蔡剛志 華再東 畢延震 陳彬
摘要:硬脂酰輔酶A去飽和酶(stearoyl-CoA desaturase,SCD)是催化飽和脂肪酸(SFAs)形成單不飽和脂肪酸(MUFAs)的限速酶,在豬等大多數(shù)動物中已鑒定出2種SCD亞型(SCD1和SCD5)。這2個亞型的組織表達(dá)和作用方式存在差異,其中SCD1主要在脂肪組織中表達(dá),其活性受單核苷酸多態(tài)性(SNP)、miRNA、DNA甲基化等因素調(diào)控;SCD5主要在腦組織中表達(dá),與神經(jīng)細(xì)胞的增殖和分化密切相關(guān),但SCD5在腦外組織的功能尚未闡明,具有廣泛的研究前景。因此,深入研究SCD的基因功能和調(diào)控機(jī)制對改善豬肉的脂肪酸組成、提高豬肉品質(zhì)具有重要意義。
關(guān)鍵詞:SCD基因;限速酶;豬肉;脂肪酸;代謝;基因功能;調(diào)控機(jī)制
中圖分類號: Q54;Q786?文獻(xiàn)標(biāo)志碼: A
文章編號:1002-1302(2019)20-0024-05
脂肪組織是動物代謝中重要的產(chǎn)能和儲能組織,與糖和蛋白質(zhì)相比,脂肪具有產(chǎn)能高、占體積小的優(yōu)勢。甘油三酯是含量最為豐富的一類脂肪,多為含16個或18個碳原子的飽和脂肪酸(SFAs)及不飽和脂肪酸(UFAs),SFAs與UFAs尤其是硬脂酸與油酸的不同比例能調(diào)節(jié)細(xì)胞膜流動性和信號轉(zhuǎn)導(dǎo),進(jìn)而影響細(xì)胞的生長和分化。 膳食中UFAs與SFAs的比例應(yīng)大于0.434[1],攝入過量SFAs易導(dǎo)致脂質(zhì)代謝紊亂,增加患慢性疾病的風(fēng)險[2],相反UFAs對人體健康有益。 硬脂酰輔酶A去飽和酶(SCD)是催化SFAs形成MUFAs的限速酶(圖1),特別是棕櫚酰輔酶A(16 ∶0)和硬脂酰輔酶A(18 ∶0)形成棕櫚油酸酯(16 ∶1)和油酸(18 ∶1),是一個脂肪酸代謝控制的重要靶點?,F(xiàn)已鑒別出5種SCD亞型,其中SCD1與SCD5在人[3]、豬[4]、牛、雞等大多數(shù)動物中均有發(fā)現(xiàn),這2種亞型顯示出相似的δ9去飽和酶活性[5];SCD2、SCD3、SCD4在小鼠中被鑒定,其中SCD2也在大鼠、裂殖酵母、秀麗隱桿線蟲中發(fā)現(xiàn),大多數(shù)非嚙齒動物基因組不包含SCD2基因,而是在腦組織中有SCD5表達(dá)。 目前在豬上只發(fā)現(xiàn)SCD1(基因登錄號為396670)與SCD5(基因登錄號為100135661)2種SCD亞型,這2個亞型共享66.3%的核酸同一性(cds區(qū))和61.7%的氨基酸同一性。由于MUFAs在細(xì)胞代謝過程中被大量利用,SCD作為合成MUFAs的限速酶[6]影響細(xì)胞分化[7]、癌癥[8-10]和肥胖[11-12]等生理變量,研究SCD對改善家畜脂肪酸組成以及治療人類能量代謝和肥胖疾病具有重要意義[13]。
位于內(nèi)質(zhì)網(wǎng)(ER)上的硬脂酰輔酶A去飽和酶(SCD),催化飽和脂肪酸(SFAs)在第9、第10位碳原子之間引入雙鍵去飽和形成單不飽和脂肪酸(MUFAs),單不飽和脂肪酸是構(gòu)成膜磷脂(membrane phospholipid)、膽固醇(cholesterol)及甘油酯(triglyceride)的基本元件。
1?SCD基因
Bai 等結(jié)晶并解析了小鼠SCD1的蛋白質(zhì)結(jié)構(gòu),小鼠SCD1呈現(xiàn)一種折疊結(jié)構(gòu),由胞漿覆蓋的4個跨膜螺旋以及用于側(cè)向基底進(jìn)出產(chǎn)物的合理通道組成。結(jié)合硬脂酰輔酶A的?;湵话诎|(zhì)結(jié)構(gòu)域的通道中,通道的幾何形狀和結(jié)合的?;湹臉?gòu)象為去飽和反應(yīng)的區(qū)域選擇性和立體專一性提供了結(jié)構(gòu)基礎(chǔ)[14],4個α-螺旋形成的緊密疏水核心折疊起跨越內(nèi)質(zhì)網(wǎng)膜的錨定作用[15]。小鼠SCD1(AAH07474.1)、人SCD1(NP_005054.3)、人SCD5(NP_001032671.2)、豬SCD1(AAR87713.1)和豬SCD5(NP_001107750.1)的氨基酸序列比對結(jié)果(圖2)顯示,這5條氨基酸序列具有很高的相似度,分開來看,小鼠、人和豬的SCD1以及人和豬的SCD5的序列相似度更高。由于豬的SCD模型還未出現(xiàn),因此本文關(guān)于SCD1及SCD5的基因功能部分主要參考小鼠和人的研究。
1.1?SCD1基因
豬SCD1基因位于14號染色體上[16],主要在脂肪組織、大腦、肝臟和肌肉組織中表達(dá),可作為肌內(nèi)脂肪沉積的潛在生物標(biāo)志物[17],其基因標(biāo)記可用于選擇豬肉的最佳脂肪酸譜[18]。在個體水平,全基因敲除SCD1的小鼠(GKO)能量代謝加快,表現(xiàn)為脂質(zhì)氧化增強(qiáng)、合成減弱,胰島素敏感性增強(qiáng),能夠抵抗高碳水化合物和高脂飼糧誘導(dǎo)的肥胖和脂肪酸變性[19]。Ntambi等利用Cre-lox技術(shù)生產(chǎn)具有肝臟特異性敲除SCD1的小鼠(LKO)能夠抵抗高碳水化合物飼糧帶來的肥胖[CM(25],但對其飼喂高脂飼糧后的體質(zhì)量比GKO明顯高[19]。在細(xì)胞水平,SCD1活性主要受外源性UFAs含量影響,當(dāng)外源UFAs受到限制時,SCD1被誘導(dǎo)產(chǎn)生內(nèi)源性UFAs。對SCD1抑制劑處理的細(xì)胞限制添加外源性UFAs,細(xì)胞生長受到抑制,補充SFAs也無法改善這一狀況,表明細(xì)胞生長受到抑制的原因是缺乏UFAs而不是累積過量的SFAs[20]。
1.2?SCD5基因
SCD5也叫ACOD4、FADS4,首先由Zhang等在人角質(zhì)細(xì)胞中鑒定出來[3],豬SCD5基因位于8號染色體上,包含5個外顯子,編碼332個氨基酸,在大腦中高度表達(dá)[4],在腎臟中也檢測到較低的表達(dá)[21]。在個體研究方面,Burhans等在全基因敲除SCD1的小鼠肝臟中轉(zhuǎn)入人源SCD5基因,得到SCD5+SCD1-/-小鼠(GLS5),飼喂高蔗糖、低脂肪飼糧的GLS5小鼠表現(xiàn)出肥胖表型;相對于GKO小鼠,GLS5小鼠恢復(fù)了肝脂肪變性并擴(kuò)大了脂肪組織的質(zhì)量;肝臟中產(chǎn)生的肝臟油酸鹽增加,但是肝臟脂肪酸從頭合成沒有增強(qiáng),表明脂質(zhì)積累不是由增加的脂質(zhì)合成驅(qū)動的[22]。
在細(xì)胞水平上,SCD5的研究主要在人上且集中在癌癥和神經(jīng)系統(tǒng)的研究上。Puglisi等在原發(fā)性黑色素瘤細(xì)胞系中檢測到SCD5顯著表達(dá),但在腫瘤晚期階段幾乎檢測不到。通過在晚期黑色素瘤中恢復(fù)表達(dá)SCD5或添加SCD5酶促產(chǎn)物油酸能減少黑色素瘤的分化[23]。Roongta等將正常腫瘤細(xì)胞和RNA干擾SCD5的腫瘤細(xì)胞接種到不同濃度的血清中培養(yǎng),與SCD1不同,SCD5均不會被誘導(dǎo)[20]。在神經(jīng)系統(tǒng)研究方面,Astarita 等在阿茲海默癥患者(一種中樞神經(jīng)系統(tǒng)變性病)的腦中檢測到SCD5 mRNA上調(diào)[24]。 Sinner等將表達(dá)人源SCD5基因的質(zhì)粒轉(zhuǎn)染小鼠Neuro 2a細(xì)胞(神經(jīng)元生長和分化的細(xì)胞模型),與空載組相比,過表達(dá)組MUFAs(n-7)水平顯著提高,同時伴隨SFAs的降低,細(xì)胞分裂速度加快,但誘導(dǎo)分化卻受到抑制[7]。表明SCD5在調(diào)節(jié)神經(jīng)元細(xì)胞分裂和分化的過程中起關(guān)鍵作用。
1.3?SCD1與SCD5的差異
在正常生理和發(fā)育條件下,SCD5發(fā)揮了與SCD1不同的作用。 Castro等指出,SCD1和SCD5基因是2輪基因組重復(fù)(2R)的一部分,SCD1和SCD5之間的調(diào)控分歧說明了2R后的功能分化。因此,在分配給SCD5異構(gòu)體的脊椎動物祖先中出現(xiàn)了組織特異性表達(dá)(如腦和可能的胰腺),SCD5異構(gòu)體已被選擇性地保留在大多數(shù)譜系中。SCD5和SCD1的主要區(qū)別體現(xiàn)在監(jiān)管層面,SCD1基因表達(dá)主要由各種激素和營養(yǎng)素在轉(zhuǎn)錄水平上進(jìn)行調(diào)節(jié),而SCD5對食物等外源輸入無反應(yīng)[25]。 Wu等通過對SCD基因的5′-UTR(5′-非翻譯區(qū))和3′-UTR(3′-非翻譯區(qū))處的miRNA的轉(zhuǎn)錄因子結(jié)合位點進(jìn)行預(yù)測,結(jié)果表明,不同于SCD1,SCD5支持自身在調(diào)控水平上發(fā)生分化[26]。
2?SCD1多態(tài)性與miRNA調(diào)控
豬SCD(AY487830)基因由6個外顯子和5個內(nèi)含子組成,21 kb的DNA序列中發(fā)現(xiàn)19個單核苷酸多態(tài)性(SNP)[27]。2004年,Ren等在野豬、德國大白、德國長白、皮特蘭等9個歐洲豬種和榮昌豬、藏豬等6個中國豬種的SCD1基因啟動子區(qū)和編碼區(qū)檢測出5個SNP位點,2個位于啟動子區(qū)(g.2108C> T和g.2228T> C),另外3個位點分別在內(nèi)含子1、外顯子2和內(nèi)含子5上,SNP g.2108C> T不改變SCD表達(dá)[28]。 Estany 等在純種杜洛克系中發(fā)現(xiàn),g.2228T> C能增強(qiáng)脂肪酸去飽和作用且不會影響脂肪含量[29]。Renaville等的研究顯示,SCD多態(tài)性(g.2228T> C)對背最長肌和腿部肌內(nèi)脂肪含量[30]、脂肪酸組成和脂肪熔點[31]有很強(qiáng)的相關(guān)性。
SCD1是與miR4335的種子序列完全互補的、具有良好表征的靶基因,miR4335啟動子中的差異甲基化區(qū)域(differentially methylated regions,DMR)可通過靶向SCD1影響脂肪酸組成[32]。miR125b的過表達(dá)降低了脂滴和甘油三酯的積累,并且抑制了SCD1蛋白表達(dá)和MUFAs組成[33]。肌肉轉(zhuǎn)錄組測序滇南小耳豬、藏豬、蘭德瑞斯和約克夏,獲得與脂質(zhì)沉積有關(guān)的27個基因和16個miRNA,其中miR 92b(NC_010446.5)和miR182(NR_128422.1)預(yù)測與SCD1有關(guān)[34]。通過對萊蕪豬和大白豬皮下脂肪組織差異表達(dá)的lncRNAs和基因進(jìn)行鑒定,預(yù)測XLOC_014379可能以SCD為目標(biāo)并參與過氧化物酶體增殖劑激活受體(PPARs)信號通路,從而調(diào)節(jié)脂肪酸代謝[35]。
3?SCD1在脂肪型豬和瘦肉型豬中的表達(dá)差異
從妊娠后期、泌乳早期到泌乳高峰期,母豬乳腺組織中三酰甘油含量增加2~3倍,實時PCR和蛋白質(zhì)印跡顯示,在整個泌乳期,乙酰輔酶A羧化酶α(ACC)、脂肪酸合成酶(FAS)和SCD1的 mRNA及蛋白質(zhì)水平顯著上調(diào)[36]。在哺乳期,脂肪型仔豬的脂肪組織中表達(dá)更多的SCD1 mRNA,斷奶后期則相反;SCD1 mRNA在0日齡仔豬中幾乎檢測不到,但在49日齡時增加了20倍[37]。
脂肪型豬和瘦肉型豬的SCD1表達(dá)受表觀遺傳因子調(diào)控。Zhang等的研究顯示,長白豬背最長?。↙BF)中多不飽和脂肪酸(PUFAs)與SFAs的比例(0.51)比榮昌豬(RBF)(0.19)高,2個品種脂肪沉積和動員速率、脂肪酸合成差異很大。在全基因組水平,LBF表現(xiàn)出比RBF更高的甲基化,說明低能量代謝水平可能導(dǎo)致LBF中脂質(zhì)合成的效率較低[32]。類似地,通過比較金華豬與長白豬30、90、150日齡背最長肌中全基因表達(dá)譜,交叉比較分析顯示,在金華豬中調(diào)節(jié)脂肪酸生物合成的基因(如FAS和SCD1)表達(dá)水平較高,而調(diào)節(jié)肌細(xì)胞形成的基因在長白豬中表達(dá)水平較高[38]。與瘦肉型豬相比,脂肪型豬有更高的轉(zhuǎn)化MUFAs效率[39]。
2009年,Zhao等從烏金豬和長白豬中收集背最長肌檢測肌內(nèi)脂肪含量,烏金豬平均日增質(zhì)量低于長白豬,脂肪細(xì)胞直徑、肌內(nèi)脂肪含量和PUFAs含量均高于長白豬。與長白豬相比,烏金豬在固醇調(diào)節(jié)元件結(jié)合蛋白-1c(SREBP-1c)、脂肪酸結(jié)合蛋白(FABP)、SCD1和FAS的mRNA表達(dá)水平均較高[40]。2014年Yu等在藍(lán)塘豬和長白豬中得到類似的結(jié)果,藍(lán)塘豬的背最長肌中MUFAs和PUFAs含量高于長白豬,SCD1 mRNA表達(dá)豐度也顯著高于長白豬[41]。2016年Madeira等對初始體質(zhì)量為60 kg的40頭公豬飼喂還原蛋白飼糧(RPD)和正常蛋白飼糧(NPD),93 kg時屠宰并采取血樣和肝組織樣,結(jié)果顯示,RPD飼喂組的肝臟脂肪酸18 ∶1(n=11)、20 ∶1(n=11)、16 ∶1(n=9)和18 ∶1(n=9)比飼喂NPD的豬高20%;實時PCR顯示,飼喂RPD的豬中SCD1 mRNA水平在Alentejano豬中更高[42]。
4?日糧營養(yǎng)成分對脂肪代謝及SCD1基因表達(dá)的影響
飼喂含有棕櫚仁油、大豆油或棕櫚油的低蛋白飼糧,能顯著增加豬肌肉中的SCD1蛋白表達(dá),同時伴隨MUFAs和總脂肪酸水平升高,但SCD1在皮下脂肪組織中只有很小的變化[43]。日糧中賴氨酸缺乏導(dǎo)致SCD1 mRNA表達(dá)上調(diào),脂質(zhì)積累增加;日糧中賴氨酸過量,則不會有影響[44]。對初始體質(zhì)量為(5.6±0.2) kg 的豬群分組飼喂1.5%牛油、1.5%玉米油或1.5%共軛亞油酸(CLA),35 d后采集皮下脂肪組織樣品,證明飼糧CLA能降低豬脂肪組織中的酶SCD1活性[45]。日糧中添加PUFAs對SCD1 的抑制作用與亞油酸是一致的[46]。與對照組相比,日糧中添加甜菜堿組的妊娠母豬的SREBP-1c、FAS、SCD1的mRNA及SREBP-1c、ACC、FAS、SCD1的蛋白含量顯著降低[47]。日糧中鋅水平提高,SCD1的mRNA上調(diào)[48]。
5?其他
在急性炎癥對生長豬肝臟甘油三酯代謝的影響以及可能的潛在機(jī)制試驗中,脂多糖(LPS)注射6 h后,肝臟形態(tài)學(xué)改變,血漿皮質(zhì)醇含量增加,ACC和SCD1的蛋白表達(dá)顯著降低[49]。熱應(yīng)激能下調(diào)SCD1 mRNA表達(dá)水平[50]。SCD可以接受外源化合物(N-羥基化脒)作為底物,進(jìn)行還原反應(yīng)[51]。SCD基因在細(xì)胞核中的三維空間位置與轉(zhuǎn)錄活性無關(guān)[52]。
6?結(jié)語
本文綜述了SCD在個體和細(xì)胞水平的基因功能、豬各組織的表達(dá)分布、在不同豬品種關(guān)鍵組織表達(dá)差異的原因以及不同營養(yǎng)成分對其表達(dá)的影響等方面,對改善豬的肉質(zhì)的研究具有一定的參考價值。但是,目前在豬上沒有SCD缺失的個體和細(xì)胞模型,而且非腦組織中的SCD5基因功能尚未闡明。因此,SCD對豬脂肪酸代謝的調(diào)控機(jī)制有待進(jìn)一步研究。
參考文獻(xiàn):
[1]Lai J T,Wu B F,Xuan T M,et al. Efficacy and tolerability of adding coenzyme A 400 U/d capsule to stable statin therapy for the treatment [JP3]of patients with mixed dyslipidemia:an 8-week,multicenter,double-Blind,randomized,placebo-controlled study[J]. Lipids in Health and Disease,2014,13:1-9.
[2]Richard D,Bausero P,Schneider C,et al. Polyunsaturated fatty acids and cardiovascular disease[J]. Cellular and Molecular Life Sciences,2009,66(20):3277-3288.
[3]Zhang L,Ge L,Parimoo S,et al. Human stearoyl-CoA desaturase:alternative transcripts generated from a single gene by usage of tandem polyadenylation sites[J]. The Biochemical Journal,1999,340(1):255-264.
[4]Lengi A J,Corl B. A comparison of pig,sheep and chicken SCD5 homologs:evidence for an early gene duplication event[J]. Comparative Biochemistry and Physiology(Part B Biochemistry & Molecular Biology),2008,150(4):440-446.
[5]Wang J,Yu L,Schmidt R E,et al. Characterization of HSCD5,a novel human stearoyl-CoA desaturase unique to primates[J]. Biochemical and Biophysical Research Communications,2005,332(3):735-742.
[6]Paton C M,Ntambi J M. Biochemical and physiological function of stearoyl-CoA desaturase[J]. American Journal of Physiology (Endocrinology and Metabolism),2009,297(1):E28-E37.
[7]Sinner D I,Kim G J,Henderson G C. Stearoyl CoA desaturase-5:a novel regulator of neuronal cell proliferation and differentiation[J]. PLoS One,2012,7(6):e39787.
[8]von Roemeling C A,Marlow L,Caulfield T A,et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma[J]. Cancer Research,2013,73(8):2368-2380.
[9]Noto A,Raffa S,de Vitis C,et al. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells[J]. Cell Death & Disease,2013,4(12):e947.
[10]Chen L,Ren J,Yang L H,et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J]. Scientific Reports,2016,6:19665.
[11]Ralston J C,Badoud F,Cattrysse B,et al. Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis[J]. International Journal of Obesity,2014,38(11):1449-1456.
[12]Jahansouz C,Xu H,Hertzel A V,et al. Partitioning of adipose lipid metabolism by altered expression and function of PPAR isoforms after bariatric surgery[J]. International Journal of Obesity,2018,42(2):139-146.
[13]Spurlock M E,Gabler N K. The development of porcine models of obesity and the metabolic syndrome[J]. Journal of Nutrition,2008,138(2):397-402.
[14]Bai Y H,McCoy J G,Levin E J,et al. X-ray structure of a mammalian stearoyl-CoA desaturase[J]. Nature,2015,524(7564):252.
[15]Wang H,Klein M G,Zou H,et al. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate[J]. Nature Structural & Molecular Biology,2015,22(7):581.
[16]Ren J,Knorr C,Habermann F,et al. Assignment of the porcine stearoyl-CoA desaturase (SCD) gene to SSC14q27 by fluorescence in situ hybridization and by hybrid panel mapping[J]. Animal Genetics,2003,34(6):471-473.
[17]Canovas A,Estany J,Tor M,et al. Acetyl-CoA carboxylase and stearoyl-CoA desaturase protein expression in subcutaneous adipose tissue is reduced in pigs selected for decreased backfat thickness at constant intramuscular fat content[J]. Journal of Animal Science,2009,87(12):3905-3914.
[18]Ros-Freixedes R,Gol S,Pena R N,et al. Genome-wide association study singles out SCD and LEPR as the two main loci influencing intramuscular fat content and fatty acid composition in duroc Pigs[J]. PLoS One,2016,11(3):e0152496.
[19]Ntambi J M,Miyazaki M,Stoehr J P,et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(17):11482-11486.
[20]Roongta U V,Lawrence R M,Wong T W,et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy[J]. Cancer Research,2011,71(18):1551-1561.
[21]Beiraghi S,Zhou M,Talmadge C B,et al. Identification and characterization of a novel gene disrupted by a pericentric inversion inv(4)(p13.1q21.1) in a family with cleft lip[J]. Gene,2003,309(1):11-21.
[22]Burhans M S,F(xiàn)lowers M T,Harrington K R,et al. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation[J]. Journal of Lipid Research,2015,56(2):304-318.
[23]Puglisi R,Bellenghi M,Pontecorvi G,et al. SCD5 restored expression favors differentiation and epithelial-mesenchymal reversion in advanced melanoma[J]. Oncotarget,2018,9(7):7567-7581.
[24]Astarita G,Jung K M,Vasilevko V A,et al. Elevated stearoyl-CoA desaturase in brains of patients with alzheimers disease[J]. PLoS One,2011,6(10):e24777.
[25]Castro L F,Wilson J M,Goncalves O,et al. The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates [J]. BMC Evolutionary Biology,2011,11:132.
[26]Wu X Y,Zou X J,Chang Q,et al. The evolutionary pattern and the regulation of stearoyl-CoA desaturase genes[J]. BioMed Research International,2013(11):856521.
[27]Ren J,Knorr C,Huang L,et al. Isolation and molecular characterization of the porcine stearoyl-CoA desaturase gene[J]. Gene,2004,340(1):19-30.
[28]Ren J,Knorr C,Guo Y M,et al. Characterization of five single nucleotide polymorphisms in the porcine stearoyl-CoA desaturase (SCD) gene[J]. Animal Genetics,2004,35(3):255-257.
[29]Estany J,Ros-Freixedes R,Tor M,et al. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork[J]. PLoS One,2014,9(1):e86177.
[30]Renaville B,Prandi A,F(xiàn)an B,et al. Candidate gene marker associations with fatty acid profiles in heavy pigs[J]. Meat Science,2013,93(3):495-500.
[31]Uemoto Y,Nakano H,Kikuchi T,et al. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population[J]. Animal Genetics,2012,43(2):225-228.
[32]Zhang S H,Shen L Y,Xia Y D,et al. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs[J]. Scientific Reports,2016,6:35063.
[33]Cheng X,Xi Q Y,Wei S,et al. Critical role of miR-125b in lipogenesis by targeting stearoyl-CoA desaturase-1 (SCD-1)[J]. Journal of Animal Science,2016,94(1):65-76.
[34]Wang Z X,Li Q G,Chamba Y,et al. Identification of genes related to growth and lipid deposition from transcriptome profiles of pig muscle tissue[J]. PLoS One,2015,10(10):e0141138.
[35]Huang W L,Zhang X X,Li A,et al. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds[J]. Oncotarget,2017,8(50):87539-87553.
[36]Lv Y T,Guan W T,Qiao H Z,et al. Veterinary medicine and omics (veterinomics):metabolic transition of milk triacylglycerol synthesis in Sows from late pregnancy to lactation[J]. OMICS,2015,19(10):602-616.
[37]Smith S B,Mersmann H J,Smith E O,et al. Stearoyl-coenzyme A desaturase gene expression during growth in adipose tissue from obese and crossbred pigs[J]. Journal of Animal Science,1999,77(7):1710-1716.
[38]Wu T,Zhang Z H,Yuan Z Q,et al. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace Pigs[J]. PLoS One,2013,8(1):e53181.
[39]Yang K X,Ma J W,Guo Y M,et al. Correlations between fat depot traits and fatty acid composition in abdominal subcutaneous adipose tissue and longissimus muscle:results from a White Duroc×Erhualian intercross F2 population[J]. Journal of Animal Science,2010,88(11):3538-3545.
[40]Zhao S M,Ren L J,Chen L,et al. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition[J]. Lipids,2009,44(11):1029-1037.
[41]Yu K F,Shu G,Yuan F F,et al. Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality[J]. International Journal of Biological Sciences,2013,9(1):108-118.
[42]Madeira M S,Pires V M,Alfaia C M,et al. Restriction of dietary protein does not promote hepatic lipogenesis in lean or fatty pigs[J]. 2016,115(8):1339-1351.
[43]Doran O,Moule S K,Teye G A,et al. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue:relationship with intramuscular lipid formation[J]. The British Journal of Nutrition,2006,95(3):609-617.
[44]Wang T J,F(xiàn)eugang J M,Crenshaw M A,et al. A systems biology approach using transcriptomic data reveals genes and pathways in porcine skeletal muscle affected by dietary lysine[J]. International Journal of Molecular Sciences,2017,18(4):885.
[45]Smith S B,Hively T S,Cortese G M,et al. Conjugated linoleic acid depresses the Delta 9 desaturase index and stearoyl coenzyme A desaturase enzyme activity in porcine subcutaneous adipose tissue[J]. Journal of Animal Science,2002,80(8):2110-2115.
[46]Benitez R,Nunez Y,F(xiàn)ernandez A,et al. Effects of dietary fat saturation on fatty acid composition and gene transcription in different tissues of Iberian pigs[J]. Meat Science,2015,102:59-68.
[47]Cai D M,Wang J J,Jia Y M,et al. Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids,2016,1861(1):41-50.
[48]Zhang H B,Wang M S,Wang Z S,et al. Supplementation dietary zinc levels on growth performance,carcass traits,and intramuscular fat deposition in weaned piglets[J]. Biological Trace Element Research,2014,161(1):69-77.
[49]Liu Z Q,Liu W F,Huang Y P,et al. Lipopolysaccharide significantly influences the hepatic triglyceride metabolism in growing pigs[J]. Lipids in Health and Disease,2015,14:64.
[50]Hao Y,Liu J R,Zhang Y,et al. The microRNA expression profile in porcine skeletal muscle is changed by constant heat stress[J]. Animal Genetics,2016,47(3):365-369.
[51]Reh R,Ozols J,Clement B. Involvement of stearoyl-CoA desaturase in the reduction of amidoxime prodrugs[J]. Xenobiotica,2008,38(9):1177-1190.
[52]Kociucka B,Cieslak J,Szczerbal I. Three-dimensional arrangement of genes involved in lipid metabolism in nuclei of porcine adipocytes and fibroblasts in relation to their transcription level[J]. Cytogenetic and Genome Research,2012,136(4):295-302.