謝冬微 孫健
謝冬微(1982-),博士,主要從事亞麻種質(zhì)資源優(yōu)異基因挖掘研究工作,在作物種質(zhì)資源創(chuàng)新和新品種選育方面積累了豐富的經(jīng)驗(yàn),理論基礎(chǔ)夯實(shí),科研業(yè)績(jī)優(yōu)異,被評(píng)為中國(guó)農(nóng)業(yè)科學(xué)院麻類研究所科技創(chuàng)新工程“骨干專家”、中國(guó)農(nóng)業(yè)科學(xué)院2018年度“優(yōu)秀博士后”。先后主持國(guó)家自然科學(xué)基金青年項(xiàng)目1項(xiàng),中國(guó)博士后自然科學(xué)基金面上項(xiàng)目1項(xiàng),黑龍江省自然科學(xué)基金面上項(xiàng)目1項(xiàng),以及其他地廳級(jí)科研項(xiàng)目5項(xiàng)。以第一作者在《Theoretical and Applied Genetics》《Frontiers in Plant Science》《Plant Science》《BMC Genomics》《Molecular Breeding》等SCI或EI收錄期刊發(fā)表科技論文10篇,在《南方農(nóng)業(yè)學(xué)報(bào)》《麥類作物學(xué)報(bào)》《大豆科學(xué)》《中國(guó)麻業(yè)科學(xué)》等國(guó)內(nèi)核心期刊發(fā)表中文科技論文7篇。
摘要:【目的】深入挖掘分析亞麻莖稈不同發(fā)育時(shí)期木質(zhì)素積累相關(guān)的miRNA及其靶基因,為解析亞麻纖維層木質(zhì)素動(dòng)態(tài)積累提供理論依據(jù)?!痉椒ā恳噪p亞4號(hào)(低木質(zhì)素)和NEW(高木質(zhì)素)花后20、30和40 d的莖稈為試驗(yàn)材料,基于miRNA測(cè)序和降解組測(cè)序結(jié)果分析miRNA轉(zhuǎn)錄水平動(dòng)態(tài)變化及其靶基因注釋功能,并采用實(shí)時(shí)熒光定量PCR檢測(cè)2個(gè)亞麻品種間表達(dá)差異最顯著的miRNA及其靶基因的表達(dá)模式?!窘Y(jié)果】構(gòu)建雙亞4號(hào)和NEW花后20、30和40 d莖稈的miRNA文庫,從中鑒定出305個(gè)miRNA,包括143個(gè)保守的miRNA和162個(gè)新鑒定的miRNA,且這些miRNA的靶基因不同轉(zhuǎn)錄本并非均受miRNA調(diào)控。將鑒定的305個(gè)miRNA與亞麻基因組序列信息進(jìn)行靶基因預(yù)測(cè),結(jié)果鑒定出286個(gè)miRNA的4807個(gè)靶基因,另外19個(gè)miRNA未預(yù)測(cè)到靶基因。通過對(duì)降解組測(cè)序數(shù)據(jù)進(jìn)行整合分析,共獲得21個(gè)miRNA的97個(gè)靶基因,共檢測(cè)到97個(gè)降解位點(diǎn),僅占鑒定出亞麻莖稈中miRNA靶基因總數(shù)(4807個(gè))的2%,仍有大量的靶基因未被鑒定。對(duì)降解組中被降解的97個(gè)靶基因進(jìn)行功能注釋,發(fā)現(xiàn)有22個(gè)與植物生長(zhǎng)發(fā)育有關(guān),16個(gè)為轉(zhuǎn)錄因子,7個(gè)與植物次生代謝物積累有關(guān)。結(jié)合miRNA和降解組的測(cè)序結(jié)果,發(fā)現(xiàn)ama-miR156(Lus10003126)、bdi-miR397b-5p(Lus10017175)、lja-miR397(Lus10027782)、csi-miR160(Lus10021467)、aly-miR319c-p(Lus10008685)和gma-miR369h(Lus10011558)在雙亞4號(hào)和NEW莖稈不同發(fā)育時(shí)期中最顯著差異表達(dá)。實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果顯示,除gma-miR369h與其靶基因Lus10011558隨亞麻莖稈的生長(zhǎng)發(fā)育表達(dá)模式無明顯規(guī)律外,其余5個(gè)miRNA與其靶基因表達(dá)模式恰好相反?!窘Y(jié)論】亞麻莖稈木質(zhì)素的積累過程與轉(zhuǎn)錄因子MYB、漆酶、生長(zhǎng)素響應(yīng)因子等編碼基因密切相關(guān),且這些基因可被其相應(yīng)的miRNA負(fù)調(diào)控,并參與亞麻莖稈中木質(zhì)素的積累。
關(guān)鍵詞: 亞麻;木質(zhì)素;積累;miRNA;靶基因;挖掘
中圖分類號(hào): S563.2? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)10-2321-10
Mining and analysis of miRNAs and target genes related to lignin accumulation in flax stalks at different developmental stages
XIE Dong-wei, SUN Jian*
(School of Life Science, Nantong University, Nantong, Jiangsu? 226019, China)
Abstract:【Objective】Mining and analysis of miRNA and regulatory combination of target genes related to lignin accumulation in different development stage of stalk in flax could provide important reference for the analysis of dynamic lignin accumulation in flax fiber layer. 【Method】The stems of Shuangya 4 (low lignin) and NEW (high lignin) after flowering 20,30 and 40 d were used as research materials. Dynamic changes of miRNA transcription level and target gene annotation function were analyzed based on miRNA sequencing and degradation group sequencing. Real-time fluorescence quantitative PCR was used to detect the expression patterns of miRNAs and their target genes with the most significant differences between the two flax varieties. 【Result】Stalk miRNA libraries were constructed at 20,30 and 40 d after flowering of Shuangya 4 and NEW. 305 unique miRNAs were identified in this study,including 143 known conserved miRNAs and 162 newly miRNAs. Moreover,different transcripts of these miRNAs target genes were not all regulated by miRNAs. Target genes were predicted from 305 identified miRNAs and flax genome sequence information. A total of 286 miRNAs with 4807 target genes were identified,and another 19 miRNAs did not predict target genes. A total of 97 target genes of 21 miRNAs were obtained through integrated analysis of the sequencing data of the degradation group,and a total of 97 degradation sites were detected,accounting for only 2% of the total number of miRNA target genes(4807) identified in the flax stalk. There were still a large number of target genes that have not been identified. In the degradation group,97 target genes were functionally annotated,among which 22 were related to plant growth and development,16 were transcription factors and 7 were related to plant secondary metabolite accumulation. Combined with the sequencing results of miRNA sequencing and degradation group sequencing,it was found that ama-miR156(Lus10003126),bdi-miR397b-5p(Lus10017175),lja-miR397(Lus10027782),csi-miR160(Lus10021467), aly-miR319c-p(Lus10008685) and gma-miR369h (Lus10011558) were most significantly different in different development time of stalks between Shuangya 4 and NEW. The results of? real-time quantitative fluorescence PCR showed that the expression pattern of gam-miR369h and its target gene Lus10011558 with the growth and development of stalk was not obvious, but the expression patterns of the other five miRNAs with their target genes were just the opposite. 【Conclusion】The process of lignin accumulation in flax stalks is closely related to MYB transcription factor,laccase,auxin response factor and SPL genes. These target genes can be negatively regulated by their corresponding miRNAs and participate in the accumulation of lignin in flax stalks.
Key words: flax; lignin; accumulation; miRNA; target gene; mining
Foundation item: National Natural Science Foundation of China(31801409); Heilongjiang Natural Science Foundation(C2018061)
0 引言
【研究意義】亞麻(Linum ustitatissimum L.)為亞麻科亞麻屬一年生草本植物,是人類最早使用的天然植物纖維,其纖維紡織品具有透氣、吸濕、抗菌及對(duì)人體無害等優(yōu)點(diǎn),日益受到人類的關(guān)注。但目前亞麻紡織業(yè)中優(yōu)質(zhì)亞麻纖維原料嚴(yán)重短缺,且其纖維品質(zhì)和紡織性能易受木質(zhì)素含量影響,究其原因是木質(zhì)素會(huì)使纖維變硬、變脆(王玉富等,2008)。可見,木質(zhì)素是制約紡織品質(zhì)量的主要影響因子,且去除木質(zhì)素工藝會(huì)產(chǎn)生大量廢水從而造成環(huán)境污染。近些年來,已有學(xué)者對(duì)miRNAs在不同植物發(fā)育時(shí)期組織中的表達(dá)模式進(jìn)行分析,發(fā)現(xiàn)miRNAs在植物的生長(zhǎng)發(fā)育過程中發(fā)揮重要調(diào)控功能作用(Parizotto et al.,2004;Megraw et al.,2006;劉潮等,2019)。因此,深入挖掘亞麻不同發(fā)育時(shí)期莖稈中的miRNA及其靶基因,對(duì)揭示亞麻纖維層木質(zhì)素動(dòng)態(tài)積累的調(diào)控作用具有重要意義?!厩叭搜芯窟M(jìn)展】目前,已有大量關(guān)于參與調(diào)控木質(zhì)素合成的miRNA及其靶基因的研究報(bào)道。在擬南芥中,miR857通過作用于其靶基因AtLAC7來參與調(diào)控維管組織的次生生長(zhǎng),在miR857過表達(dá)植株中,AtLAC7基因表達(dá)量下調(diào),漆酶活性下降10.8%,鮮重和莖直徑分別下降6.5%和18.4%,莖拉伸力下降26.4%,木質(zhì)素含量降低;而miR857敲除株系表現(xiàn)出漆酶活性增加33.3%,鮮重和莖直徑分別增加14.7%和10.0%,莖拉伸力增加26.4%,植株木質(zhì)素含量明顯增加,次生木質(zhì)部木質(zhì)化程度增強(qiáng)(Zhao et al.,2015)。miR397b通過作用于其靶基因AtLAC4而調(diào)控木質(zhì)素含量,miR397b過表達(dá)株系表現(xiàn)出木質(zhì)素含量降低,次生壁厚度變薄,愈創(chuàng)木基和紫丁香基單體數(shù)目減少,但生殖生長(zhǎng)期的植株表現(xiàn)出花序數(shù)目增多,致使果莢數(shù)也增多,產(chǎn)量提高,過表達(dá)AtLAC4基因的植株則表現(xiàn)出與之相反的表型(Wang et al.,2014)。在陸地棉中,GhLAC4基因mRNA的切割發(fā)生在miR397b及該基因的互補(bǔ)區(qū)域,說明GhLAC4基因是miR397b的靶基因,也暗示GhmiR397b可能參與棉花纖維中木質(zhì)素的形成(丁妍等,2017)。在歐洲大葉楊中共發(fā)現(xiàn)49個(gè)漆酶基因(PtrLACs),其中有29個(gè)為Ptr-miR397a的靶基因,將Ptr-miR397a轉(zhuǎn)入楊樹中,結(jié)果發(fā)現(xiàn)Ptr-miR397a的靶基因中有17個(gè)PtrLACs下調(diào)表達(dá),且轉(zhuǎn)基因株系中木質(zhì)素含量降低12%~22%,漆酶活性約下降40%,但木質(zhì)素結(jié)構(gòu)和組成未發(fā)生明顯變化,證明漆酶參與木質(zhì)素合成作用,且Ptr-miR397a是木質(zhì)素合成的主要調(diào)節(jié)因子(Lu et al.,2013)。在玉米中,ZmmiR528作用于其靶基因ZmLAC3和ZmLAC5,當(dāng)ZmmiR528過表達(dá)時(shí),ZmLAC3和ZmLAC5基因表達(dá)量下降,木質(zhì)素含量和莖桿穿刺強(qiáng)度降低;當(dāng)敲減ZmmiR528或ZmLAC3過表達(dá)時(shí),植株表現(xiàn)出相反的表型(Sun et al.,2018)。上述研究結(jié)果均表明,miRNA能通過調(diào)控其靶基因進(jìn)而影響植株木質(zhì)素含量。此外,轉(zhuǎn)STTM164基因楊樹的木質(zhì)部細(xì)胞層數(shù)和細(xì)胞壁厚度較野生型明顯增加,從而導(dǎo)致木質(zhì)部加厚,木質(zhì)素含量增加(梁瀾,2017)。目前,關(guān)于亞麻木質(zhì)素積累分子方面的研究報(bào)道相對(duì)較少。王進(jìn)等(2009)以亞麻栽培品種白花為材料,采用半定量RT-PCR對(duì)亞麻木質(zhì)素合成關(guān)鍵酶基因CCoAOMT1、4CL1、4CL2、COMT、F5H1、F5H2、F5H3在亞麻不同明顯的組織及不同時(shí)期木質(zhì)部和韌皮部的表達(dá)規(guī)律進(jìn)行研究,結(jié)果發(fā)現(xiàn)這些基因呈組織特異性表達(dá)。龍松華等(2014)將已克隆獲得的亞麻木質(zhì)素合成關(guān)鍵酶咖啡酸-O-甲基轉(zhuǎn)移酶基因(COMT)全長(zhǎng)cDNA序列通過農(nóng)桿菌介導(dǎo)轉(zhuǎn)化亞麻,獲得轉(zhuǎn)基因植株,通過β-葡萄糖苷酸酶(GUS)染色和PCR檢測(cè),證實(shí)干擾載體已成功轉(zhuǎn)入亞麻中,為推進(jìn)亞麻纖維品質(zhì)改良的分子育種打下基礎(chǔ)。袁紅梅等(2016)以亞麻莖總RNA為模版,通過RT-PCR擴(kuò)增獲得木質(zhì)素合成關(guān)鍵酶糖基轉(zhuǎn)移酶基因LuUGT72E1的全長(zhǎng)開放閱讀框(ORF)序列,并推測(cè)該酶參與木質(zhì)素單體的糖基化修飾過程。【本研究切入點(diǎn)】至今,有關(guān)亞麻木質(zhì)素積累分子調(diào)控方面的研究報(bào)道較少,且主要集中在上述少數(shù)幾個(gè)木質(zhì)素合成酶基因的克隆及其表達(dá)方面。雖然獨(dú)立的miRNA數(shù)據(jù)分析可為解析不同發(fā)育時(shí)期亞麻莖稈中木質(zhì)素積累提供重要信息,整合miRNA和降解組數(shù)據(jù)動(dòng)態(tài)變化可為揭示miRNA調(diào)控基因表達(dá)提供較直接的證據(jù),但目前針對(duì)參與亞麻莖稈木質(zhì)素積累的miRNA及其靶基因挖掘分析的相關(guān)研究鮮見報(bào)道?!緮M解決的關(guān)鍵問題】以雙亞4號(hào)(低木質(zhì)素)和NEW(高木質(zhì)素)花后20、30和40 d的莖稈為試驗(yàn)材料,基于miRNA測(cè)序和降解組測(cè)序結(jié)果分析miRNA轉(zhuǎn)錄水平動(dòng)態(tài)變化及其靶基因注釋功能,采用實(shí)時(shí)熒光定量PCR檢測(cè)2個(gè)亞麻品種間表達(dá)差異最顯著的miRNA及其靶基因的表達(dá)模式,為解析亞麻纖維層木質(zhì)素動(dòng)態(tài)積累提供重要參考,也為利用生物技術(shù)手段培育低木質(zhì)素的優(yōu)質(zhì)亞麻新品種提供科學(xué)依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
供試材料為高木質(zhì)素亞麻品種NEW(原產(chǎn)法國(guó))和低木質(zhì)素亞麻品種雙亞4號(hào)(原產(chǎn)中國(guó)),由黑龍江省農(nóng)業(yè)科學(xué)院經(jīng)濟(jì)作物研究所提供。于2019年4月中旬播種于黑龍江省農(nóng)業(yè)科學(xué)院哈爾濱試驗(yàn)基地(東經(jīng)126°68′,北緯45°65′),從播種到收獲的年均降水量為350.2 mm,年均氣溫4.26 ℃。每份材料按行種植,行長(zhǎng)10 m,行間距20 cm,設(shè)3次重復(fù),10行區(qū),小區(qū)面積20 m2,播種方式為條播,田間管理同大田生產(chǎn)。開花期對(duì)同一開花時(shí)間的亞麻植株進(jìn)行掛牌標(biāo)記,以備取樣。主要試劑:Small RNA Sample Pre Kit、T4 RNA Ligase 1和T4 RNA Ligase 2購自天根生化科技(北京)有限公司;TRIzol(Invitrogen)購自北京雅安達(dá)生物技術(shù)有限公司;RevertAid First Strand cDNA Synthesis Kit(Fermentas)和SYBR Premix Ex Taq購自寶日醫(yī)生物技術(shù)(北京)有限公司。主要儀器設(shè)備:Hiseq 2500(Illumina,美國(guó))、2100 Bioanalyzer(Agilent,德國(guó))和羅氏LightCycler 2.10 PCR儀(Roche,瑞士)等。
1. 2 試驗(yàn)方法
1. 2. 1 miRNA文庫構(gòu)建及測(cè)序分析 采集亞麻品種雙亞4號(hào)和NEW花后20、30和40 d的莖稈下部5 cm(子葉節(jié)以上5~10 cm區(qū)段)進(jìn)行RNA提取,設(shè)3次生物學(xué)重復(fù),共18個(gè)樣品。RNA檢測(cè)合格后,取其1.5 μg作為RNA樣本起始量,用ddH2O補(bǔ)充至6.0 μL,使用Small RNA Sample Pre Kit試劑盒進(jìn)行mi-RNA文庫構(gòu)建。由于miRNA的5'端有磷酸基團(tuán)、3'端有羥基,利用T4 RNA Ligase 1和T4 RNA Ligase 2分別在其3'端和5'端連接上接頭,反轉(zhuǎn)錄合成cDNA,切膠回收得到的目的片段即為miRNA文庫。使用Qubit 2.0對(duì)miRNA濃度進(jìn)行檢測(cè),并稀釋至1 ng/μL,使用Agilent 2100 Bioanalyzer對(duì)Insert Size進(jìn)行檢測(cè),并以實(shí)時(shí)熒光定量PCR對(duì)miRNA的有效濃度進(jìn)行準(zhǔn)確定量,以保證miRNA文庫質(zhì)量。采用Illumina HiSeq2500進(jìn)行高通量測(cè)序,測(cè)序讀長(zhǎng)為Single-end(SE)50 nt。基于測(cè)序結(jié)果,鑒定分析miRNA及其靶基因的轉(zhuǎn)錄本信息
1. 2. 2 降解組cDNA文庫構(gòu)建及測(cè)序分析 采集亞麻品種雙亞4號(hào)花后20、30和40 d的莖稈下部5 cm(子葉節(jié)以上5~10 cm區(qū)段)進(jìn)行RNA提取,通過磁珠捕獲mRNA,5'-adaptor連接,以構(gòu)建降解組cDNA文庫,并用Hiseq 2500進(jìn)行降解組測(cè)序。原始Tags經(jīng)過去接頭和過濾低質(zhì)量,獲得Clean Tags和Cluster Tags(Clean Tags聚類數(shù)據(jù))。將Cluster Tags與參考基因組進(jìn)行比對(duì),分析其在參考基因組上的分布情況。將Cluster Tags與Rfam數(shù)據(jù)庫進(jìn)行比對(duì),注釋非編碼RNA功能,未被注釋的序列將用于降解位點(diǎn)分析。利用Cleaveland進(jìn)行降解位點(diǎn)檢測(cè)(Addo-Quaye et al.,2009),設(shè)置條件P-value<0.05。
1. 2. 3 實(shí)時(shí)熒光定量PCR驗(yàn)證 選取長(zhǎng)勢(shì)一致且健康的雙亞4號(hào)植株,采集花后0、10、20、30和40 d等5個(gè)時(shí)間點(diǎn)的莖桿下部5 cm(子葉節(jié)以上5~10 cm區(qū)段),設(shè)3次重復(fù),液氮迅速冷凍后置于-80 ℃冰箱保存?zhèn)溆?。用TRIzol提取上述樣品的總RNA,RNA經(jīng)DNA酶消化處理后反轉(zhuǎn)錄合成第一鏈cDNA。根據(jù)miRNA測(cè)序和降解組測(cè)序結(jié)果篩選出6個(gè)在雙亞4號(hào)和NEW不同發(fā)育時(shí)期表達(dá)差異最顯著的miRNA,在降解組找到其被降解的靶基因,并根據(jù)靶基因的CDS序列,采用Primer 5.0設(shè)計(jì)引物,內(nèi)參基因?yàn)镚APDH(表1)。實(shí)時(shí)熒光定量PCR在羅氏LightCycler 2.10 PCR儀上進(jìn)行,熒光染料為SYBR Premix Ex Taq,設(shè)3次生物學(xué)重復(fù)。反應(yīng)體系20.0 μL:2×Hi SYBR Green qPCR Mix 10.0 μL,10 μmol/L上、下游引物各0.8 μL,cDNA模板2.0 μL,ddH2O補(bǔ)足至20.0 μL。擴(kuò)增程序:95 ℃預(yù)變性15 min;95 ℃ 10 s,60 ℃ 30 s,65 ℃ 5 min,進(jìn)行40個(gè)循環(huán),4 ℃保存。以2-ΔΔCt法計(jì)算目的基因的相對(duì)表達(dá)量(Livak and Thomas,2001)。
1. 3 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2010進(jìn)行統(tǒng)計(jì)分析,并以GraphPad Prism 6.01制圖。
2 結(jié)果分析
2. 1 miRNA轉(zhuǎn)錄水平分析結(jié)果
試驗(yàn)前期對(duì)亞麻不同發(fā)育時(shí)期莖稈中木質(zhì)素進(jìn)行含量測(cè)定及掃描電鏡觀察,結(jié)果發(fā)現(xiàn)亞麻花后20~40 d是木質(zhì)素急劇積累的重要時(shí)期。因此,本研究選取亞麻品種雙亞4號(hào)和NEW花后20、30和40 d的莖稈構(gòu)建miRNA文庫,并鑒定出305個(gè)miRNA,其中包括143個(gè)保守的miRNA和162個(gè)新鑒定的miRNA。本研究還對(duì)部分miRNA(包括保守的miRNA和新鑒定的miRNA)的靶基因不同轉(zhuǎn)錄本進(jìn)行詳細(xì)分析,以期了解可變剪接是否造成轉(zhuǎn)錄本水平miRNA靶位點(diǎn)丟失,結(jié)果發(fā)現(xiàn)這些miRNA的靶基因不同轉(zhuǎn)錄本并非均受miRNA調(diào)控。如在保守的miRNA中,PB.11839可轉(zhuǎn)錄出5個(gè)轉(zhuǎn)錄本異構(gòu)體,其中4個(gè)轉(zhuǎn)錄本可被miR160調(diào)控,另外丟失miR160靶位點(diǎn)的1個(gè)轉(zhuǎn)錄本是通過外顯子跳躍產(chǎn)生(圖1-A);PB.19964可轉(zhuǎn)錄出7個(gè)轉(zhuǎn)錄本異構(gòu)體,其中5個(gè)轉(zhuǎn)錄本可被miR168調(diào)控,其余2個(gè)轉(zhuǎn)錄本經(jīng)外顯子跳躍事件而丟失miR168靶位點(diǎn)(圖1-B);在新鑒定的miRNA中,PB.16138可轉(zhuǎn)錄出2個(gè)轉(zhuǎn)錄本,1個(gè)可被unconservative_scaffold204_9948調(diào)控,1個(gè)經(jīng)可變接受位點(diǎn)事件后丟失靶位點(diǎn)(圖1-C)。為了更好的研究亞麻miRNA的功能,本研究將鑒定的miRNA與亞麻基因組序列信息進(jìn)行靶基因預(yù)測(cè),結(jié)果獲得286個(gè)miRNA的4807個(gè)靶基因,另外19個(gè)miRNA未預(yù)測(cè)到靶基因,可能是因?yàn)閬喡榛蚪M提交數(shù)據(jù)并不完整,造成靶基因預(yù)測(cè)不全面。
2. 2 降解組測(cè)序分析結(jié)果
利用降解組測(cè)序技術(shù)鑒定miRNA靶基因是目前最常用和最高效的方法。以亞麻品種雙亞4不同發(fā)育時(shí)期(20、30和40 d)的莖稈構(gòu)建3個(gè)降解組的cDNA文庫(D01、D02和D03),并結(jié)合上述高通量測(cè)序獲得的不同發(fā)育時(shí)期亞麻莖稈miRNA文庫信息進(jìn)一步鑒定亞麻莖稈miRNA靶基因。利用Cleaveland進(jìn)行降解位點(diǎn)檢測(cè),結(jié)果發(fā)現(xiàn),D01檢測(cè)到86個(gè)靶基因被降解,共有86個(gè)靶基因降解位點(diǎn);D02檢測(cè)到92個(gè)靶基因被降解,共有92個(gè)靶基因降解位點(diǎn);D03檢測(cè)到83個(gè)靶基因被降解,共有83個(gè)靶基因降解位點(diǎn)。通過對(duì)3個(gè)降解組測(cè)序數(shù)據(jù)進(jìn)行整合分析,共獲得21個(gè)miRNA的97個(gè)靶基因,共檢測(cè)到97個(gè)降解位點(diǎn),僅占鑒定出亞麻莖稈中miRNA靶基因總數(shù)(4807個(gè))的2%,仍有大量的靶基因未被鑒定。為了探索靶基因的功能,本研究將被降解的97個(gè)靶基因與同源物種比對(duì)進(jìn)行功能注釋,其中有22個(gè)靶基因與植物生長(zhǎng)發(fā)育有關(guān),如生長(zhǎng)素響應(yīng)因子(Auxin response factor)、生長(zhǎng)調(diào)節(jié)因子(Growth regulate factor)和乙烯響應(yīng)因子(Ethylene response factor)等;有16個(gè)靶基因?yàn)檗D(zhuǎn)錄因子,如MYB、bHLH77和TCP2等;有7個(gè)靶基因與植物次生代謝積累有關(guān),如銅氧化酶(Poly copper oxidase)、P450次生代謝酶(P450 secondary metabolism)和銅鋅超氧化物歧化酶(Copper zinc superoxide dismutase)等(表2)。
2. 3 實(shí)時(shí)熒光定量PCR驗(yàn)證結(jié)果
結(jié)合miRNA測(cè)序和降解組測(cè)序結(jié)果篩選出6個(gè)在雙亞4號(hào)和NEW不同發(fā)育時(shí)期表達(dá)差異最顯著的miRNA,并根據(jù)降解組找到其被降解的靶基因:ama-miR156(Lus10003126)、bdi-miR397b-5p(Lus 10017175)、gma-miR396h(Lus1011558)、lja-miR397(Lus10027782)、csi-miR160(Lus10021467)和aly-miR319c-p(Lus10008685),共有6對(duì)miRNA-靶基因調(diào)控組合,最后采用實(shí)時(shí)熒光定量PCR檢測(cè)其在亞麻莖稈不同發(fā)育時(shí)期的表達(dá)模式,結(jié)果如圖2所示。6個(gè)miRNA及其對(duì)應(yīng)靶基因均隨莖稈發(fā)育呈相反的表達(dá)模式。ama-miR156的相對(duì)表達(dá)量隨亞麻莖稈發(fā)育呈逐漸下降趨勢(shì),而其靶基因Lus10003126的相對(duì)表達(dá)量呈逐漸升高趨勢(shì),花后40 d相對(duì)表達(dá)量達(dá)最高,該靶基因被注釋為啟動(dòng)子結(jié)合蛋白SBP,參與亞麻生長(zhǎng)發(fā)育。bdi-miR397b-5p和lja-miR397的相對(duì)表達(dá)量均隨亞麻莖稈發(fā)育呈逐漸升高趨勢(shì),均在花后40 d達(dá)最高,其靶基因Lus10017175和Lus10027782的表達(dá)模式恰好相反,整體上呈逐漸降低趨勢(shì),在花后40 d相對(duì)表達(dá)量達(dá)最低值,且這2個(gè)靶基因均被注釋為漆酶基因,參與亞麻中次生代謝產(chǎn)物木質(zhì)素的形成。aly-miR319c-p的相對(duì)表達(dá)量隨亞麻莖稈發(fā)育呈逐漸下降趨勢(shì),其靶基因Lus10008685的表達(dá)模式恰好相反,在花后0~20 d的相對(duì)表達(dá)量緩慢升高,從花后30 d開始相對(duì)表達(dá)量迅速升高,該靶基因被注釋為轉(zhuǎn)錄因子MYB,據(jù)報(bào)道該家族轉(zhuǎn)錄因子調(diào)控植物木質(zhì)素生物合成過程(李維靜等,2013),因此推斷該靶基因?qū)喡槟举|(zhì)素積累及結(jié)構(gòu)形成發(fā)揮重要作用。csi-miR160的相對(duì)表達(dá)量隨亞麻莖稈發(fā)育呈逐漸下降趨勢(shì),在花后40 d時(shí)降至最低值,其靶基因Lus10021467的相對(duì)表達(dá)量在花后0~10 d無明顯變化,從花后20 d開始相對(duì)表達(dá)量急劇增加,花后40 d達(dá)最高值,該靶基因被注釋為生長(zhǎng)素響應(yīng)因子,說明該基因與亞麻的生長(zhǎng)發(fā)育及木質(zhì)素積累關(guān)系密切。gma-miR369h及其靶基因Lus10011558隨亞麻莖稈的生長(zhǎng)發(fā)育其表達(dá)模式無明顯規(guī)律,gma-miR369h的相對(duì)表達(dá)量在花后0~30 d無明顯變化,花后40 d明顯下降,其靶基因Lus10011558的相對(duì)表達(dá)量在花后10~40 d均無明顯變化。故推測(cè)這些miRNA及其靶基因在亞麻莖稈不同發(fā)育期相互作用,共同參與亞麻莖稈發(fā)育與次生代謝產(chǎn)物積累。
3 討論
在紡織業(yè)、造紙業(yè)等工業(yè)生產(chǎn)中,木質(zhì)素是造成纖維加工廢棄物污染,影響纖維品質(zhì)的主要因素。木質(zhì)素是影響植物材料加工利用的主要限制因子。纖維中木質(zhì)素含量過高會(huì)導(dǎo)致纖維偏硬脆,可紡性和服用性能差。由于木質(zhì)素的去除難度大,木質(zhì)素含量高則易導(dǎo)致脫膠成本高和工業(yè)污染(Vanholme et al.,2012)。因此,亞麻中木質(zhì)素含量直接影響亞麻纖維的品質(zhì),直接決定其經(jīng)濟(jì)效益(Meagher and Beecher,2000)。Huis等(2012)將代謝組學(xué)和轉(zhuǎn)錄組學(xué)相結(jié)合對(duì)亞麻莖稈的木質(zhì)部和莖外韌皮纖維部分的木質(zhì)化進(jìn)行研究,結(jié)果發(fā)現(xiàn)代謝中間體松柏醇最終可以產(chǎn)生木質(zhì)素,但該研究未提及亞麻莖稈木質(zhì)素積累過程中相關(guān)基因的表達(dá)情況。至今,未見有關(guān)調(diào)控亞麻莖稈木質(zhì)素積累的相關(guān)miRNA及其靶基因的研究報(bào)道。本研究對(duì)亞麻莖稈不同發(fā)育時(shí)期的miRNA轉(zhuǎn)錄水平進(jìn)行深入分析,結(jié)果發(fā)現(xiàn)亞麻莖稈木質(zhì)素的積累過程與轉(zhuǎn)錄因子MYB、漆酶及生長(zhǎng)素響應(yīng)因子等編碼基因密切相關(guān)。該結(jié)論推進(jìn)了亞麻莖稈木質(zhì)素積累方面的研究進(jìn)展,并為利用生物技術(shù)手段培育低木質(zhì)素優(yōu)質(zhì)纖維亞麻新品種提供了重要參考。
miR156是一類調(diào)控細(xì)胞生長(zhǎng)的miRNA,其靶基因SPL10和SPL11能控制細(xì)胞分裂(Nodine and Bartel,2010),在胚發(fā)育早期(花后10 d)miR156可抑制SPL10和SPL11基因的表達(dá),阻礙植株生長(zhǎng)發(fā)育(Pa-latnik et al.,2003;Wang et al.,2012)。本研究也發(fā)現(xiàn),ama-miR156在亞麻莖稈發(fā)育過程中的相對(duì)表達(dá)量呈逐漸下降趨勢(shì),且其靶基因Lus10003126在花后20~40 d的相對(duì)表達(dá)量明顯升高,說明ama-miR156在亞麻莖稈發(fā)育中后期對(duì)其靶基因的抑制作用越來越弱,從而促進(jìn)莖稈纖維層的正常發(fā)育。此外,楊樹中Ptr-miR397a過表達(dá)會(huì)引起17個(gè)漆酶基因的相對(duì)表達(dá)量下調(diào),導(dǎo)致木質(zhì)素含量降低(Lu et al.,2013);擬南芥AtmiRNA397b過量表達(dá)會(huì)致使AtLAC4基因的相對(duì)表達(dá)量降低,導(dǎo)致木質(zhì)素含量降低(Wang et al.,2014)。本研究中,bdi-miR397b-5p和lja-miR397的相對(duì)表達(dá)量隨亞麻莖稈發(fā)育呈逐漸升高趨勢(shì),均在花后40 d達(dá)最高值,其靶基因Lus10017175和Lus10027782表達(dá)模式恰好相反,整體上呈逐漸降低趨勢(shì),由于這2個(gè)靶基因均被注釋為漆酶,故推測(cè)這2個(gè)miRNA負(fù)調(diào)控亞麻木質(zhì)素合成,且在不同物種中的功能具有一定的保守性。
本研究中,aly-miR319c-p的相對(duì)表達(dá)量隨亞麻莖稈發(fā)育呈不斷下降趨勢(shì),其靶基因Lus10008685被注釋為轉(zhuǎn)錄因子MYB,相對(duì)表達(dá)量不斷升高。Shen等(2012,2013)研究發(fā)現(xiàn),柳枝稷中過表達(dá)R2-R3-MYB轉(zhuǎn)錄因子基因家族成員PvMYB4,在未經(jīng)酸預(yù)處理的條件下即可使糖化效率增加300%,導(dǎo)使纖維素乙醇產(chǎn)量比普通植株提高2.6倍。由于miR319c-p及其靶基因在植物木質(zhì)素發(fā)育過程中的作用未見相關(guān)研究報(bào)道,因此aly-miR319c-p及其靶基因Lus10008685調(diào)控木質(zhì)素合成的功能是本研究新發(fā)現(xiàn),但其具體作用機(jī)理還需進(jìn)一步研究驗(yàn)證。miR160是植物中一類較重要的miRNA家族,具有組織特異性表達(dá)的特點(diǎn),能在模式植物擬南芥中反饋調(diào)節(jié)生長(zhǎng)素響應(yīng)因子的表達(dá),從而影響植株對(duì)生長(zhǎng)素的敏感性,進(jìn)而調(diào)控植物的生長(zhǎng)發(fā)育(Mallory et al.,2005)。吳書昌(2016)利用深度測(cè)序技術(shù)發(fā)現(xiàn)miR160在棉花胚珠的發(fā)育及纖維起始過程中特異表達(dá),推測(cè)其可能會(huì)影響棉花胚珠的發(fā)育和纖維的起始。本研究也發(fā)現(xiàn),隨著亞麻莖稈的發(fā)育csi-miR160相對(duì)表達(dá)量不斷下降,其靶基因Lus10021467的相對(duì)表達(dá)量不斷上升,該靶基因被注釋為生長(zhǎng)素響應(yīng)因子,推測(cè)csi-miR160及其靶基因Lus10021467在亞麻莖稈纖維發(fā)育和木質(zhì)素積累方面扮演重要調(diào)控角色,進(jìn)一步驗(yàn)證前人的相關(guān)研究結(jié)果。
雖然在紡織業(yè)、造紙業(yè)等工業(yè)生產(chǎn)中,木質(zhì)素是造成纖維加工廢棄物污染及影響纖維品質(zhì)的主要因素,但木質(zhì)素在植物組織中具有增強(qiáng)細(xì)胞壁及黏合纖維的作用,對(duì)植物的生長(zhǎng)起機(jī)械支持抗壓的作用。因此,在今后培育低木質(zhì)素亞麻品種時(shí)要充分利用miRNA及靶基因在亞麻韌皮部(纖維層)特異表達(dá)這一特性進(jìn)行有目標(biāo)地降低亞麻韌皮部(纖維層)的木質(zhì)素含量,而不影響其植株的抗倒伏性,從而培育抗倒伏性強(qiáng)、纖維品質(zhì)好的亞麻新品種。
4 結(jié)論
亞麻莖稈木質(zhì)素的積累過程與轉(zhuǎn)錄因子MYB、漆酶、生長(zhǎng)素響應(yīng)因子等編碼基因密切相關(guān),且這些靶基因可被其相應(yīng)的miRNA負(fù)調(diào)控,并參與亞麻莖稈中木質(zhì)素的積累。
參考文獻(xiàn):
丁妍,王燕美,劉進(jìn)元. 2017. 陸地棉miR397b的生化功能驗(yàn)證[J]. 上海農(nóng)業(yè)學(xué)報(bào),33(1):10-14. [Ding Y,Wang Y M,Liu J Y. 2017. Identification of the biochemical function of miR397b in Gossypium hirsutum[J]. Acta Agriculturae Shanghai,33(1):10-14.]
李維靜,蘇衍菁,蘇相亭,卜仕金. 2013. MYB轉(zhuǎn)錄因子在植物木質(zhì)素合成中的調(diào)控機(jī)理[J]. 山東畜牧獸醫(yī),34(11):69-71. [Li W J,Su Y J,Su X T,Bu S J. 2013. Regulation mechanism of MYB transcription factor in plant lignin synthesis[J]. Shandong Journal of Animal Husbandry and Veterinary Science,34(11):69-71.]
梁瀾. 2017. PtrmiR164a在楊樹次生細(xì)胞壁合成過程中的功能研究[D]. 重慶:西南大學(xué). [Liang L. 2017. Functional characterization of PtrmiR164a invoved in the regulation of secondary cell wall in Populus[D]. Chongqing:Southwest University.]
劉潮,褚洪龍,韓利紅,楊云錦,高永,唐利洲. 2019. 桑樹NBS-LRR類基因家族的全基因組鑒定及其調(diào)控micro-RNAs分析[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),35(3):544-553. [Liu C,Chu H L,Han L H,Yang Y J,Gao Y,Tang L Z. 2019. Genome-wide identification of NBS-LRR genes and regulation analysis by microRNAs in mulberry[J]. Jiangsu Journal of Agricultural Sciences,35(3):544-553.]
龍松華,喬瑞清,李翔,陳信波,鄧欣,邱財(cái)生,郭媛,郝冬梅,王玉富. 2014. 亞麻木質(zhì)素合成相關(guān)基因COMTRNAi表達(dá)載體構(gòu)建及轉(zhuǎn)化[J]. 中國(guó)麻業(yè)科學(xué),36(4):169-173. [Long S H,Qiao R Q,Li X,Chen X B,Deng X,Qiu C S,Guo Y,Hao D M,Wang Y F. 2014. Construction of RNAi vector caffeic acid O-methyltransferase gene and transformation in flax[J]. Plant Fiber Sciences in China,36(4):169-173.]
王進(jìn),陳信波,高原,張彥紅,龍松華,鄧欣,何東鋒,王玉富. 2009. 亞麻木質(zhì)素合成關(guān)鍵酶基因表達(dá)分析[J]. 作物學(xué)報(bào),35(8):1468-1473. [Wang J,Chen X B,Gao Y,Zhang Y H,Long S H,Deng X,He D F,Wang Y F. 2009. Expression of critical lignin metabolism genes in flax(Linum usitatissimum)[J]. Acta Agronomica Sinica,35(8):1468-1473.]
王玉富,黃海燕,薛召東,邱財(cái)生,郝冬梅. 2008. 亞麻CAD基因克隆及反義表達(dá)載體的構(gòu)建[J]. 中國(guó)麻業(yè)科學(xué),30(6):289-292. [Wang Y F,Huang H Y,Xue Z D,Qiu C S,Hao D M. 2008. Cloning of partial sequences of cinnamyl alcohol dehydrogenase gene from flax and construction of its antisense expression vector[J]. Plant Fiber Sciences in China,30(6):289-292.]
吳書昌. 2016. MiR160在棉花胚珠發(fā)育中功能分析[D]. 武漢:華中農(nóng)業(yè)大學(xué). [Wu S C. 2016. Functional characteri-zation of miR160 in cotton ovule development[D]. Wuhan:Huazhong Agricultural University.]
袁紅梅,郭文棟,趙麗娟,于瑩,吳建忠,程莉莉,趙東升,康慶華,黃文功,姚玉波,宋喜霞,姜衛(wèi)東,劉巖,馬廷芬,吳廣文,關(guān)鳳芝. 2016. 亞麻糖基轉(zhuǎn)移酶基因LuUGT72E1的克隆與表達(dá)分析[J]. 作物雜志,(4):62-67. [Yuan H M,Guo W D,Zhao L J,Yu Y,Wu J Z,Cheng L L,Zhao D S,Kang Q H,Huang W G,Yao Y B,Song X X,Jiang W D,Liu Y,Ma T F,Wu G W,Guan F Z. 2016. Cloning and expression analysis of the glycosyltransferase gene LuUGT72E1 in flax[J]. Crops,(4):62-67.]
Addo-Quaye C,Miller W,Axtell M J. 2009. CleaveLand:A pipeline for using degradome data to find cleaved small RNA targets[J]. Bioinformatics,25(1):130-131.
Huis R,Morreel K,F(xiàn)liniaux O,Lucau-Danila A,F(xiàn)enart S,Grec S,Neutelings G,Chabbert B,Mesnard F,Boerjan W,Hawkins S. 2012. Natural hypolignification is associated with extensive oligolignol accumulation in flax stems[J]. Plant Physiology,158(4):1893-1915.
Livak K J,Thomas D S. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,25(4):402-408.
Lu S,Li Q,Wei H,Chang M J,Tunlaya-Anukit S,Kim H,Liub J,Song J Y,Sun Y H,Yuan L,Yeh T F,Peszlen I,Ralph J,Sederoff R R,Chiang V L. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proceedings of the National Academy of Sciences of the United States of America,110(26):10848-10853.
Mallory A C,Bartel D P,Bartel B. 2005. microRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes[J]. The Plant Cell,17(5):1360-1375.
Meagher L P,Beecher G R. 2000. Assessment of data on the lignan content of foods[J]. Journal of Food Composition and Analysis,13(6):935-947.
Megraw M,Baev V,Rusinov V,Jensen S T,Kalantidis K,Hatzigeorgiou A G. 2006. microRNA promoter element discovery in Arabidopsis[J]. RNA,12(9):1612-1619.
Nodine M D,Bartel D P. 2010. microRNAs prevent precocious gene expression and enable pattern formation du-ring plant embryogenesis[J]. Genes Development,24(23):2678-2692.
Palatnik J F,Allen E,Wu X,Schommer C,Schwab R,Carrington J C,Weigel D. 2003. Control of leaf morphogenesis by microRNAs[J]. Nature,425(6955):257-263.
Parizotto E A,Dunoyer P,Rahm N,Himber C,Voinnet O. 2004. In vivo investigation of the transcription,proces-sing,endonucleolytic activity,and functional relevance of the spatial distribution of a plant miRNA[J]. Genes Development,18:2237-2242.
Shen H,He X,Poovaiah C R,Wuddineh W A,Ma J,Mann D G J,Wang H,Jackson L,Tang Y,Chen F,Dixon R A. 2012. Functional characterization of the switchgrass(Pani-cum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks[J]. New Phytologist,193(1):121-136.
Shen H,Poovaiah C R,Ziebell A,Tschaplinski T J,Pattathil S,Gjersing E,Engle N L,Katahira R,Pu Y,Sykes R. 2013. Enhanced characteristics of genetically modified switchgrass(Panicum virgatum L.) for high biofuel production[J]. Biotechnology for Biofuels,6(1):71-86.
Sun Q,Liu X G,Yang J,Liu W W,Du Q G,Wang H Q,F(xiàn)u C X,Li W X. 2018. microRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions[J]. Molecular Plant,11(6):806-814.
Vanholme R,Storme V,Vanholme B,Sundin L,Christensen J H,Goeminne G,Halpin C,Rohde A,Morreel K,Boerjan W. 2012. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis[J]. The Plant Cell,24(9):3506-3529.
Wang C Y,Zhang S,Yu Y,Luo Y C,Liu Q,Ju C,Chen Y Q. 2014. miR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis[J]. Plant Biotechnology Journal,12(8):1132-1142.
Wang S K,Wu K,Yuan Q B,Liu X Y,Liu B,Lin X Y,Zeng R Z,Zhu H T,Dong G J,Qian Q,Zhang G Q,F(xiàn)u X D. 2012. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,44(8):950-954.
Zhao Y Y,Lin S,Qiu Z B,Cao D C,Wen J L,Deng X,Wang X H,Lin J X,Li X J. 2015. microRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis [J]. Plant Physiology,169(4):2539-2552.
(責(zé)任編輯 陳 燕)