秦夢(mèng)潔 許慶祥
摘 要: 設(shè)H和K為兩個(gè)Hilbert空間,A∈B(H)和B∈B(K,H)滿足ind(A)≤1,R(AB)R(B),以及R(B)為閉.給出了等式R(AB)=R(A)∩R(B) 成立的一個(gè)充分條件,并給出了上述等式不成立的一個(gè)反例.
關(guān)鍵詞: 算子值域; Drazin逆; Moore-Penrose逆
中圖分類號(hào): O 177.1 ?文獻(xiàn)標(biāo)志碼: A ?文章編號(hào): 1000-5137(2019)05-0469-03
Abstract: Let H and K be two Hilbert spaces,and let A∈B(H),B∈B(K,H) be two bounded linear operators such that ind(A)≤1,R(AB)R(B) and R(B) is closed in H.A sufficient condition is given under which R(AB)=R(A)∩R(B).Furthermore,a counterexample is constructed such that R(AB)≠R(A)∩R(B).
Key words: the range of an operator; Drazin inverse; Moore-Penrose inverse
參考文獻(xiàn):
[1] BEN-ISREL A,GREVILLE T N E.Generalized inverse:theory and applications [M]//CMS Books in Mathematics.2nd ed.New York:Springer-Verlag,2003.
[2] WANG G,WEI Y,QIAO S.Generalized inverses:theory and computations [M]//Mathematics Monograph Series 36.Singapore:Springer Nature Singapore Pte. Ltd.,2018.
[3] XUE Y.Stable Perturbations of Operators and Related Topics [M].Hackensack,NJ:World Scientific Publishing Co.Pte.Ltd.,2012.
(責(zé)任編輯:馮珍珍)