吳迎,馮朋雅,李榮,陳瀟,李祥鍇,TAWATCHAI SUMPRADIT,劉璞
綜 述
劉璞 蘭州大學(xué)生命科學(xué)學(xué)院副教授。近年一直從事利用微生物資源來減除環(huán)境污染物如重金屬、抗生素等對生物的危害的機(jī)理與應(yīng)用研究。已在、等期刊上發(fā)表相關(guān)SCI論文20余篇,申請國內(nèi)發(fā)明專利3項(xiàng)。本課題組所屬的環(huán)境微生物研究團(tuán)隊(duì)結(jié)合近年研究成果,提出了應(yīng)對環(huán)境污染物的“腸道修復(fù)”策略,獲得了領(lǐng)域內(nèi)專家的認(rèn)可。
環(huán)境抗生素污染的微生物修復(fù)進(jìn)展
吳迎,馮朋雅,李榮,陳瀟,李祥鍇,TAWATCHAI SUMPRADIT,劉璞
蘭州大學(xué) 細(xì)胞活動與逆境適應(yīng)教育部重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730000
近年來隨著抗生素在畜牧業(yè)、水產(chǎn)養(yǎng)殖業(yè)以及醫(yī)療行業(yè)的廣泛應(yīng)用,大量抗生素通過排泄物進(jìn)入環(huán)境,導(dǎo)致我國大面積水體及土壤環(huán)境中抗生素殘留量急劇增高。環(huán)境中不同種類的抗生素的殘留導(dǎo)致微生物種群結(jié)構(gòu)失衡,對生態(tài)環(huán)境及人類造成極大危害。因此,解決抗生素殘留問題是21世紀(jì)新型環(huán)境污染物領(lǐng)域的一個重要課題。已有研究顯示,一些微生物能夠以抗生素為碳源生存,可用于降解環(huán)境中殘留抗生素,但人們對微生物降解抗生素的降解機(jī)制了解較少。文中概括了近十年來抗生素降解菌株和菌群對抗生素的去除情況,以及應(yīng)用微生物菌群處理抗生素殘留的技術(shù)方法,同時對未來利用微生物修復(fù)法減少環(huán)境中抗生素殘留進(jìn)行了展望。
抗生素,生物降解,菌株,微生物群落,合成生物學(xué)
自1928年弗萊明發(fā)現(xiàn)青霉素后,抗生素作為一種新的應(yīng)對病原體感染的方式被廣泛應(yīng)用于醫(yī)學(xué)、畜牧、水產(chǎn)養(yǎng)殖等領(lǐng)域[1-2]??股厥蔷哂锌咕钚缘奶烊?、合成和半合成化合物,能對其他活性細(xì)胞的發(fā)育產(chǎn)生干擾作用,主要包括磺胺類、四環(huán)素類、β-內(nèi)酰胺類、氟喹諾酮類、大環(huán)內(nèi)脂類等。中國是世界上使用抗生素最頻繁的國家之一,調(diào)查顯示,2013年我國抗生素的使用量達(dá)到16萬t,其中52%用于畜牧業(yè);2018年,我國約70%的住院病人和20%的門診病人使用抗生素類藥物,約為發(fā)達(dá)國家使用率的兩倍。抗生素在人類疾病治療和畜禽生產(chǎn)等方面作出巨大貢獻(xiàn)的同時也帶來了新的問題。有數(shù)據(jù)表明,2001年至2005年間,約有60萬名患者死于抗生素濫用[3]。研究還發(fā)現(xiàn),動物體攝入的磺胺類藥物中約有50%不經(jīng)修飾直接排放至水體和土壤環(huán)境中,進(jìn)而對人類和生態(tài)系統(tǒng)產(chǎn)生潛在的威脅[4],例如導(dǎo)致多種耐藥致病菌的出現(xiàn)、抗生素抗性基因的擴(kuò)散等[5-6]。因此,抗生素廣泛使用帶來的環(huán)境污染問題已成為新型有機(jī)污染物領(lǐng)域的重要課題。
近年來,研究者對去除環(huán)境中抗生素殘留的問題已進(jìn)行了大量的研究,目前已將理化方法、微生物降解法應(yīng)用于環(huán)境中抗生素的去除。理化方法如活性炭吸附法、低溫等離子技術(shù)、土壤滲濾系統(tǒng)法和超聲降解法等,主要用于去除環(huán)境中的有機(jī)污染物,在抗生素去除方面的應(yīng)用存在成本較高、去除效率低的問題[7]。微生物降解法作為一種去除環(huán)境抗生素殘留的生物方法,具有成本低、效能高以及環(huán)境污染小等特點(diǎn),是處理抗生素污染的有效途徑之一[8]。本文對近年來抗生素降解菌株和菌群及其在去除環(huán)境中抗生素殘留方面的應(yīng)用進(jìn)行了系統(tǒng)綜述,并對部分抗生素的微生物降解機(jī)制進(jìn)行總結(jié),為今后抗生素的微生物修復(fù)研究提供參考。
1.1.1 降解抗生素的細(xì)菌
抗生素的生物降解以微生物代謝為主。近年來通過篩選、富集和馴化等方式分離獲得了許多具有抗生素降解能力的細(xì)菌菌株 (表1),這些細(xì)菌參與分解的抗生素包括磺胺類(Sulfonamide antibiotics, SAs)、四環(huán)素類(Tetracycline antibiotics, TCs)、氟喹諾酮類(Fluoroquinolones, FQ)、大環(huán)內(nèi)脂類(Macrolides antibiotics, MA)、β-內(nèi)酰胺類和多肽等五類,其中以SAs和TCs為主,可能與其在環(huán)境中的殘留量有關(guān)[15,31]。獲得的具有抗生素降解能力的細(xì)菌來自無色桿菌屬、產(chǎn)堿桿菌屬、微桿菌屬、氨氧化細(xì)菌、蒼白桿菌屬、戈登式菌屬、葡萄球菌屬、鞘氨醇菌屬、棲熱菌屬、拉烏爾菌屬、伯克氏菌屬、芽孢桿菌屬和假單胞菌屬等。這些細(xì)菌是土壤、污水中的常見菌株,80%屬于厚壁菌門和變形菌門,少部分來自棲熱菌門、擬桿菌門、放線菌門和浮霉菌門等。
表1 近五年文獻(xiàn)中的抗生素特異性降解細(xì)菌
目前,少部分有降解抗生素能力的細(xì)菌菌株被用于處理含抗生素的土壤或廢水,均獲得較高的去除率。如章程等從添加抗生素的菠菜土壤中篩選到對泰樂菌素去除率為96.08%的無色桿菌,并將其應(yīng)用于盆栽土壤中,發(fā)現(xiàn)泰樂菌素的殘留率在20%以下,表明無色桿菌可以有效促進(jìn)土壤中泰樂菌素的去除[28];Shao等探究了不同條件下嗜鉻菌KSS10對土霉素(Oxytetracycline,OTC)的生物降解特性,發(fā)現(xiàn)KSS10菌株在96 h內(nèi)對OTC的轉(zhuǎn)化率為63.33%。隨后對菌株KSS10進(jìn)行生物固定化并聯(lián)合生物膜反應(yīng)器處理合成的水產(chǎn)養(yǎng)殖廢水,OTC的清除率約為76.42%[21]。目前,利用抗生素特異性降解細(xì)菌菌株處理環(huán)境中殘留抗生素的應(yīng)用實(shí)例不多,其主要原因可能是在實(shí)際應(yīng)用中存在耐藥基因擴(kuò)散的風(fēng)險。
1.1.2 降解抗生素的真菌
真菌是抗生素的來源之一,同時一些真菌已被證明可以分解抗生素類藥物。真菌對高濃度污染物的耐受性比細(xì)菌更強(qiáng),能夠降解多種難降解的化合物。另外,真菌細(xì)胞內(nèi)含有細(xì)胞色素P450復(fù)合物,能夠像哺乳動物細(xì)胞一樣代謝抗生素,使其成為消除環(huán)境中殘留抗生素的強(qiáng)有力候選者[2,46](表2)。
大量的研究表明通過篩選降解抗生素的真菌來去除環(huán)境中殘留的抗生素是可行的。卿純等探究了黃孢原毛平革菌應(yīng)用于四環(huán)素 (Tetracycline, TC) 模擬廢水,發(fā)現(xiàn)在72 h內(nèi)該菌株對10 mg/L的TC去除率高達(dá)80%[40];Copete-Pertuz等將從哥倫比亞麥德林山谷中分離得到的小光殼屬真菌sp.用于處理實(shí)驗(yàn)規(guī)模的醫(yī)療廢水,第6天未檢測到抗生素的存在,且降解產(chǎn)物無毒害,無抗菌效果[41];崔輝將曲霉屬真菌Y-7接種到含有OTC (50 mg/kg) 的土壤中,對OTC的降解率可達(dá)到30.63%[39];Aydin發(fā)現(xiàn)分離自活性污泥中的真菌組合變色栓菌和煙管菌對紅霉素 (Erythromycin,E)、磺胺甲惡唑(Sulfamethoxazole,SMX) 和TC組成的混合抗生素的降解效率在85%–94%之間[37];Lucas等將變色栓菌ATCC42530用于處理廢水,對7種不同類型(SAs、TCs和FQ等) 的47種抗生素的去除率達(dá)到77%,遠(yuǎn)高于傳統(tǒng)的處理方法[47]。
表2 近十年文獻(xiàn)中的抗生素特異性降解真菌
酵母作為一種單細(xì)胞真菌,在環(huán)境抗生素污染修復(fù)方面也具有潛在的價值。Selvi等從制藥廢水中分離得到一株假絲酵母菌sp.SMN04,它可以利用頭孢地尼(250 mg/L) 作為唯一碳源生長,6 d內(nèi)的降解率達(dá)到84%[48];馮福鑫等發(fā)現(xiàn),在適當(dāng)?shù)臈l件下酵母菌XPY-10在7 d內(nèi)對初始濃度為600 mg/L的TC去除率為83.63%[49]。以上的研究均說明酵母菌具有高效降解各類抗生素的能力。
菌株的抗生素降解能力受到抗生素種類、菌株類型、碳源、氮源、溫度、廢水組分等多種因素的影響。為促進(jìn)抗生素降解菌在實(shí)際環(huán)境廢水中的應(yīng)用,需要關(guān)注以下幾點(diǎn):1) 不同抗生素的微生物降解率存在差異。2) 不同的菌株類型對不同的抗生素降解效果存在顯著差異。3) 當(dāng)環(huán)境中的抗生素濃度較低時,作為碳源不足以促進(jìn)菌群生長,抗生素的降解效率將大大降低。如外加碳源可以有效增強(qiáng)無色桿菌的能量利用效率,提高對磺胺甲惡唑的降解能力[50]。4) 菌株在不同的溫度條件下對抗生素的降解率具有顯著差異[13]。Zheng等長期監(jiān)控發(fā)現(xiàn),夏季抗生素降解率遠(yuǎn)高于冬季[51]。5) 廢水中金屬離子的存在會影響氨氧化菌等降解菌還原抗生素的能力[52]。6) 抗生素代謝的中間產(chǎn)物如果具有抑菌性會降低菌株的抗生素去除率[10,23]。7) 多株具有降解能力的菌株共培養(yǎng)可以增強(qiáng)對抗生素的降解[53]。
1.2.1 抗生素的微生物降解途徑
微生物對抗生素的降解過程比較復(fù)雜,不同種類的抗生素由于結(jié)構(gòu)不同,降解途徑存在顯著的差異。總的來說,微生物對抗生素降解途徑的主要反應(yīng)包括:羥基化、乙?;?、硝基化、氧化作用、取代作用等。近年來,有關(guān)SAs和TCs的微生物降解機(jī)理的報(bào)道較多,我們選取了這兩類中研究較為透徹的抗生素進(jìn)行總結(jié)。
SMX是SAs中最常用的抗生素之一。其降解主要涉及3個過程:1) 主鏈S-N鍵斷裂;2) 異惡唑環(huán)裂解;3) 發(fā)生羥基化、乙酰化或硝基化修飾[54](圖1)。但在有氧和厭氧條件下,SMX的微生物降解產(chǎn)物存在差異。有氧條件下,SMX作為代謝基質(zhì)被菌株降解時,途徑A產(chǎn)生中間產(chǎn)物3-氨基-5-甲基異惡唑和4-氨基苯磺酸鹽或4-苯胺,最終生成產(chǎn)物1,2,4-三羥基苯與3-氨基異惡唑;而途徑B產(chǎn)生3-氨基-5-甲基異惡唑和4-苯胺,最終生成產(chǎn)物磺胺、苯胺及3-氨基異惡唑[53](圖1A, B)。最近研究顯示,厭氧條件下,SMX有兩條降解通路:1) SMX先發(fā)生羥基化作用,隨后異惡唑環(huán)破裂;2) 降解菌先攻擊異惡唑環(huán),異惡唑環(huán)破裂后,形成一個不穩(wěn)定的自由基陰離子 (SMX–),隨后發(fā)生氫化作用 (圖1C) 最終形成3-氨基異惡唑[32,55-56],但是具體的反應(yīng)步驟有待進(jìn)一步研究。
OTCs的微生物降解通路目前還不是十分明確,推測可能涉及取代反應(yīng)、苯環(huán)破裂、氧化反應(yīng)、去羥基化作用。圖2表示了OTC的微生物降解過程:OTCs首先發(fā)生了胺基化,形成4-差向土霉素 (EOTC);隨后發(fā)生去羥基化反應(yīng)形成2-乙酰基-2-去酰胺土霉素(ADOTC),然后氧化形成兩種不同構(gòu)型的產(chǎn)物α-apo-OTC和β-apo-OTC,最終氧化形成3-羥基環(huán)己酮[57-58]。
1.2.2 基因和降解酶
目前,關(guān)于抗生素降解基因的研究主要來自抗生素的耐藥菌,這些基因編碼的降解酶包括氨基糖類修飾酶、β-內(nèi)酰胺酶、大環(huán)內(nèi)酯類滅活酶等[60]。Richen報(bào)道了SadA、SadB與SadC基因參與了磺胺甲惡唑的生物降解過程,其中SadA、SadB基因編碼單加氧酶,SadC基因編碼FMN還原酶,這些基因廣泛存在于磺胺類的降解菌株中[61]。
近年分離獲得的具有抗生素降解能力的真菌以白腐真菌為主,它依賴自身的非特異性酶系統(tǒng)來轉(zhuǎn)化或礦化抗生素等有害的異源物質(zhì)[38,62]。該酶系統(tǒng)包括胞外的木質(zhì)素修飾酶木質(zhì)素過氧化物酶 (Lignin peroxidase, Lip)、錳過氧化物酶 (Manganese-dependent peroxidase, Mnp)、漆酶 (Laccase, Lac)和胞內(nèi)的細(xì)胞色素P450 (Cytochrome P450)。其中,Lac可以利用O2作為電子受體氧化底物;Mnp可以氧化Mn2+轉(zhuǎn)變?yōu)镸n3+與有機(jī)酸螯合,隨后發(fā)生氧化反應(yīng)[46,62]。
圖1 SMX的微生物降解途徑[53,55-56]
圖2 土霉素的微生物降解途徑[48,59](土霉素通過胺基化、去羧基化和氧化反應(yīng),最終形成產(chǎn)物3-羥基環(huán)己酮)
由于木質(zhì)素修飾酶是非特異性酶,可以降解環(huán)境中難降解的污染物,因此近年來有大量關(guān)于木質(zhì)素修飾酶在抗生素修復(fù)方面的應(yīng)用報(bào)道。Llorca等應(yīng)用漆酶降解四環(huán)素和紅霉素,去除率達(dá)到了78%[63]。Ding等利用SAs和TCs容易被漆酶系統(tǒng)氧化、FQ易被土壤吸附的特點(diǎn),將漆酶與土壤結(jié)合起來,對SAs、TCs和FQ進(jìn)行去除,其去除率在7.5 d后達(dá)到100%[64]。Yang等將漆酶固定化形成磁性交聯(lián)酶聚合體,TC (100 mg/L) 的去除率達(dá)到了100%[65]。Marco-Urea等在膜反應(yīng)器中進(jìn)行漆酶固定化,并聯(lián)合介質(zhì)丁香醛去除高達(dá)38種抗生素的混合物,24 h后32種抗生素的降解率大于50%。另有研究將漆酶與細(xì)菌進(jìn)行共培養(yǎng),提高了漆酶對抗生素的去除效率[66]。Lueangjaroenkit等發(fā)現(xiàn),在金屬離子存在的條件下,Mnp和Lac有效地滅活TC、多西環(huán)素、阿莫西林和環(huán)丙沙星等抗生素[67]。
抗生素降解菌群主要由變形菌門、擬桿菌門、酸桿菌門、放線菌門、疣微菌門、浮霉菌門的細(xì)菌組成。其中,以β-變形菌門最為豐富,主要負(fù)責(zé)有機(jī)物和養(yǎng)分的去除;亞優(yōu)勢菌門是擬桿菌門、酸桿菌門和綠彎菌門。而真菌中子囊菌門最多,占6%以上??股氐奶砑訒绊懳⑸锶郝涞慕Y(jié)構(gòu)組成,但降解不同種類抗生素的微生物群落的結(jié)構(gòu)差異并不是十分明顯[68]。Bai等研究表明,抗生素加入污泥后,微生物群落的豐度顯著下降,但多樣性增加[69]。降解菌群的組成還受到地理位置、溫度及氧氣含量的影響。在預(yù)脫氮池的系統(tǒng)中,α-變形桿菌的豐度受溫度影響,而β-變形桿菌、放線菌和氯氧桿菌在微生物種群中的比例相對穩(wěn)定。在厭氧條件下,硝化螺旋菌屬、生絲微菌屬、微絲菌屬、甲烷絲菌屬、亞硝化單胞菌屬的豐度更高,相比于好氧環(huán)境,各菌屬豐度的分布更加均勻,可能更有利于提高抗生素的降解能力[70-71]。
2.2.1 活性污泥法
活性污泥法 (Activated sludge process, ASP) 是國內(nèi)外處理污水的常用方法。它的主要機(jī)制是,好氧細(xì)菌分泌胞外酶,將水中的膠質(zhì)有機(jī)物分解為可溶解有機(jī)物。可溶解有機(jī)物通過滲透作用進(jìn)入細(xì)菌細(xì)胞膜,誘導(dǎo)細(xì)胞內(nèi)特異性基因的表達(dá),隨后被分解。同時細(xì)菌利用有機(jī)物分解釋放的能量增殖,進(jìn)一步加強(qiáng)有機(jī)物的降解。ASP自1914年至今經(jīng)歷了漫長的發(fā)展歷程,現(xiàn)如今已成功應(yīng)用于抗生素廢水的處理。
SAs在活性污泥中的去除以降解為主吸附為輔。如Jia等利用硫酸鹽還原菌污泥系統(tǒng)去除SMX,發(fā)現(xiàn)SMX起初依賴污泥的快速吸附,隨后菌株破壞異惡唑環(huán)降解SMX[55]。ASP對不同種類SAs的降解效果存在一定的差異。如Yang等研究發(fā)現(xiàn),ASP對SMX、磺胺二甲氧基嘧啶和磺胺甲氧基嘧啶的降解率分別為24%、30%和19%,降解順序?yàn)镾MX>磺胺二甲氧基>磺胺甲嗪[56,72]。
TCs主要通過生物吸附的方式轉(zhuǎn)移到污泥中,微生物降解的貢獻(xiàn)極少[73]。其主要原因是TCs是兩性化合物,極易與周圍的環(huán)境發(fā)生反應(yīng),形成穩(wěn)定的化合物,失去抑菌能力[74]。另一可能的原因是特異性降解菌屬豐度低。如Wang等發(fā)現(xiàn)在原污泥中TC的優(yōu)勢降解菌屬如希瓦氏菌、芽孢桿菌、假單胞菌、氨氧化菌等豐度低,降解能力弱。當(dāng)以TC為唯一碳源時,這些菌屬轉(zhuǎn)變?yōu)閮?yōu)勢菌屬,TC降解率顯著提高[75]。因此,通過增加活性污泥中抗生素特異性降解菌屬的比例,可以提高ASP中微生物群落對抗生素的去除能力。
FQ在ASP的去除以吸附為主微生物降解為輔,高濃度的FQ對ASP的菌群會產(chǎn)生抑制作用。高溫、好氧、優(yōu)勢菌株的豐度、硝化作用有助于增強(qiáng)菌群對FQ降解能力[60]。Wang等發(fā)現(xiàn),在有氧、高溫條件下,通過硝化過程中的共代謝,顯著提高了菌群的FQ去除率[76]。Jia等發(fā)現(xiàn)厭氧污泥系統(tǒng)中含有對FQ高耐受性的脫硫桿菌屬,能長期有效去除制藥及醫(yī)院廢水中的FQ[77]。另外,β-lactams在ASP中的去除也以微生物為輔,高濃度的β-lactams會顯著抑制微生物的降解能力。通常將ASP與Fenton氧化、微電解等非生物技術(shù)聯(lián)用提高β-lactams的去除率[78-79]。Chen等將頭孢菌素C與活性污泥共堆肥,頭孢菌素C的降解率僅為6.58%[80]。傳統(tǒng)的ASP存在污泥生產(chǎn)量大、成本高、易膨脹等問題,使其實(shí)際應(yīng)用受到一定的限制[60]。目前,已有不少研究將現(xiàn)代工藝與活性污泥法結(jié)合起來,在提高污染物降解率的同時,降低廢水處理成本。如Sodhi采用膜生物反應(yīng)器、厭氧消化池、與CAS反應(yīng)器連接形成活性污泥改良版系統(tǒng),促進(jìn)污泥中微生物的富集,污泥產(chǎn)量減少了72%[81];Meerburg等利用高速率活性污泥,增加了微生物群落的豐度,提高了污泥的質(zhì)量,為各種污水類型的低容量活性污泥處理設(shè)施提供了一種可持續(xù)的實(shí)用選擇[82]。
另外菌群、碳源、反應(yīng)時間及溫度也會影響ASP中抗生素的降解效率:1) 抗生素可作為降解菌株的碳源或氮源,當(dāng)外加乙酸鹽和硝酸銨進(jìn)行共代謝時,抗生素的微生物降解率顯著提高[83]; 2) 菌群的豐度和種類會影響抗生素的去除率,其中不動桿菌和假單胞菌是污泥中磺胺降解的主要菌屬,脫硫桿菌屬是FQ的主要菌屬[71];3) 反應(yīng)時間也會影響抗生素的去除效果,細(xì)菌對磺胺類抗生素的吸附是一個可逆的過程,當(dāng)反應(yīng)時間過長,SAs會被重新釋放出來;4) 溫度影響活性污泥中菌群的生長,如Huang等發(fā)現(xiàn)SMZ的吸附速率隨溫度的升高而降低[11,51];5) 污泥齡在5–25 d時,SMZ的去除率也從45%提高到80%。
2.2.2 膜生物反應(yīng)器法
膜生物反應(yīng)器 (Membrane bioreactor,MBR)是活性污泥處理與微濾或超濾技術(shù)相結(jié)合的產(chǎn)物。與傳統(tǒng)活性污泥處理相比,MBR具有出水水質(zhì)好、污泥消耗低、占地面積小的特點(diǎn)[60]。近年來,還出現(xiàn)了將微濾或超濾等低壓膜與活性污泥系統(tǒng)相結(jié)合形成的一種高保留率膜生物反應(yīng)器。目前有3種高保留率膜生物反應(yīng)器應(yīng)用于抗生素廢水的處理,即滲透膜生物反應(yīng)器、膜蒸餾生物反應(yīng)器和納濾膜生物反應(yīng)器,對抗生素具有良好的去除效果,但存在膜污染、膜消耗量大的問題[84-85]。
MBR既包括好氧膜生物反應(yīng)器,也包括厭氧膜生物反應(yīng)器 (Anaerobic membrane bioreactors, AnMBRs)。AnMBRs是近年來出現(xiàn)的一種處理抗生素廢水的新技術(shù)。它在處理過程中將廢水中的有機(jī)物轉(zhuǎn)化為富含甲烷的沼氣,并可以通過產(chǎn)生的沼氣抵消廢水處理過程中的能源需求,與傳統(tǒng)的活性污泥和好氧膜生物反應(yīng)器相比具有許多優(yōu)點(diǎn)[86]。如Huang等在利用AnMBR系統(tǒng)處理含有β-lactams廢水的過程中發(fā)現(xiàn)頭孢曲松、頭孢哌酮等抗生素的去除率達(dá)到了50%[87]。另外,AnMBRs膜在阻止抗生素和帶有抗性基因的微生物從反應(yīng)器逃逸到環(huán)境中起著重要作用。該系統(tǒng)不僅能降解抗生素,有效地控制細(xì)菌污染,而且能提高廢水的能量回收,是一種很有前途的抗生素廢水處理技術(shù)[88]。
隨著近年來污水排放標(biāo)準(zhǔn)的提高,越來越多的污水處理廠開始對現(xiàn)有的MBR處理工藝進(jìn)行改進(jìn)。如Karaolia將MBR與太陽能芬頓法結(jié)合,氧化去除SMX、紅霉素和克拉霉素,與單獨(dú)的MBR相比,克拉霉素的去除率顯著提升[89]。Cheng等研究發(fā)現(xiàn)將MBRs與生物膜載體(如顆?;钚蕴?、海綿) 相結(jié)合可以降低膜污染,提高抗生素的去除率[90]。
MBR的性能還受到鹽度、菌群、溫度等多種因素的影響。鹽分積累會干擾MBR膜的生物性能,出現(xiàn)膜污染、微生物對抗生素的去除能力下降等問題[91]。耐鹽菌群的增加會維護(hù)MBR的性能。Luo等研究發(fā)現(xiàn),在高鹽度條件下,大部分菌屬受到抑制,耐鹽/嗜鹽微生物與非嗜鹽微生物的比例顯著升高,MBR的生物學(xué)性能隨耐鹽菌的增加緩慢恢復(fù),因此可以通過增加耐鹽菌或嗜鹽菌的量來維持MBR的性能[85]。溫度過高或過低對MBR的抗生素去除效率有顯著性影響[92]。
2.2.3 堆肥法
堆肥法是一種將原生有機(jī)質(zhì)轉(zhuǎn)化為有價值的有機(jī)土壤的改良技術(shù),它通過多種微生物的作用,將生物殘?bào)w、糞便和藥渣等進(jìn)行礦質(zhì)化、腐殖化和無害化,使得各種復(fù)雜的有機(jī)養(yǎng)分轉(zhuǎn)化為可溶性養(yǎng)分和腐殖質(zhì),可作為去除動物糞便中抗生素的一種有效方法。堆肥法在20世紀(jì)初由英國農(nóng)業(yè)學(xué)家霍華德提出,主要有好氧堆肥和厭氧堆肥兩種類型,在不同類型抗生素的降解中均有應(yīng)用。好氧堆肥是一種通過酶、微生物和氧氣的作用降解有機(jī)物的過程[93]。厭氧堆肥則是一個發(fā)酵的過程,它利用畜禽糞便產(chǎn)生環(huán)境友好型能源(沼氣),主要由4個階段組成,即水解、酸生成、乙酰生成和甲烷生成。
Shi等在糞便中添加4種典型的抗生素進(jìn)行好氧堆肥,20 d內(nèi)抗生素的去除率達(dá)到了90%以上[94]。Inastrazysch等研究發(fā)現(xiàn)厭氧發(fā)酵對7種磺胺類藥物和甲氧芐啶均有去除效果,而且代謝物的抗菌活性顯著降低[95];Spielmeyer等發(fā)現(xiàn)通過半連續(xù)發(fā)酵,磺胺嘧啶、四環(huán)素和氯四環(huán)素的去除率在14%–89%之間,并且抗生素的存在對甲烷產(chǎn)量沒有抑制作用[96]。
堆肥法的抗生素清除率受到堆肥底物、溫度等多種因素的影響。(1) 共堆肥有利于抗生素的清除[97]。Zhang等將青霉素發(fā)酵菌渣與豬糞進(jìn)行好氧共堆肥后,超過99%的青霉素在堆肥7 d后被清除[97-98];Liu等利用慶大霉素發(fā)酵殘基和洛伐他汀發(fā)酵殘基進(jìn)行室內(nèi)共堆肥,慶大霉素去除率在90%以上[8]。(2) 溫度、pH。Huang等研究發(fā)現(xiàn),堆肥的最佳pH值在5.5–8.0之間[99];Ma等發(fā)現(xiàn)高溫能有效促進(jìn)堆肥發(fā)酵[100]。(3) 過少的曝氣會導(dǎo)致厭氧環(huán)境,而過多的曝氣會導(dǎo)致過早冷卻,破壞了適宜的高溫條件,從而影響分解速 率[93,101]。
2.2.4 生物電化學(xué)系統(tǒng)
生物電化學(xué)系統(tǒng) (Bioelectrochemical systems, BESs) 由微生物燃料電池 (MFCs) 和微生物電解細(xì)胞 (MECs) 兩部分組成,是一種將微生物代謝和電化學(xué)氧化還原反應(yīng)結(jié)合起來,利用電化學(xué)性微生物回收能量的裝置,被認(rèn)為是降解污染物的有效的替代方法,近年被應(yīng)用到抗生素的降解中[102-103]。
大部分的MFC是由生物陽極和非生物陰極組成的。在非生物陰極中,通常鐵氰化鉀或氧作為電子受體;在生物陽極中,抗生素作為電子供體和碳源。產(chǎn)電菌和降解菌附著在陽極上,在細(xì)胞外聚合物中形成生物膜,負(fù)責(zé)降低可降解抗生素及其代謝物的電位,無需提供外源能量[102]。
目前,已有不少證據(jù)表明BESs系統(tǒng)對抗生素具有良好的去除效果。如MFC對磺胺嘧啶、SMX等SAs降解率在85%以上,對TC的降解率能達(dá)到99%,對氯霉素也具有良好的去除效果[102,104]。與其他技術(shù)相比,BESs具有以下優(yōu)勢:(1) 運(yùn)行成本低[106];(2) 抗生素去除效果好[105-106];(3) 可以與其他技術(shù)如人工濕地聯(lián)用,降解不同類型的抗生素,但它的降解能力也受到鹽度、固相以及金屬的影響[107-108]。
2.2.5 微藻的光解
藻類是一類結(jié)構(gòu)類似于細(xì)菌的真核生物。微藻在水生環(huán)境中具有最多的生物量,對污染物的耐受性也高于細(xì)菌,并且具有良好的有機(jī)物去除能力[109]。微藻廣泛應(yīng)用于各種新型污染物廢水的處理,近年也出現(xiàn)了利用微藻去除廢水中抗生素的報(bào)道。如Liu等將銅綠微囊藻置于50 μg/L–1 ng/L螺旋霉素和阿莫西林水溶液中培養(yǎng)7 d,降解了12.5%–32.9%的螺旋霉素和30.5%–33.6%的阿莫西林,表明藍(lán)藻細(xì)胞具有一定的抗生素去除能力[110]。Hom-Diaz等采用光藻反應(yīng)器處理實(shí)際廢水,可高效去除廢水中的環(huán)丙沙星 (2 mg/L)[111]。Yu等研究發(fā)現(xiàn),在海藻處理6 h后,未處理的頭孢噻啶殘留率為96.93%,處理后的頭孢噻啶的殘留率僅為7.35%[112]。有研究發(fā)現(xiàn)光照強(qiáng)度、CO2濃度有利于藻類生長和抗生素的去除[113]。微藻對抗生素的處理主要由3個步驟組成:1) 快速吸附,藻類具有較大的表面積和體積比,其細(xì)胞壁帶有負(fù)電荷,因此能吸附大量的有機(jī)物;2) 緩慢的細(xì)胞壁傳輸進(jìn)入微藻細(xì)胞;3) 光解作用,將光電子的光激發(fā)與微藻的光催化耦合,在抗生素光解過程中促進(jìn)了光電子的傳遞[109]。
近年來,也有研究將微藻與活性污泥聯(lián)用來處理抗生素廢水。Guo等利用藻類和活性污泥聯(lián)合系統(tǒng)去除頭孢菌素,14 d內(nèi)單活性污泥的去除率為46.3%,聯(lián)合去除效果達(dá)到了97.91%[114]。
抗生素作為一類新型污染物,給水體、土壤造成的污染成為全球面臨的重大環(huán)境問題。在自然環(huán)境中,生物降解是天然存在于生態(tài)系統(tǒng)中的有機(jī)物降解途徑。相較于傳統(tǒng)修復(fù)方法,其成本低、效能高、適用范圍廣,是一種具有前景的消除環(huán)境抗生素殘留的生物修復(fù)法。目前,關(guān)于不同種類抗生素微生物代謝通路的研究已有大量文獻(xiàn)報(bào)道。但現(xiàn)有研究主要集中于抗生素特異性降解菌株的篩選與降解產(chǎn)物的分析,對降解過程所涉及的基因及產(chǎn)物、降解機(jī)理的研究及特異性菌株的實(shí)際應(yīng)用很少。為了能使微生物修復(fù)法得到更廣泛的應(yīng)用,今后的環(huán)境抗生素污染的微生物修復(fù)研究可以從以下方面開展:1) 探究在自然和實(shí)驗(yàn)條件下,抗生素特異性降解菌株生存和降解能力的差異。2) 篩選對特定類別多種抗生素具有極強(qiáng)降解能力的菌株。3) 加強(qiáng)對抗生素生物降解機(jī)制的研究,挖掘參與抗生素降解過程的關(guān)鍵基因元件、降解酶,加速對抗生素降解酶制劑的研究。4) 應(yīng)用合成生物學(xué)方法構(gòu)建和改造工程菌株,提高菌株對多種抗生素的分解能力[31]。5) 抗生素降解菌株、菌群與非生物修復(fù)技術(shù)聯(lián)用,并優(yōu)化組合工藝,提高抗生素的降解效率。
[1] Tan SY, Tatsumura Y. Alexander fleming (1881–1955): discoverer of penicillinSingapore Med J, 2015, 56(7): 366–367.
[2] Kumar M, Jaiswal S, Sodhi KK, et al. Antibiotics bioremediation: perspectives on its ecotoxicity and resistanceEnviron Int, 2019, 124: 448–461.
[3] Wang Z, Zhang H, Han J, et al. Deadly sins of antibiotic abuse in ChinaInfect Control Hosp Epidemiol, 2017, 38(6): 758–759.
[4] Reis PJM, Reis AC, Ricken B, et al. Biodegradation of sulfamethoxazole and other sulfonamides byPR1J Hazard Mater, 2014, 280: 741–749.
[5] Li N, Sheng GP, Lu YZ, et al. Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulationWater Res, 2017, 111: 204–212.
[6] Sharma VK, Johnson N, Cizmas L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genesChemosphere, 2016, 150: 702–714.
[7] Luo Y, Huang B, Jin Y, et al. Research progress in the degradation of antibiotics wastewater treatmentChem Ind Eng Prog, 2014, 33(9): 2471–2477 (in Chinese). 羅玉, 黃斌, 金玉, 等. 污水中抗生素的處理方法研究進(jìn)展. 化工進(jìn)展, 2014, 33(9): 2471–2477.
[8] Liu YW, Feng Y, Cheng DM, et al. Gentamicin degradation and changes in fungal diversity and physicochemical properties during composting of gentamicin production residueBioresour Technol, 2017, 244: 905–912.
[9] Ricken B, Fellmann O, Kohler HPE, et al. Degradation of sulfonamide antibiotics bysp. strain BR1-elucidating the downstream pathwayN Biotechnol, 2015, 32(6): 710–715.
[10] Kassotaki E, Buttiglieri G, Ferrando-Climent L, et al. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation productsWater Res, 2016, 94: 111–119.
[11] Huang MH, Tian SX, Chen DH, et al. Removal of sulfamethazine antibiotics by aerobic sludge and an isolatedsp. S-3J Environ Sci, 2012, 24(9): 1594–1599.
[12] Reis PJM, Homem V, Alves A, et al. Insights on sulfamethoxazole bio-transformation by environmentalisolatesJ Hazard Mater, 2018, 358: 310–318.
[13] Wang SZ, Wang JL. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strainspAppl Microbiol Biotechnol, 2018, 102(1): 425–432.
[14] Zhang JY, Peng XX, Jia XS. Isolation and characterization of high efficiency sulfamethazine-degrading bacterium strain J2Acta Sci Circumstant, 2019, 39(09): 2919–2927 (in Chinese). 張珈瑜, 彭星星, 賈曉珊. 磺胺二甲基嘧啶(SM2)高效降解菌J2的分離篩選及降解特性研究. 環(huán)境科學(xué)學(xué)報(bào), 2019, 39(09): 2919–2927.
[15] Mulla SI, Hu AY, Sun Q, et al. Biodegradation of sulfamethoxazole in bacteria from three different originsJ Environ Manage, 2018, 206: 93–102.
[16] Zhang XY, Cai TJ, Xu XP. Isolation and identification of a tetracycline-degrading bacterium and optimizing condition for tetracycline degradationBiotechnol Bull, 2015, 31(1): 173–180 (in Chinese). 張欣陽, 蔡婷靜, 許旭萍. 一株高效四環(huán)素降解菌的分離鑒定及其降解性能研究. 生物技術(shù)通報(bào), 2015, 31(1): 173–180.
[17] Leng YF. Characteristics and mechanism of tetracycline degradation by microorganism[D]. Wuhan: China University of Geosciences, 2017 (in Chinese). 冷一非. 微生物降解四環(huán)素特性及降解機(jī)理研究[D]. 武漢: 中國地質(zhì)大學(xué), 2017.
[18] Wu XL, Wu XY, Li JK, et al. Isolation and degradation characteristics of a efficient tetracycline-degrading strainBiotechnol Bull, 2018, 34(5): 172–178 (in Chinese). 吳學(xué)玲, 吳曉燕, 李交昆, 等. 一株四環(huán)素高效降解菌的分離及降解特性. 生物技術(shù)通報(bào), 2018, 34(5): 172–178.
[19] Shen FY, Sun MM, Jiao JG, et al. Effects and response process of tetracycline on bioremediation of pyrene-contaminated soilSoils, 2016, 48(5): 954–963 (in Chinese). 沈方圓, 孫明明, 焦加國, 等. 四環(huán)素對芘污染農(nóng)田土壤微生物修復(fù)的影響及響應(yīng)過程. 土壤, 2016, 48(5): 954–963.
[20] Meng YH, Feng Y, Li XF, et al. Isolation of an oxytetracycline-degrading bacterial strain and its biodegradation characteristicsJ Plant Nutr Fert, 2018, 24(3): 720–727 (in Chinese). 孟應(yīng)宏, 馮瑤, 黎曉峰, 等. 土霉素降解菌篩選及降解特性研究. 植物營養(yǎng)與肥料學(xué)報(bào), 2018, 24(3): 720–727.
[21] Shao SC, Hu YY, Cheng JH, et al. Degradation of oxytetracycline (OTC) and nitrogen conversion characteristics using a novel strainChem Eng J, 2018, 354: 758–766.
[22] Cheng J, Du HL, Zhang TB, et al. Isolation and identification of tetracyclines degrading bacteriaJ Nucl Agric Sci, 2017, 31(5): 884–888 (in Chinese). 成潔, 杜慧玲, 張?zhí)鞂? 等. 四環(huán)素類抗生素降解菌的分離與鑒定. 核農(nóng)學(xué)報(bào), 2017, 31(5): 884–888.
[23] Pan LJ, Li J, Li CX, et al. Study of ciprofloxacin biodegradation by asp. isolated from pharmaceutical sludgeJ Hazard Mater, 2018, 343: 59–67.
[24] Fu BM, Chen LW, Cai TM, et al. Isolation and characterization of norfloxacin-degrading bacterium strain NOR-36Acta Sci Circumstant, 2017, 37(2): 576–584 (in Chinese). 付泊明, 陳立偉, 蔡天明, 等. 諾氟沙星降解菌NOR-36的分離篩選及降解特性研究. 環(huán)境科學(xué)學(xué)報(bào), 2017, 37(2): 576–584.
[25] Maia AS, Tiritan ME, Castro PML. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strainsF11 andsp. FP1Ecotoxicol Environ Saf, 2018, 155: 144–151.
[26] Lin BK, Lyu J, Lyu XJ, et al. Characterization of cefalexin degradation capabilities of twostrains isolated from activated sludgeJ Hazard Mater, 2015, 282: 158–164.
[27] Liu H, Yang YK, Ge YH, et al. Interaction between common antibiotics and astrain isolated from an enhanced biological phosphorus removal activated sludge systemBioresour Technol, 2016, 222: 114–122.
[28] Zhang C, Feng Y, Liu YW, et al. The degradation of typical antibiotics and their effects on soil bacterial diversity in spinach soilSci Agric Sin, 2018, 51(19): 3736–3749 (in Chinese). 章程, 馮瑤, 劉元望, 等. 菠菜土壤中典型抗生素的微生物降解及細(xì)菌多樣性. 中國農(nóng)業(yè)科學(xué), 2018, 51(19): 3736–3749.
[29] Wang Y, Ma YL, Ma L, et al. Study on microbial degradation pathway and products of tylosin residue in pharmaceutical wasteActa Sci Circumstant, 2015, 35(2): 491–498 (in Chinese). 王艷, 馬玉龍, 馬琳, 等. 泰樂菌素的微生物降解途徑及其降解產(chǎn)物研究. 環(huán)境科學(xué)學(xué)報(bào), 2015, 35(2): 491–498.
[30] Wang G, Yu ZL, Qiu JP. Screening of polymyxin-degrading bacteria and optimization of its culture conditions. Bull Ferment Sci Technol, 2018, 47(1): 21–26 (in Chinese). 王剛, 余志良, 裘娟萍. 多粘菌素E降解酶產(chǎn)生菌的篩選及其產(chǎn)酶條件的研究. 發(fā)酵科技通訊, 2018, 47(1): 21–26.
[31] Tang HZ, Wang WW, Zhang LG, et al. Application of synthetic biology in environmental remediationChin J Biotechnol, 2017, 33(3): 506–515 (in Chinese). 唐鴻志, 王偉偉, 張莉鴿, 等. 合成生物學(xué)在環(huán)境修復(fù)中的應(yīng)用. 生物工程學(xué)報(bào), 2017, 33(3): 506–515.
[32] García-Galán MJ, Rodríguez-Rodríguez CE, Vicent T, et al. Biodegradation of sulfamethazine by: removal from sewage sludge and identification of intermediate products by UPLC-QqTOF-MSSci Total Environ, 2011, 409(24): 5505–5512.
[33] Rodríguez-Rodríguez CE, García-Galán MJ, Blánquez P, et al. Continuous degradation of a mixture of sulfonamides byand identification of metabolites from sulfapyridine and sulfathiazoleJ Hazard Mater, 2012, 213–214: 347–354.
[34] Guo XL, Zhu ZW, Li HL. Biodegradation of sulfamethoxazole byJ Mol Liq, 2014, 198: 169–172.
[35] Wang QF, Zhu PL, Xia ZM, et al. Screening and degradation properties of three kinds of agricultural antibiotics degrading fungiJ Agric Resourc Environ, 2018, 35(6): 533–539 (in Chinese).王強(qiáng)鋒, 朱彭玲, 夏中梅, 等. 三種農(nóng)用抗生素降解真菌的篩選及其降解性能. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2018, 35(6): 533–539.
[36] Gao N, Liu CX, Xu QM, et al. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system ofandChemosphere, 2018, 195: 146–155.
[37] Aydin S. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungiandAppl Microbiol Biotechnol, 2016, 100(14): 6491–6499.
[38] Wen XH, Jia YN, Li JX. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared fromJ Hazard Mater, 2010, 177(1/3): 924–928.
[39] Zhai H. Isolation and identification of oxytetracycline-degrading strain and its use in bioremediation simulation of contaminated soil[D]. Yangling: Northwest A&F University, 2016 (in Chinese). 翟輝. 土霉素降解菌的篩選、鑒定及其在污染土壤中的修復(fù)模擬[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2016.
[40] Qing C, Shang C, Zhou YH, et al. Study on the biodegradation of tetracycline wastewater byEnviron Pollut Control, 2018, 40(9): 1023–1026, 1067 (in Chinese). 卿純, 尚翠, 周亦航, 等. 黃孢原毛平革菌對四環(huán)素廢水的降解研究. 環(huán)境污染與防治, 2018, 40(9): 1023–1026, 1067.
[41] Copete-Pertuz LS, Plácido J, Serna-Galvis EA, et al. Elimination of isoxazolyl-penicillins antibiotics in waters by the ligninolytic native Colombian strainsp. considerations on biodegradation process and antimicrobial activity removalSci Total Environ, 2018, 630: 1195–1204.
[42] Ahumada-Rudolph R, Novoa V, Sáez K, et al. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracyclineEnviron Monit Assess, 2016, 188(8): 468.
[43] Prieto A, M?der M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation productsBioresour Technol, 2011, 102(23): 10987–10995.
[44] ?van?arová M, Moeder M, Filipová A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi – Metabolites, enzymes and residual antibacterial activityChemosphere, 2015, 136: 311–320.
[45] Pérez-Grisales MS, Castrillón-Tobón M, Copete-Pertuz LS, et al. Biotransformation of the antibiotic agent cephadroxyl and the synthetic dye Reactive Black 5 bysp. immobilised on Luffa () spongeBiocatal Agric Biotechnol, 2019, 18: 101051.
[46] Yu M, Ruan XW, Tan LQ, et al. Study on impact factors of manganese-dependent peroxidase produced by white rot fungiChem Bioeng, 2014, 31(11): 40–44 (in Chinese). 余梅, 阮小文, 譚麗泉, 等. 白腐真菌產(chǎn)錳過氧化物酶的研究. 化學(xué)與生物工程, 2014, 31(11): 40–44.
[47] Lucas D, Badia-Fabregat M, Vicent T, et al. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewaterChemosphere, 2016, 152: 301–308.
[48] Selvi A, Das D, Das N. Potentiality of yeastsp. SMN04 for degradation of cefdinir, a cephalosporin antibiotic: kinetics, enzyme analysis and biodegradation pathwayEnviron Technol, 2015, 36(24): 3112–3124.
[49] Feng FX, Xu XP, Cheng QX, et al. Degradation characteristics of tetracycline hydrochloride byXPY-10Chin J Environ Eng, 2013, 7(12): 4779–4785 (in Chinese). 馮福鑫, 許旭萍, 程群星, 等. 四環(huán)素高效降解酵母菌XPY-10降解特性. 環(huán)境工程學(xué)報(bào), 2013, 7(12): 4779–4785.
[50] Nguyen PY, Carvalho G, Reis AC, et al. Impact of biogenic substrates on sulfamethoxazole biodegradation kinetics bystrain PR1Biodegradation, 2017, 28(2/3): 205–217.
[51] Zheng WL, Wen XH, Zhang B, et al. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plantSci Total Environ, 2019, 646: 1293–1303.
[52] Liu H, Yang YK, Sun HF, et al. Effect of tetracycline on microbial community structure associated with enhanced biological N&P removal in sequencing batch reactorBioresour Technol, 2018, 256: 414–420.
[53] Wang JL, Wang SZ. Microbial degradation of sulfamethoxazole in the environmentAppl Microbiol Biotechnol, 2018, 102(8): 3573–3582.
[54] Chen JF, Xie SG. Overview of sulfonamide biodegradation and the relevant pathways and microorganismsSci Total Environ, 2018, 640–641: 1465–1477.
[55] Jia YY, Khanal SK, Zhang HQ, et al. Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge systemWater Res, 2017, 119: 12–20.
[56] Yang CW, Hsiao WC, Chang BV. Biodegradation of sulfonamide antibiotics in sludgeChemosphere, 2016, 150: 559–565.
[57] Migliore L, Fiori M, Spadoni A, et al. Biodegradation of oxytetracycline bymycelium: a mycoremediation techniqueJ Hazard Mater, 2012, 215–216: 227–232.
[58] Li ZJ, Qi WN, Feng Y, et al. Degradation mechanisms of oxytetracycline in the environmentJ Integr Agric, 2018, 17: 60345–60347.
[59] Wang J, Zhou BY, Ge RJ, et al. Degradation characterization and pathway analysis of chlortetracycline and oxytetracycline in a microbial fuel cellRSC Adv, 2018, 8(50): 28613–28624.
[60] Liu YW, Li ZJ, Feng Y, et al. Research progress in microbial degradation of antibioticsJ Agro-Environ Sci, 2016, 35(2): 212–224 (in Chinese). 劉元望, 李兆君, 馮瑤, 等. 微生物降解抗生素的研究進(jìn)展. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(2): 212–224.
[61] Ricken B, Kolvenbach BA, Bergesch C, et al. FMNH2-dependent monooxygenases initiate catabolism of sulfonamides insp. strain BR1 subsisting on sulfonamide antibioticsSci Rep, 2017, 7: 15783.
[62] Falade AO, Nwodo UU, Iweriebor BC, et al. Lignin peroxidase functionalities and prospective applicationsMicrobiologyOpen, 2017, 6(1): e00394.
[63] Llorca M, Rodríguez-Mozaz S, Couillerot O, et al. Identification of new transformation products during enzymatic treatment of tetracycline and erythromycin antibiotics at laboratory scale by an on-line turbulent flow liquid-chromatography coupled to a high resolution mass spectrometer LTQ-OrbitrapChemosphere, 2015, 119: 90–98.
[64] Ding HJ, Wu YX, Zou BC, et al. Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorptionJ Hazard Mater, 2016, 307: 350–358.
[65] Yang J, Lin YH, Yang XD, et al. Degradation of tetracycline by immobilized laccase and the proposed transformation pathwayJ Hazard Mater, 2017, 322: 525–531.
[66] Li X, Xu QM, Cheng JS, et al. Improving the bioremoval of sulfamethoxazole and alleviating cytotoxicity of its biotransformation by laccase producing system under coculture ofandBioresour Technol, 2016, 220: 333–340.
[67] Lueangjaroenkit P, Teerapatsakul C, Sakka K, et al. Two manganese peroxidases and a laccase ofKU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free systemMycobiology, 2019, doi: 10.1080/12298093.2019.1589900.
[68] Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversityFront Microbiol, 2019, 10: 338.
[69] Bai Y, Xu R, Wang QP, et al. Sludge anaerobic digestion with high concentrations of tetracyclines and sulfonamides: dynamics of microbial communities and change of antibiotic resistance genesBioresour Technol, 2019, 276: 51–59.
[70] Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systemsWorld J Microbiol Biotechnol, 2016, 32(4): 66.
[71] Zhao RX, Feng J, Liu J, et al. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibioticsWater Res, 2019, 151: 388–402.
[72] Yang SF, Lin CF, Lin AYC, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditionsWater Res, 2011, 45(11): 3389–3397.
[73] Huang MH, Yang YD, Chen DH, et al. Removal mechanism of trace oxytetracycline by aerobic sludgeProcess Saf Environ Prot, 2012, 90(2): 141–146.
[74] Yang QX, Yang XF, Yan Y, et al. Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: structure dependence and catalytic mechanismChem Eng J, 2018, 348: 263–270.
[75] Wang Q, Li XN, Yang QX, et al. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteriaEcotoxicol Environ Saf, 2019, 171: 746–752.
[76] Wang L, Qiang ZM, Li YG, et al. An insight into the removal of fluoroquinolones in activated sludge process: sorption and biodegradation characteristicsJ Environ Sci (China), 2017, 56: 263–271.
[77] Jia YY, Khanal SK, Shu HY, et al. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathwaysWater Res, 2018, 136: 64–74.
[78] Guo RX, Xie XD, Chen JQ. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined systemEnviron Technol, 2015, 36(7): 844–851.
[79] Qi YF, He SB, Wu SQ, et al. Utilization of micro-electrolysis, up-flow anaerobic sludge bed, anoxic/oxic-activated sludge process, and biological aerated filter in penicillin G wastewater treatmentDesalin Water Treat, 2015, 55(6): 1480–1487.
[80] Chen ZQ, Wang Y, Wen QX, et al. Feasibility study of recycling cephalosporin C fermentation dregs using co-composting process with activated sludge as co-substrateEnviron Technol, 2016, 37(17): 2222–2230.
[81] Sodhi V, Bansal A, Jha MK. Excess sludge disruption and pollutant removal from tannery effluent by upgraded activated sludge systemBioresour Technol, 2018, 263: 613–624.
[82] Meerburg FA, Vlaeminck SE, Roume H, et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variablesWater Res, 2016, 100: 137–145.
[83] Müller E, Schüssler W, Horn H, et al. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen sourceChemosphere, 2013, 92(8): 969–978.
[84] Nie YF, Qiang ZM, Ben WW, et al. Removal of endocrine-disrupting chemicals and conventional pollutants in a continuous-operating activated sludge process integrated with ozonation for excess sludge reductionChemosphere, 2014, 105: 133–138.
[85] Luo WH, Phan HV, Hai FI, et al. Effects of salinity build-up on the performance and bacterial community structure of a membrane bioreactorBioresour Technol, 2016, 200: 305–310.
[86] Robles á, Ruano MV, Charfi A, et al. A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspectsBioresour Technol, 2018, 270: 612–626.
[87] Huang B, Wang HC, Cui D, et al. Treatment of pharmaceutical wastewater containing β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR)Chem Eng J, 2018, 341: 238–247.
[88] Song XY, Luo WH, Hai FI, et al. Resource recovery from wastewater by anaerobic membrane bioreactors: opportunities and challengesBioresour Technol, 2018, 270: 669–677.
[89] Karaolia P,Kordatou I,Hapeshi E,et al. Investigation of the potential of a membrane bioreactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants. Chem Eng J,2017,310: 491–502.
[90] Cheng DL, Ngo HH, Guo WS, et al. Anaerobic membrane bioreactors for antibiotic wastewater treatment: performance and membrane fouling issuesBioresour Technol, 2018, 267: 714–724.
[91] Aslam M, Charfi A, Lesage G, et al. Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane foulingChem Eng J, 2017, 307: 897–913.
[92] Luo WH, Hai FI, Price WE, et al. High retention membrane bioreactors: challenges and opportunitiesBioresour Technol, 2014, 167: 539–546.
[93] Chen ZQ, Zhang SH, Wen QX, et al. Effect of aeration rate on composting of penicillin mycelial dregJ Environ Sci (China), 2015, 37: 172–178.
[94] Shi HL, Wang XC, Li Q, et al. Degradation of typical antibiotics during human feces aerobic composting under different temperaturesEnviron Sci Pollut Res, 2016, 23(15): 15076–15087.
[95] Spielmeyer A, Breier B, Groi?meier K, et al. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentationBioresour Technol, 2015, 193: 307–314.
[96] Spielmeyer A, Stahl F, Petri MS, et al. Transformation of sulfonamides and tetracyclines during anaerobic fermentation of liquid manureJ Environ Qual, 2017, 46(1): 160–168.
[97] Zhang ZH, Zhao J, Yu CG, et al. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturityBioresour Technol, 2015, 198: 403–409.
[98] Zhang SH, Chen ZQ, Wen QX, et al. Assessing the stability in composting of penicillin mycelial dreg via parallel factor (PARAFAC) analysis of fluorescence excitation–emission matrix (EEM)Chem Eng J, 2016, 299: 167–176.
[99] Huang X, Zheng JL, Tian SH, et al. Higher temperatures do not always achieve better antibiotic resistance gene removal in anaerobic digestion of swine manureAppl Environ Microbiol, 2019, 85(7): e02878-18.
[100] Ma SS, Fang C, Sun XX, et al. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressureBioresour Technol, 2018, 259: 221–227.
[101] Mohring SAI, Strzysch I, Fernandes MR, et al. Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Technol, 2009, 43(7): 2569–2574.
[102] Yan WF, Xiao Y, Yan WD, et al. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a reviewChem Eng J, 2019, 358: 1421–1437.
[103] Harnisch F, Gimkiewicz C, Bogunovic B, et al. On the removal of sulfonamides using microbial bioelectrochemical systemsElectrochem Commun, 2013, 26: 77–80.
[104] Guo N, Wang YK, Yan L, et al. Effect of bio-electrochemical system on the fate and proliferation of chloramphenicol resistance genes during the treatment of chloramphenicol wastewaterWater Res, 2017, 117: 95–101.
[105] Wang L, You LX, Zhang JM, et al. Biodegradation of sulfadiazine in microbial fuel cells: reaction mechanism, biotoxicity removal and the correlation with reactor microbesJ Hazard Mater, 2018, 360: 402–411.
[106] Wang L, Liu YL, Ma J, et al. Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cellWater Res, 2016, 88: 322–328.
[107] Zhang S, Song HL, Yang XL, et al. Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted waterChemosphere, 2017, 178: 548–555.
[108] Song HL, Li H, Zhang S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: effects of circuit operation mode and hydraulic retention timeChem Eng J, 2018, 350: 920–929.
[109] Ding R, Yan WF, Wu Y, et al. Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracyclineWater Res, 2018, 143: 589–598.
[110] Liu Y, Guan YT, Gao BY, et al. Antioxidant responses and degradation of two antibiotic contaminants inEcotoxicol Environ Saf, 2012, 86: 23–30.
[111] Hom-Diaz A, Norvill ZN, Blánquez P, et al. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal pondsChemosphere, 2017, 180: 33–41.
[112] Yu Y, Zhou YY, Wang ZL, et al. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessmentSci Rep, 2017, 7(1): 4168.
[113] Du YX, Wang J, Li HT, et al. The dual function of the algal treatment: antibiotic elimination combined with CO2fixationChemosphere, 2018, 211: 192–201.
[114] Guo RX, Chen JQ. Application of alga-activated sludge combined system (AASCS) as a novel treatment to remove cephalosporinsChem Eng J, 2015, 260: 550–556.
Progress in microbial remediation of antibiotic-residue contaminated environment
Ying Wu, Pengya Feng, Rong Li, Xiao Chen, Xiangkai Li,TAWATCHAI SUMPRADIT, and Pu Liu
Key Laboratory of Cell Activity and Stress Adaptation, Lanzhou University, Lanzhou 730000, Gansu, China
In recent years, antibiotics have been widely used in animal husbandry, aquaculture and the medication in China. Many antibiotics are discharged into the environment, resulting in dramatic increase of antibiotic residues in domestic water and soil. Residues of different antibiotics in the environment change the microbial structure, which is extremely harmful to the ecological environment and humans. Therefore, remediation of antibiotic contamination is significantly important. Studies have shown that some microorganisms can degrade and utilize antibiotics, and thus have good application prospects on bioremediation of antibiotic contamination. However, little is known about the microbial degradation mechanism of antibiotics. This article summarizes the removal of antibiotics by antibiotic-degrading strains and bacterial flora in recent ten years, and the methods of using microbial flora to treat antibiotic residues. The future prospect of using microbial remediation to reduce antibiotic residues in the environment has also been discussed.
antibiotics, biodegradation, strains, microbial communities, synthetic biology
April25, 2019;
July23, 2019
Fundamental Research Funds for the Central Universities (No. lzujbky-2018-105).
Pu Liu. Tel:+86-931-8912560; E-mail: liupu@lzu.edu.cn
蘭州大學(xué)中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金 (No. lzujbky-2018-105) 資助。
2019-08-06
http://kns.cnki.net/kcms/detail/11.1998.Q.20190805.1059.004.html
吳迎, 馮鵬雅, 李榮, 等.環(huán)境抗生素污染的微生物修復(fù)進(jìn)展. 生物工程學(xué)報(bào), 2019, 35(11): 2133–2150.
Wu Y, Feng PY, Li R, et al. Progress in microbial remediation of antibiotic-residue contaminated environment. Chin J Biotech, 2019, 35(11): 2133–2150.
(本文責(zé)編 郝麗芳)