周美蘭 馮繼峰 張宇
Abstract:The composite energy storage system composed of battery, super capacitor and bi-directional DC-DC converter was studied to solve the problem of insufficient mileage and short battery life in electric vehicles. In order to realize rational power allocation of battery and super capacitor, the logic threshold and fuzzy control strategy were established respectively. The vehicle model was constructed based on the electric vehicle simulation software.Through simulation study,the characteristic curves of the current and SOC of battery and the current curves of super capacitor were got, and the results were compared with the single battery power supply. For verifying the feasibility and effectiveness of the control strategy, the experimental platform was built to study electric vehicles during driving and braking. Simulation and the experimental results show the composite energy storage system and its control strategies successfully reduce the charge and discharge current of battery, regenerate the braking energy and improve the mileage of electric vehicles.
Keywords:electric vehicles; composite energy storage; logic threshold; fuzzy control
0 引 言
近年來(lái),隨著我國(guó)汽車(chē)保有量的急劇增加,石油資源逐漸匱乏、環(huán)境日益惡劣等問(wèn)題也接踵而至,傳統(tǒng)燃油汽車(chē)造成的負(fù)面影響已無(wú)法滿(mǎn)足人們對(duì)可持續(xù)發(fā)展的要求,純電動(dòng)汽車(chē)已成為今后的主要發(fā)展方向[1]。純電動(dòng)汽車(chē)蓄電池的發(fā)展較為滯后,其功率密度較低、充放電次數(shù)有限、壽命較短,很難滿(mǎn)足人們的日常需求[2-3]。
為解決這一技術(shù)難題,在純電動(dòng)汽車(chē)電源系統(tǒng)中安裝了超級(jí)電容和雙向DC-DC變換器,從而組成了復(fù)合儲(chǔ)能系統(tǒng)[4]。由于超級(jí)電容具有功率密度高、壽命長(zhǎng)、能承受瞬時(shí)大電流充放電等優(yōu)點(diǎn),由此組成的復(fù)合儲(chǔ)能系統(tǒng)能夠提升原有電源系統(tǒng)的性能,從而提高純電動(dòng)汽車(chē)的動(dòng)力性能和續(xù)駛里程[5-7]。
隨著技術(shù)的不斷發(fā)展,復(fù)合儲(chǔ)能系統(tǒng)逐漸走進(jìn)研究人員的視野,并已取得一些可喜的成就[8-9]。Chugoku電力公司和豐田公司對(duì)蓄電池和超級(jí)電容構(gòu)成的復(fù)合儲(chǔ)能系統(tǒng)實(shí)驗(yàn)研究,實(shí)驗(yàn)結(jié)果顯示,相比單一蓄電池電源的電動(dòng)汽車(chē),具有復(fù)合儲(chǔ)能系統(tǒng)的電動(dòng)汽車(chē)具有更好的動(dòng)力性能[10]。Arani S K等人利用遺傳算法優(yōu)化電動(dòng)汽車(chē)模糊控制器并進(jìn)行實(shí)驗(yàn),結(jié)果表明,所開(kāi)發(fā)的模糊控制器在降低功耗等方面優(yōu)于標(biāo)準(zhǔn)模糊控制器[11]。我國(guó)也開(kāi)始對(duì)復(fù)合儲(chǔ)能系統(tǒng)進(jìn)行各項(xiàng)研究[12]。如王斌等人提出了一種新型復(fù)合儲(chǔ)能系統(tǒng)結(jié)構(gòu),并設(shè)計(jì)了7種工作方案,有效提高了復(fù)合儲(chǔ)能系統(tǒng)工作效率并保證蓄電池的充放電安全[13]。Chen Jian等人提出了一種電動(dòng)汽車(chē)用模糊邏輯參數(shù)調(diào)整的自適應(yīng)控制方法,仿真和實(shí)驗(yàn)結(jié)果證明了所提出方法的有效性[14]。但在能量回饋、蓄電池保護(hù)和電動(dòng)汽車(chē)?yán)m(xù)駛里程等方面仍存在較大的缺陷。針對(duì)此類(lèi)問(wèn)題,本文提出了復(fù)合儲(chǔ)能系統(tǒng)的能量控制策略。
本文主要根據(jù)所選復(fù)合儲(chǔ)能系統(tǒng)結(jié)構(gòu)設(shè)計(jì)了基于邏輯門(mén)限和基于模糊控制的能量控制策略。在AVL CRUISE仿真軟件中搭建了純電動(dòng)汽車(chē)整車(chē)模型進(jìn)行仿真分析,根據(jù)仿真分析的結(jié)果搭建了實(shí)驗(yàn)臺(tái)架,從而達(dá)到驗(yàn)證所設(shè)計(jì)的控制策略的可行性與有效性的目的。
1 復(fù)合儲(chǔ)能系統(tǒng)
復(fù)合儲(chǔ)能系統(tǒng)主要由蓄電池、超級(jí)電容和雙向DC-DC變換器等三部分組成。其連接方式一般可以分為以下幾種[15-16]:蓄電池與超級(jí)電容并聯(lián)、蓄電池串聯(lián)雙向DC-DC變換器后與超級(jí)電容并聯(lián)、超級(jí)電容串聯(lián)雙向DC-DC變換器后與蓄電池并聯(lián)、蓄電池和超級(jí)電容分別串聯(lián)一個(gè)雙向DC-DC變換器后并聯(lián),這當(dāng)中以第三種方式最為經(jīng)濟(jì)實(shí)用且易于實(shí)現(xiàn),其連接方式如圖1所示。
5 結(jié) 論
本文對(duì)復(fù)合儲(chǔ)能系統(tǒng)進(jìn)行了研究,制定了兩種控制策略。基于CRUISE在NEDC工況下進(jìn)行了仿真分析,搭建了純電動(dòng)汽車(chē)復(fù)合儲(chǔ)能系統(tǒng)實(shí)驗(yàn)臺(tái)架,進(jìn)行了負(fù)載和制動(dòng)實(shí)驗(yàn),得到結(jié)論如下:
(1)仿真結(jié)果表明,制定的純電動(dòng)汽車(chē)復(fù)合儲(chǔ)能系統(tǒng)能量控制策略能夠合理地進(jìn)行功率分配,使蓄電池輸出電流較為平穩(wěn),延長(zhǎng)蓄電池使用壽命,同時(shí)超級(jí)電容還能有效地回收制動(dòng)能量,提高能量的利用率。
(2)與單一蓄電池能源相比,邏輯門(mén)限控制策略總體節(jié)能6.17%,模糊控制策略總體節(jié)能34.57%;與邏輯門(mén)限控制策略相比,模糊控制策略節(jié)能效果提升5倍多,極大地提高了超級(jí)電容的利用率。
(3)負(fù)載與制動(dòng)實(shí)驗(yàn)表明,基于模糊控制策略的復(fù)合儲(chǔ)能系統(tǒng)能夠?qū)崿F(xiàn)對(duì)回饋能量的有效利用,證明了所提控制策略的可行性。
參 考 文 獻(xiàn):
[1] 申永鵬,王耀南,孟步敏,等.增程式電動(dòng)汽車(chē)功率流優(yōu)化策略[J].中國(guó)電機(jī)工程學(xué)報(bào),2015,35(16):4035.
SHEN Yongpeng, WANG Yaonan, MENG Bumin, et al. Power flow optimization strategy of range extender electric vehicle[J]. Proceedings of the CSEE,2015, 35(16):4035.
[2] 徐順剛,鐘其水,朱仁江.動(dòng)力電池均衡充電控制策略研究[J].電機(jī)與控制學(xué)報(bào),2012,16(2):62.
XU Shungang, ZHONG Qishui, ZHU Renjiang. Research of equalizing charge control strategy for power battery[J]. Electric Machines and Control, 2012,16(2):62.
[3] ZHANG Qiao, JU Feng, ZHANG Sumin, et al. Power management for hybrid energy storage system of electric vehicles considering tnaccurate terrain information[J]. IEEE Transactions on Automation Science and Engineering,2017,14(2):608.
[4] SHEN JUNYI, KHALIGH A. Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system[J]. IEEE Transactions on Industrial Informatics,2016,12(5):1910.
[5] YOO H, SUL S, PARK Y, et al. System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries[J]. IEEE Transactions on Industry Applications,2008,44(1): 108.
[6] 張純江,董杰,劉君,等.蓄電池與超級(jí)電容混合儲(chǔ)能系統(tǒng)的控制策略[J].電工技術(shù)學(xué)報(bào),2014,29(4):334.
ZHANG Chunjiang, DONG Jie, LIU Jun, et al. A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electrotechnical Society,2014, 29(4):334.
[7] 黃萬(wàn)友,程勇,曹紅,等.參考濟(jì)南道路工況的純電動(dòng)汽車(chē)能量回饋策略[J].電機(jī)與控制學(xué)報(bào),2012, 16(10):86.
HUANG Wanyou, CHENG Yong, CAO Hong, et al. Development of EVs energy feedback control strategy referring to Jinan′s vehicle driving-cycle[J]. Electric Machines and Control, 2012,16(10):86.
[8] 王琪,孫玉坤.一種混合動(dòng)力汽車(chē)復(fù)合電源能量管理系統(tǒng)控制策略與優(yōu)化設(shè)計(jì)方法研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2014,S1:195.
WANG Qi, SUN Yukun. Research on the control ctrategy and optimization of energy management system of hybrid energy storage in a hybrid electric vehicle[J]. Proceedings of the CSEE, 2014, S1:195.
[9] 張相軍,劉冠男,王懿杰,等.軟開(kāi)關(guān)雙向DC-DC變換器控制模型[J].電機(jī)與控制學(xué)報(bào),2013,17(11):89.
ZHANG Xiangjun, LIU Guannan, WANG Yijie, et al. Bidirectional DC/DC converter control model analysis based on super capacitor[J]. Electric Machines and Control,2013,17(11):89.
[10] SONG Chunpeng. Analysis of stakeholder on the construction of electric vehicle charging station in China[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific, August 31- September 3, 2014, Beijing, China. 2014:1-6.
[11] ARANI S K,NIASAR A H,ZADEH A H.Energy management of dual-source propelled electric vehicle using fuzzy controller optimized via genetic algorithm[C]//7th Power Electronics and Drive Systems Technologies Conference, February 16-18,2016,Tehran,Iran. 2016:338-343.
[12] HUNG Yihsuan, TUNG Yuming, CHANG Chunhsin. Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain[J]. Applied Energy,2016,173:184.
[13] 王斌,徐俊,曹秉剛,等.一種新型電動(dòng)汽車(chē)復(fù)合電源結(jié)構(gòu)及其功率分配策略[J].汽車(chē)工程,2015,37(09): 1053.
WANG Bin, XU Jun, CAO Binggang, et al. A novel hybrid power configuration and its power distribution strategy for electric vehicles[J]. Automotive Engineering,2015,37(09):1053
[14] CHEN Jian, XU Chenfeng, WU Chengshuai, et al. Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles[J]. IEEE Transactions on Industrial Informatics,2016, PP(99):1.
[15] BOSTJAN P, DARKO V, JANKO P. A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application[J]. Applied Energy,2015,137: 64.
[16] CAO Jian, EMADI A. A new battery/ultra-capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles[J]. IEEE Transactions on Power Electronics,2012,27(01):122.
[17] 李壽濤,馬用學(xué),郭鵬程,等.一種變邏輯門(mén)限值的車(chē)輛穩(wěn)定性控制策略研究[J].汽車(chē)工程,2015,7:782.
LI Shoutao, MA Yongxue, GUO Pengcheng, et al. A study on vehicle stability control strategy with variable threshold[J]. Automotive Engineering, 2015,7:782.
[18] 王慶年,于永濤,曾小華,等.基于CRUISE軟件的混合動(dòng)力汽車(chē)正向仿真平臺(tái)的開(kāi)發(fā)[J]. 吉林大學(xué)學(xué)報(bào):工學(xué)版,2009,39(6):1413.
WANGQingnian, YU Yongtao, ZENG Xiaohua, et al. Development of forward-looking simulation platform for hybrid electric vehicle based on software CRUISE[J]. Journal of Jilin University: Engineering and Technology Edition,2009,39(6):1413.
[19] 胡建軍,肖軍,晏玖江.純電動(dòng)車(chē)車(chē)用復(fù)合儲(chǔ)能裝置控制策略及參數(shù)優(yōu)化[J].重慶大學(xué)學(xué)報(bào),2016,39(1): 1.
HU Jianjun, XIAO Jun, YAN Jiujiang. Control strategy and parameter optimization of hybrid energy storage device for electric vehicles[J]. Journal of Chongqing University,2016,39(1):1.
[20] ZHANG Yu, MENG Dawei, ZHOU Meilan, et al. Energy flow analysis of an electric city bus based on wavelet transform with Mallet prolongation[J]. International Transactions on Electrical Energy Systems,2017,27(7):1.
(編輯:劉素菊)