàn)褐色。與CG比較,7FG大鼠紋狀體背外側TH蛋白表達水平下調,差異具有顯著性(P<0.05),恢復24 h后表達上調,且較7FG差異具有統(tǒng)計學意義(P<0.05)。
2.2? 運動疲勞對大鼠黑質電信號的影響
大鼠安靜、7 d重復力竭運動及24 h恢復狀態(tài)黑質致密區(qū)LFPs的功率頻譜、功率譜密度如圖5、圖6所示,在重復力竭運動后各頻段的能量值均有所升高,恢復24 h后又出現(xiàn)一定程度的降低(如圖5A-C所示);在7 d重復力竭運動后,θ頻段、α頻段及β頻段PSD值升高(如圖4 D所示)。與CG相比,7FG大鼠黑質致密區(qū)θ頻段、α頻段及β頻段PSD值升高,與7FG比較,24RGPSD值降低,且差異均具有統(tǒng)計學意義(P<0.05)。
2.3? D2DR激動劑干預對運動疲勞大鼠電活動的影響
2.3.1? D2DR激動劑干預對運動疲勞大鼠皮層M1區(qū)LFPs的影響
如圖7、圖8所示,D2DR激動劑干預后,大鼠皮層M1區(qū)在7 d重復力竭運動后,α頻段、β頻段PSD值均出現(xiàn)升高,且與CG相比,差異具有顯著性(P<0.05);與7FG相比,恢復24 h以后PSD值顯著降低(P<0.05)。
2.3.2? D2DR激動劑干預對運動疲勞大鼠紋狀體LFPs的影響
如圖9、圖10所示,D2DR激動劑干預后,大鼠紋狀體在7 d重復力竭運動后,α頻段和β頻段PSD值均出現(xiàn)升高,且與CG相比,差異具有顯著性(P<0.05);與7FG相比,恢復24 h以后PSD值顯著降低(P<0.05)。
2.3.3? D2DR激動劑干預前后大鼠皮層M1區(qū)、紋狀體電活動變化
大鼠腹腔注射了D2DR激動劑后,與BCG比較可知,7 d重復力竭運動過后,皮層M1及紋狀體α頻段、β頻段PSD值均出現(xiàn)降低,且紋狀體α頻段、β頻段PSD值在安靜、7 d重復力竭運動及24 h恢復狀態(tài)階段均低于對照組(如圖11所示)。
運動疲勞后,大鼠黑質致密部θ頻段、α頻段及β頻段PSD值升高;而D2DR激動劑干預后,與對照組相比,大鼠皮層M1區(qū)及紋狀體α頻段、β頻段PSD值均出現(xiàn)降低。表明D2DR作為DA信號系統(tǒng)的關鍵受體,調節(jié)黑質—紋狀體DA通路電活動,影響皮層綜合信息輸出,可視為延緩運動疲勞產生的藥物干預靶點。
參考文獻:
[1]? GRAYBIEL A M. Building action repertoires: memory and learning functions of the basal ganglia[J]. Current Opinion in Neurobiology, 1995, 5(6): 733.
[2]? HAMMOND C, BERGMAN H, BROWN P. Pathological synchronization in parkinsons disease: networks, models and treatments[J]. Trends in Neurosciences, 2007, 30(7): 357.
[3]? WICHMANN T, DELONG M R. Deep-brain stimulation for basal ganglia disorders[J]. Basal Ganglia, 2011, 1(2): 65.
[4]? CUNNINGHAM R L, MACHEDA T, WATTS L T, et al. Androgens exacerbate motor asymmetry in male rats with unilateral 6-hydroxydopamine lesion[J]. Hormones & Behavior, 2011, 60(5): 617.
[5]? MCCORMACK A L, DI M D, DELFANI K, et al. Aging of the nigrostriatal system in the squirrel monkey[J]. Journal of Comparative Neurology, 2004, 471(4): 387.
[6]? MACRAE P G, SPIRDUSO W W, WILCOX R E. Reaction time and nigrostriatal dopamine function: the effects of age and practice[J]. Brain Research, 1988, 451(1): 139.
[7]? ESTEBAN S, GARAU C, APARICIO S, et al. Improving effects of long-term growth hormone treatment on monoaminergic neurotransmission and related behavioral tests in aged rats[J]. Rejuvenation Research, 2010, 13(6): 707.
[8]? HURLEY P J, ELSWORTH J D, WHITTAKER M C, et al. Aged monkeys as a partial model for parkinsons disease[J]. Pharmacology Biochemistry & Behavior, 2011, 99(3): 324.
[9]? RAZGADO-HERNANDEZ L F, ESPADAS-ALVAREZ A J, REYNA-VELAZQUEZ P, et al. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease[J]. Plos One, 2015, 10(2): 117391.
[10]? 喬德才,吳迪,侯莉娟,等.運動疲勞對大鼠黑質致密區(qū)DA能神經元電活動的影響[J]. 上海體育學院學報,2010,34(1):43.
[11]? 喬德才,侯莉娟,何德富,等.運動疲勞對大鼠新紋狀體神經元電活動的影響[J].中國運動醫(yī)學雜志,2005,24(6):676.
[12]? 楊東升,劉曉莉,喬德才.力竭運動及恢復期大鼠紋狀體5-HT、DA及其代謝物濃度的動態(tài)變化研究[J].中國應用生理學雜志,2011,27(4):432.
[13]? 侯莉娟,劉曉莉,喬德才.運動疲勞對大鼠紋狀體單胺類遞質含量及多巴胺受體表達的影響[J].中國康復醫(yī)學雜志,2010,25(7):639.
[14]? 劉曉莉,吳迪,喬德才,等.電刺激前腦內側束對運動疲勞大鼠紋狀體神經元誘發(fā)電活動的影響[J].西安體育學院學報,2012,29(1):78.
[15]? SHI W X. Slow oscillatory firing: a major firing pattern of dopamine neurons in the ventral tegmental area[J]. Journal of Neurophysiology, 2005, 94(5): 3516.
[16]? PIERRO M L, SASSAROLI A, BERGETHON P R, et al. Phase-amplitude investigation of spontaneous low-frequency oscillations of cerebral hemodynamics with near-infrared spectroscopy: a sleep study in human subjects[J]. Neuroimage, 2012, 63(3): 1571.
[17]? BEDFORD T G, TIPTON C M, WILSON N C, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures[J]. Journal Applied Physiology, 1979, 47(6): 1278.
[18]? 侯莉娟,成佳俐,王曉昕,等.運動疲勞引起紋狀體突觸超微結構變化及D2DR介導的行為學干預研究[J].體育科學,2017,37(6):62.
[19]? 劉曉莉,羅勇,喬德才.大鼠一次性力竭跑臺運動模型的建立及動態(tài)評價[J].中國實驗動物學報,2012,20(3):25.
[20]? PAXINOS G, WATSON C. The rat brain in stereotaxic coordinates, Fourth Edition[M]. London: Academic Press, 1998: 80-113.
[21]? BECKSTEAD M J, FORD C P, PHILLIPS P E M, et al. Presynaptic regulation of dendrodendritic dopamine transmission[J]. European Journal of Neuroscience, 2010, 26(6): 1479.
[22]? CRAGG S J. Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum[J]. Journal of Neuroscience, 2003, 23(10): 4378.
[23]? RICE M E, PATEL J C, CRAGG S J. Dopamine release in the basal ganglia[J]. Neuroscience, 2011(198): 112.
[24]? MOGENSON G J, JONES D L, YIM C Y. From motivation to action: functional interface between the limbic system and the motor system[J]. Progress in Neurobiology, 1980, 14(2-3): 69.
[25]? 侯莉娟,劉曉莉,喬德才.DA受體對運動疲勞后紋狀體神經元信號轉導調節(jié)作用的研究[J].西安體育學院學報,2011,28(1):79.
[26]? KREITZER A C. Physiology and pharmacology of striatal neurons[J]. Annual Review of Neuroscience, 2009, 32(1): 127.
[27]? NISENBAUM E S, WILSON C J. Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 1995, 15(6): 4449.
[28]? CARR D B, DAY M, CANTRELL A R, et al. Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity[J]. Neuron, 2003, 39(5): 793.
[29]? SURMEIER D J, EBERWINE J, WILSON C J, et al. Dopamine receptor subtypes colocalize in rat striatonigral neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(21): 10178.
[30]? CARTER A G, SABATINI B L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons[J]. Neuron, 2004, 44(3): 483.
[31]? FLORES H J, CEPEDA C E E, CALVERT C R, et al. Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32[J]. Journal of Neurophysiology, 2002, 88(6): 3010.
[32]? HALLETT P J, SPOELGEN R, HYMAN B T, et al. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking[J]. Journal of Neuroscience, 2006, 26(17): 4690.
[33]? SURMEIER D J, BARGAS J, JR H H, et al. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons[J]. Neuron, 1995, 14(2): 385.
[34]? DI F M, PICCONI B, TANTUCCI M, et al. Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory[J]. Behavioural Brain Research, 2009, 199(1): 108.
[35]? CALABRESI P, PISANI A, MERCURI N B, et al. Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels[J]. European Journal of Neuroscience, 1992, 4(10): 929.
[36]? KERR J N, WICKENS J R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro[J]. Journal of Neurophysiology, 2001, 85(1): 117.
[37]? KREITZER A C, MALENKA R C. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2005, 25(45): 10537.
[38]? SHEN W, FLAJOLET M, GREENGARD P, et al. Dichotomous dopaminergic control of striatal synaptic plasticity[J]. Science, 2008, 321(5890): 848.
[39]? MACRAE P G, SPIRDUSO W W, WALTERS T J, et al. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats[J]. Psychopharmacology, 1987, 92(2): 236.
[40]? 侯莉娟,劉曉莉,喬德才.運動疲勞對大鼠紋狀體單胺類遞質含量及多巴胺受體表達的影響[J].中國康復醫(yī)學雜志,2010,25(7):639.
[41]? TRIFILIEFF P, MARTINEZ D. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity[J]. Neuropharmacology, 2014, 76(1): 498.
[42]? LEMOS J C, FRIEND D M, KAPLAN A R, et al. Enhanced GABA transmission drives bradykinesia following loss of dopamine D2 receptor signaling[J]. Neuron, 2016, 90(4): 824.
[43]? SCIAMANNA G, BONSI P, TASSONE A, et al. Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia[J]. Neurobiology of Disease, 2009, 34(1): 133.
[44]? JONES G. Caffeine and other sympathomimetic stimulants: modes of action and effects on sports performance[J]. Essays in Biochemistry, 2008(44): 109.