劉長彬 盧春霞 石國慶 倪建宏 盧守亮
摘要:【目的】解決天然牛妊娠相關(guān)糖蛋白(bPAG)不易分離純化的問題,獲得高效異源表達且具有良好免疫反應性的bPAG6,為國產(chǎn)bPAG檢測產(chǎn)品的研發(fā)提供技術(shù)支持?!痉椒ā扛鶕?jù)宿主細胞對密碼子的偏好性,利用MaxCodonTM在不改變氨基酸序列的前提下,對bPAG6基因密碼子進行優(yōu)化,采用全基因合成技術(shù)擴增優(yōu)化后的bPAG6基因,構(gòu)建proEM-bPAG6重組載體,并轉(zhuǎn)染至HEK293細胞中進行高效表達;然后通過SDS-PAGE電泳、Western blotting和ELISA檢測重組蛋白的表達效果及免疫反應性,并利用在線生物信息學分析軟件對重組蛋白的結(jié)構(gòu)及功能進行預測。【結(jié)果】優(yōu)化后bPAG6基因的密碼子適用指數(shù)(CAI)由0.80提高到0.96,G+C含量由49.4%提高到58.8%,其蛋白編碼區(qū)(CDS)長度為1137 bp,共編碼379個氨基酸殘基。將全基因合成技術(shù)擴增獲得的bPAG6基因插入proEM載體構(gòu)建proEM-bPAG6重組載體,經(jīng)EcoR I和Hind III雙酶切鑒定可獲得2條與預期結(jié)果相符的片段[proEM載體(4369 bp)和bPAG6基因(1176 bp)],測序結(jié)果也顯示其堿基序列與優(yōu)化后的bPAG6基因完全一致。proEM-bPAG6重組載體轉(zhuǎn)染HEK293細胞表達獲得的重組蛋白bPAG6分子量約46 kD。重組蛋白bPAG6可被抗bPAG6抗體識別,即具有良好的免疫反應性。重組蛋白bPAG6信號肽由N端的前15個氨基酸殘基組成;存在5個N-糖基化位點,其N-糖基化修飾主要位于57Asn、73Asn、102Asn、124Asn和181Asn位點處;重組蛋白bPAG6為分泌性蛋白,無跨膜螺旋區(qū),其二級結(jié)構(gòu)由無規(guī)則卷曲(42.74%)、延伸鏈(31.93%)、α-螺旋(19.26%)和β-轉(zhuǎn)角(6.07%)組成。【結(jié)論】通過基因優(yōu)化及真核表達獲得的重組蛋白bPAG6具有良好免疫反應性,可作為抗原應用于牛早期妊娠快速診斷產(chǎn)品的研發(fā)。
關(guān)鍵詞: 牛妊娠相關(guān)糖蛋白6(bPAG6);早期妊娠診斷;密碼子優(yōu)化;真核表達
中圖分類號: S823.41 ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2020)11-2597-10
Codon optimization of bovine pregnancy associated glycoprotein 6 gene and its expression in human embryonic kidney
293(HEK293) cell
LIU Chang-bin1, LU Chun-xia2*, SHI Guo-qing1, NI Jian-hong1, LU Shou-liang1
(1State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang ?832000, China; 2School of Advanced Agriculture and Bioengineering,
Yangtze Normal University, Chongqing ?408100, China)
Abstract:【Objective】This study was to solve the problem that natural bovine pregnancy-associated glycoproteins (bPAG) was not easy to isolate and purify, and to obtain a recombinant bPAG6 with high heterogeneous expression and good immunoreactivity. The research provided the technical support for the research of domestic bPAG testing products. 【Method】In this study, the bPAG6 gene was optimized using MaxCodon software according to codon usage preference of host cells without changing the amino acid sequence. The optimized bPAG6 gene was synthesized by gene-synthesis techniques, and inserted into the expression plasmid proEM to construct fusion protein expression plasmids proEM-bPAG6. Subsequently, the proEM-bPAG6 recombinant vector was transfected into HEK293 cells. SDS-PAGE electrophoresis, Western blotting and ELISA were performed to evaluate the expression and immunoreactivity of the recombinant protein. The structure and function of recombinant protein was predicted and analyzed by bioinformatics software. 【Result】After codon optimization, the codon adaptation index (CAI) of the bPAG6 gene raised from 0.80 to 0.96 and its G+C content changed from 49.4% to 58.8%, protein coding region(CDS) was 1137 bp and encoding 379 amino acid residues. The bPAG6 gene was inserted into the proEM vector to construct proEM-bPAG6 recombinant vector, two fragments consistent with the expected results were obtained by EcoR I and Hind III double enzyme digestion [proEM vector(4369 bp) and bPAG6 gene(1176 bp)], sequencing results also showed that the base sequence was completely consistent with the optimized bPAG6 gene. The molecular weight of recombinant protein bPAG6 obtained from proEM-bPAG6 recombinant vector transfected HEK293 cells was about 46 kD. Recombinant protein bPAG6 could be recognized by anti bPAG6 antibodies. That is, it had good immunoreactivity. Recombinant protein bPAG6 signal peptide consisted of the first 15 amino acid residues at the N end; five N-glycosylation sites existed, N-glycosylation modification was mainly located at sites 57Asn, 73Asn, 102Asn, 124Asn and 181Asn. bPAG6 recombinant protein was secretory protein, with no transmembrane helix. The secondary structure consisted of random coil(42.74%), extended strand(31.93%),α-helix(19.26%) and β-turn(6.07%), respectively. 【Conclusion】In this paper, recombinant bPAG6 with good immunoreactivity are successfully obtained by gene optimization and prokaryotic expression systems, which can be used in dairy cattle early pregnancy diagnosis as antigen.
1. 2 試驗方法
1. 2. 1 bPAG6基因優(yōu)化與合成 根據(jù)NCBI已公布的bPAG6基因序列(GenBank登錄號NM_176617.2),利用密碼子優(yōu)化軟件MaxCodonTM對bPAG6基因進行優(yōu)化。根據(jù)宿主細胞HEK293對密碼子的偏好性,在不改變氨基酸序列的前提下,將bPAG6基因的低頻密碼子替換為宿主細胞高頻率使用的密碼子,提高密碼子適用指數(shù)(CAI),降低序列中堿基重復結(jié)構(gòu);在優(yōu)化后的bPAG6基因5'端和3'端分別設計EcoR I、Hind III酶切位點及His標簽序列,采用Primer Premier 5.0設計18條引物(bPAG6-1~bPAG6-18),其中,首引物bPAG6-1為5'-AGTTTAAACGGATCTCTAG CGAATTCCCGCCGCCACCATGAAGTGGCTGG TGCTCCTGGGACTCTGGTGGCTTTCAGCGAG TGCATC-3'(下劃線處為EcoR I酶切位點),尾引物bPAG6-18為5'-TTGCCGGCCTCGAGCGGCCGCTA GCAAGCTTATCAGTGGTGGTGATGATGGTGCA CTGCTCTGGCCAGTCCGATTCTGTC-3'(下劃線處為Hind III酶切位點),然后進行第一輪PCR擴增,反應體系50.0 μL:引物bPAG6-1~bPAG6-18各0.5 μL,Pfu DNA聚合酶(5 U/μL)0.5 μL,5×PCR Buffer 0.5 μL,dNTP(10 mmol/L)1.0 μL,ddH2O補足至50.0 μL。擴增程序:95 ℃預變性3 min;95 ℃ 25 s,62 ℃ 20 s,72 ℃ 40 s,進行25個循環(huán);72 ℃延伸1 min,4 ℃保存。第二輪PCR擴增體系只添加引物bPAG6-1和bPAG6-18,其余條件及擴增程序同第一輪PCR擴增。PCR產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳檢測后以Axygen DNA凝膠回收試劑盒回收目的片段。bPAG6基因優(yōu)化及合成委托德泰生物科技(南京)有限公司完成。
1. 2. 2 proEM-bPAG6重組載體構(gòu)建 proEM載體采用EcoR I和Hind III進行雙酶切,酶切體系50.0 μL:5.0 μL proEM載體,2.5 μL EcoR I(10 U/μL),2.5 μL Hind III(10 U/μL),5.0 μL 10×FD Buffer,35.0 μL ddH2O;37 ℃酶切1 h。酶切產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳檢測后進行回收,并與目的基因片段在T4 DNA連接酶作用下(22 ℃)連接2 h,連接體系20.0 μL:4.0 μL目的基因片段,3.5 μL雙酶切proEM載體,1.0 μL T4 DNA連接酶(5 U/μL),2.0 μL 10×T4 Buffer,9.5 μL ddH2O。
1. 2. 3 proEM-bPAG6重組載體轉(zhuǎn)化與篩選 采用熱激法將連接產(chǎn)物轉(zhuǎn)化至DH5a感受態(tài)細胞中,搖床培養(yǎng)30 min。取20.0 μL菌液涂抹至含有氨芐青霉素(100 μg/mL)的LB固體培養(yǎng)基上,37 ℃培養(yǎng)過夜,再挑取單個菌落接種至LB液體培養(yǎng)基中,37 ℃下?lián)u床(200 r/min)培養(yǎng)8 h,取2.0 μL菌液為模板進行PCR鑒定。以bPAG6-1和bPAG6-18為引物,PCR反應體系50.0 μL:2.0 μL菌液模板,0.5 μL引物bPAG6-1,0.5 μL引物bPAG6-18, 0.5 μL Pfu DNA聚合酶(5 U/μL),10.0 μL 5×PCR Buffer,1.0 μL dNTP(10 mmol/L),ddH2O補足至50.0 μL。擴增程序同1.2.1中的第一輪PCR擴增。PCR擴增產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳檢測后,將陽性轉(zhuǎn)化子接種至新鮮的LB液體培養(yǎng)基中,37 ℃培養(yǎng)16 h,收集菌液,離心去上清液,提取質(zhì)粒并進行雙酶切鑒定,酶切體系及條件同1.2.2。同時將陽性轉(zhuǎn)化子送至德泰生物科技(南京)有限公司測序,驗證插入序列正確無誤后采用質(zhì)粒抽提試劑盒進行質(zhì)粒大量抽提,-20 ℃保存?zhèn)溆谩?/p>
1. 2. 4 proEM-bPAG6重組載體誘導表達 在37 ℃下復蘇HEK293細胞,將其轉(zhuǎn)移至10 mL Gibco? FreeStyleTM 293表達培養(yǎng)基中,800 r/min離心5 min棄上清液,重懸HEK293細胞并轉(zhuǎn)移到培養(yǎng)瓶中,使其密度達3.0×105~4.0×105 Cells/mL,活力大于95%。在37 ℃、5% CO2條件下培養(yǎng)2 d,細胞密度達2.0×106 Cells/mL時進行傳代。轉(zhuǎn)染前1 d將HEK293細胞懸浮培養(yǎng),使其接種密度為1.0×106 Cells/mL,proEM-bPAG6重組載體與轉(zhuǎn)染試劑混勻后加入到HEK293細胞中,在37 ℃、5% CO2條件下培養(yǎng)5~6 d。
1. 2. 5 重組蛋白純化 收集細胞培養(yǎng)物,12500 r/min離心10 min,收集上清液過0.22 μm濾膜,過濾后的上清液置于10 mmol/L PBS中透析過夜(4 ℃)。透析液采用Ni-IDA柱進行純化:首先采用10 mmol/L PBS平衡Ni-IDA柱,流速為1 mL/min,取透析液以同樣的流速上柱,然后采用10 mmol/L PBS沖洗Ni-IDA柱,再以含有不同濃度咪唑(50和500 mmol/L)的洗脫液進行梯度洗脫,流速為2 mL/min。分別收集上清液、流出液和洗脫液進行SDS-PAGE電泳,通過考馬斯亮藍染色檢測重組蛋白的純化效果,BCA蛋白定量試劑盒檢測其濃度。
1. 2. 6 重組蛋白Western blotting鑒定 重組蛋白經(jīng)SDS-PAGE電泳后,取下凝膠,采用半干式電轉(zhuǎn)印法將其轉(zhuǎn)印至PVDF膜上。取下PVDF膜,以5%脫脂奶粉室溫封閉2 h,用1×PBST(含0.05% Tween-20的PBS)漂洗5次,每次5 min;加入按1∶2000稀釋的小鼠抗6×His單克隆抗體,室溫孵育1 h,漂洗后采用ECL化學發(fā)光底物試劑盒進行發(fā)光,并拍照。
1. 2. 7 重組蛋白免疫反應性鑒定 采用牛快速可視懷孕檢測試劑盒對重組蛋白bPAG6進行檢測,具體步驟按照產(chǎn)品說明進行操作。
1. 2. 8 重組蛋白生物信息學分析 通過SignalP 4.1 Server(http://www.cbs.dtu.dk/services/SignalP/)預測重組蛋白bPAG6的信號肽,TMHMM Server 2.0(http://www.cbs.dtu.dk/services/TMHMM/)預測其跨膜結(jié)構(gòu),NetNGlyc 1.0 Server(http://www.cbs.dtu.dk/services/#opennewwindow)預測其糖基化修飾位點;采用SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_ automat.pl?page=npsa_sopma.html)預測重組蛋白bPAG6二級結(jié)構(gòu)。
2 結(jié)果與分析
2. 1 bPAG6基因優(yōu)化與合成效果
為提高bPAG6基因在HEK293細胞中的表達水平,將bPAG6基因CDS序列中的低頻密碼子同義突變?yōu)樗拗骷毎蚪M中高頻率使用的密碼子。由圖1和圖2可知,優(yōu)化后bPAG6基因的CAI由0.80提高到0.96,G+C含量由49.4%提高到58.8%。優(yōu)化前后bPAG6基因的核苷酸序列及其推導氨基酸序列如圖3所示,優(yōu)化后的bPAG6基因核苷酸序列全長1182 bp,其編碼區(qū)(CDS)長度為1137 bp,包括信號肽45 bp、目標序列1092 bp,共編碼379個氨基酸殘基。優(yōu)化后的bPAG6基因與原始基因的核苷酸序列相似性為78.0%,而推導氨基酸序列完全一致。采用全基因合成技術(shù)擴增優(yōu)化的bPAG6基因,PCR擴增產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳檢測,結(jié)果(圖4)顯示目的條帶單一清晰,無拖尾現(xiàn)象,且片段大小與預期結(jié)果(1182 bp)相符。
2. 2 proEM-bPAG6重組載體構(gòu)建及陽性轉(zhuǎn)化子篩選結(jié)果
將帶有EcoR I和Hind III酶切位點的優(yōu)化bPAG6基因插入proEM載體,構(gòu)建獲得proEM-bPAG6重組載體,轉(zhuǎn)化DH5α感受態(tài)細胞,挑選單克隆進行PCR鑒定,鑒定結(jié)果如圖5-A所示,泳道1~8均出現(xiàn)明亮、單一的目的條帶,且片段大小與預期結(jié)果一致。proEM-bPAG6重組載體經(jīng)EcoR I和Hind III雙酶切鑒定,鑒定結(jié)果如圖5-B所示,泳道1為proEM-bPAG6重組載體的環(huán)狀、線性和超螺旋3種狀態(tài),泳道2為雙酶切獲得的proEM載體(4369 bp)和bPAG6基因(1176 bp),其片段大小與預期結(jié)果一致,說明已成功構(gòu)建獲得proEM-bPAG6重組載體。將陽性轉(zhuǎn)化子的測序結(jié)果與優(yōu)化的bPAG6基因進行核苷酸序列比對分析,結(jié)果顯示二者的核苷酸序列完全一致,表明優(yōu)化的bPAG6基因正確插入proEM載體。
2. 3 重組蛋白誘導表達及鑒定結(jié)果
收集誘導表達的HEK293細胞上清液,經(jīng)Ni-IDA柱層析純化后以SDS-PAGE電泳檢測重組蛋白bPAG6的純化效果,結(jié)果(圖6-A)顯示,以500 mmol/L咪唑的洗脫效果較優(yōu),約在46 kD處出現(xiàn)預期的目的蛋白條帶。由于重組蛋白bPAG6的C端包含1個His標簽,因此利用小鼠抗6×His單克隆抗體對其進行Western blotting鑒定,結(jié)果(圖6-B)顯示,約在46 kD處出現(xiàn)特異性雜交條帶,與SDS-PAGE電泳分析結(jié)果一致,進一步驗證重組蛋白bPAG6在HEK293細胞中成功高效表達。
2. 4 重組蛋白免疫反應性鑒定結(jié)果
為了驗證重組蛋白bPAG6是否具有免疫反應性,采用??焖倏梢晳言袡z測試劑盒進行檢測,結(jié)果如圖7所示。重組蛋白bPAG6的反應液呈藍色,說明其可被抗bPAG6抗體識別,即重組蛋白bPAG6具有良好的免疫反應性。
2. 5 重組蛋白生物信息學分析結(jié)果
重組蛋白bPAG6信號肽由N端的前15個氨基酸殘基組成(圖8-A);存在5個N-糖基化位點,其N-糖基化修飾主要位于57Asn、73Asn、102Asn、124Asn和181Asn位點處(圖8-B);重組蛋白bPAG6為分泌性蛋白,無跨膜螺旋區(qū)(圖8-C)。SOPMA預測結(jié)果(圖9)顯示,重組蛋白bPAG6二級結(jié)構(gòu)主要由無規(guī)則卷曲(Random coil,占42.74%)、延伸鏈(Extended strand,占31.93%)、α-螺旋(α-helix,占19.26%)和β-轉(zhuǎn)角(β-turn,占6.07%)組成。
3 討論
基于免疫分析的bPAG檢測已成為奶牛養(yǎng)殖生產(chǎn)中應用最廣泛的早期妊娠診斷技術(shù)(Ricci et al.,2015;Commun et al.,2016;薄小輝,2017)。Ricci等(2015)分別收集人工受精后25和32 d的奶牛血液和牛奶樣品,采用ELISA測定bPAG含量,并以超聲波檢測進行確認,結(jié)果顯示血液和牛奶樣品的準確率分別為92%和89%;Commun等(2016)采用相同的方法測定人工受精后奶牛血液和牛奶中bPAG含量,也獲得較高的準確率,且2種樣品的檢測結(jié)果無明顯差異。目前,已成功開發(fā)出基于ELISA的商品化PAG檢測試劑盒,如美國IDEXX公司開發(fā)的??焖倏梢晳言袡z測試劑盒,可對人工受精后28d的奶牛進行早期妊娠快速診斷,且具有較高的準確率(Kaya et al.,2016;Dufour et al.,2017)。市場上銷售的PAG檢測試劑盒產(chǎn)品雖然具有較高的準確率及特異性,但其價格較高,每頭奶牛的檢測成本需30.00~40.00元。因此,亟需研發(fā)出簡便、經(jīng)濟的bPAG檢測產(chǎn)品,為我國規(guī)?;龅脑缙谌焉锱吭\斷提供技術(shù)支持,而獲取高純度的bPAG蛋白是研發(fā)bPAG檢測產(chǎn)品的關(guān)鍵。由于bPAG種類繁多,傳統(tǒng)的分離純化方法很難獲得高純度、高產(chǎn)量的bPAG蛋白,限制了其功能研究及推廣應用。
體外重組蛋白技術(shù)的不斷發(fā)展與成熟,為PAG的功能研究及應用提供了新思路,但外源蛋白的表達水平受多種因素影響,包括啟動子、信號肽(Kim et al.,1997)、宿主細胞(Patel et al.,2004)、密碼子使用偏好性(Zhou et al.,2016)及轉(zhuǎn)染條件(鄧曉芬等,2019)等,其中密碼子的偏好使用程度與其表達水平呈正相關(guān)。已有研究表明,對基因的同義密碼子進行優(yōu)化使其與表達宿主的密碼子偏好性相匹配,可顯著提高外源基因的表達水平(Mansouri et al.,2013;Kianmehr et al.,2016)。其中,CAI常被用于評估外源基因在宿主細胞內(nèi)的表達水平。一般情況下,CAI≥0.80被認為是預測重組蛋白高效表達的基本標準。本研究利用MaxCodonTM在不改變氨基酸序列的前提下,通過消除稀有密碼子及平衡G+C含量等策略對bPAG6基因進行優(yōu)化,優(yōu)化后bPAG6基因的CAI大幅提高,G+C含量調(diào)整至59.0%左右,同時減少A+T和G+C富集區(qū)。然后通過全基因合成技術(shù)擴增優(yōu)化后的bPAG6基因,將其插入proEM載體構(gòu)建proEM-bPAG6重組載體,并轉(zhuǎn)染HEK293細胞,成功實現(xiàn)了bPAG6基因在HEK293細胞中的高效表達,進一步佐證基于全基因合成技術(shù)的密碼子優(yōu)化具有良好的時效性和實用性。
本研究結(jié)果表明,優(yōu)化后的bPAG6基因CDS區(qū)為1137 bp,共編碼379個氨基酸殘基,其信號肽區(qū)域位于第1~15位氨基酸殘基處,蛋白質(zhì)理論分子量為41.82 kD,理論等電點(pI)為9.76。通過HEK293細胞表達獲得的重組蛋白bPAG6表觀分子量約46 kD,與理論分子量存在一定差異,與Patel等(2004)、劉長彬等(2019a)的研究結(jié)果相似,究其原因可能與PAG在表達過程中的糖基化修飾有關(guān)(Xie et al.,1997;Garbayo et al.,2000;Klisch et al.,2005)。已有研究表明,各種偶蹄動物的PAG氨基酸序列存在不同數(shù)目的N-糖基化位點。其中,山羊PAG氨基酸序列(CaPAG)存在2~5個N-糖基化位點(Garbayo et al.,2000),綿羊PAG氨基酸序列(OvPAG)存在2~7個N-糖基化位點(Xie et al.,1997;Garbayo et al.,2008),牛BoPAG氨基酸序列存在1~6個N-糖基化位點(Xie et al.,1997;Klisch et al.,2005;Garbayo et al.,2008)。本研究的NetNGlyc 1.0 Server預測結(jié)果顯示,重組蛋白bPAG6存在5個N-糖基化位點,可能是導致其蛋白在表達分泌時分子量增大的主要原因。
4 結(jié)論
通過基因優(yōu)化及真核表達獲得的重組蛋白bPAG6具有良好免疫反應性,可作為抗原應用于牛早期妊娠快速診斷產(chǎn)品的研發(fā)。
參考文獻:
薄小輝. 2017. 妊娠相關(guān)糖蛋白在奶牛早期妊娠診斷上的應用研究[D]. 北京:中國農(nóng)業(yè)科學院. [Bo X H. 2017. The application of pregnancy-associated glycoproteins in early pregnancy diagnosis of dairy cows[D]. Beijing:Chinese Academy of Agricultural Sciences.]
鄧曉芬,楊曉佳,易天紅,馮英,柯瀟,賴維莉. 2019. 融合蛋白基因與抗體基因電轉(zhuǎn)染CHO-S細胞的條件摸索優(yōu)化[J]. 生物技術(shù)通報,35(4):223-228. [Deng X F,Yang X J,Yi T H,F(xiàn)eng Y,Ke X,Lai W L. 2019. Optimization of electrotransfection conditions of genes for fusion protein and antibody to CHO-S cells[J]. Biotechnology Bulletin,35(4):223-228.]
黃浩,王陽,堵國成,康振. 2019. 重組蛋白微生物表達系統(tǒng)的研究進展[J]. 生物產(chǎn)業(yè)技術(shù),(3):36-43. [Huang H,Wang Y,Du G C,Kang Z. 2019. Research progress in microbial expression systems for recombinant protein production[J]. Biotechnology & Business,(3):36-43.]
金海,趙拴平,徐磊,賈玉立,賈玉堂. 2018. 肉牛妊娠初期血、尿中孕酮、妊娠相關(guān)糖蛋白、早孕因子的變化[J]. 中國牛業(yè)科學,44(6):8-11. [Jin H,Zhao S P,Xu L,Jia Y L,Jia Y T. 2018. Changes of progesterone,pregnancy-associated glycoprotein and early pregnancy factors in blood and urine of beef cattle during early pregnancy[J]. China Cattle Science,44(6):8-11.]
李艷艷,胡建宏,雷靜,曲立立,趙健玲. 2013. 牛妊娠相關(guān)糖蛋白ELISA對早期妊娠診斷效果的影響[J]. 家畜生態(tài)學報,34(3):54-57. [Li Y Y,Hu J H,Lei J,Qu L L,Zhao J L. 2013. Effect of bovine pregnancy-associated glycoprotein ELISA on early pregnancy diagnosis[J]. Journal of Domestic Animal Ecology,34(3):54-57.]
劉長彬,盧春霞,楊華,張云生,石國慶. 2019a. 牛妊娠相關(guān)糖蛋白1(bPAG1)的真核表達及純化[J]. 西南農(nóng)業(yè)學報,32(8):1944-1949. [Liu C B,Lu C X,Yang H,Zhang Y S,Shi G Q. 2019a. Eukaryotic expression and purification of recombinant bovine pregnancy associated glycoprotein-1[J]. Southwest China Journal of Agricultural Sciences,32(8):1944-1949.]
劉長彬,石國慶,盧春霞. 2019b. 牛妊娠相關(guān)糖蛋白9(bPAG9)的真核表達及純化[J]. 新疆農(nóng)業(yè)科學,56(8):1552-1559. [Liu C B,Shi G Q,Lu C X. 2019b. Eukaryo-tic expression and purification of bovine pregnancy associated glycoprotein-9(bPAG9)[J]. Xinjiang Agricultural Sciences,56(8):1552-1559.]
盧春霞,劉長彬,石國慶,楊華. 2020. 基于密碼子優(yōu)化策略的牛妊娠相關(guān)糖蛋白9(bPAG9)的原核表達及純化[J]. 江蘇農(nóng)業(yè)學報,36(1):122-129. [Lu C X,Liu C B,Shi G Q,Yang H. 2020. Prokaryotic expression and purification of recombinant bovine pregnancy associated glycoprotein-9(bPAG9) based on codon optimization[J]. Jiangsu Journal of Agricultural Sciences,36(1):122-129.]
祁文婧,張帥,趙鑫,張紅星,謝遠紅,金君華. 2019. 牛妊娠相關(guān)糖蛋白基因boPAG4的原核表達及單克隆抗體的制備[J]. 河北農(nóng)業(yè)大學學報,42(6):103-108. [Qi W J,Zhang S,Zhao X,Zhang H X,Xie Y H,Jin J H. 2019. Prokaryo-tic expression of bovine pregnancy-associated glycoprotein gene boPAG4 and preparation of monoclonal antibo-dies[J]. Journal of Hebei Agricultural University,42(6):103-108.]
史秀芬,王蘇瑤,張雅飛,劉月琴,張英杰. 2017. 綿羊妊娠相關(guān)糖蛋白PAG3的制備[J]. 中國獸醫(yī)學報,37(7):1408-1413. [Shi X F,Wang S Y,Zhang Y F,Liu Y Q,Zhang Y J. 2017. Preparation of sheep pregnancy-associated glycoprotein[J]. Chinese Journal of Veterinary Science,37(7):1408-1413.]
鐘旭,薛立群,田見暉. 2011. 妊娠相關(guān)糖蛋白(PAG)在奶牛早期妊娠診斷上的應用現(xiàn)狀[J]. 中國畜牧獸醫(yī),38(11):140-143. [Zhong X,Xue L Q,Tian J H. 2011. Early pregnancy diagnosis by pregnancy associated glycoprotein in dairy cattle[J]. China Animal Husbandry & Veteri-nary Medicine,38(11):140-143.]
Bella A,Sousa N M,Dehimi M L,Watts J,Beckers J F. 2007. Western analyses of pregnancy-associated glycoprotein family(PAG) in placental extracts of various mammals[J]. Theriogenology,68(7):1055-1066.
Chaves C M E S,da Costa D R L,Duarte K M R,Machado D C,de Paz C C P,Beltrame R T. 2017. Visual ELISA for detection of pregnancy-associated glycoproteins (PAGs) in ewe serum[J]. Theriogenology,97:78-82.
Commun L,Velek K,Barbry J B,Pun S,Rice A,Mestek A,Eqli C,Leterme S. 2016. Detection of pregnancy-associa-ted glycoproteins in milk and blood as a test for early pregnancy in dairy cows[J]. Journal of Veterinary Diagnostic Investigation,28(3):207-213.
Dufour S,Durocher J,Dubuc J,Dendukuri N,Hassan S,Buc-zinski S. 2017. Bayesian estimation of sensitivity and specificity of a milk pregnancy-associated glycoprotein-based ELISA and of transrectal ultrasonographic exam for diagnosis of pregnancy at 28-45 days following breeding in dairy cows[J]. Preventive Veterinary Medicine,140:122-133.
El-Amiri B,Remy B,de Sousa N M,Beckers J F. 2004. Isolation and characterization of eight pregnancy-associated glycoproteins present at high levels in the ovine placenta between day 60 and day 100 of gestation[J]. Reproduction Nutrition Development,44(3):169-181.
El-Battawy K A,Sousa N M,Szenci O,Beckers J F. 2009. Pregnancy-associated glycoprotein profile during the first trimester of pregnancy in Egyptian buffalo cows[J]. Reproduction in Domestic Animals,44(2):161-166.
Friedrich M,Holtz W. 2010. Establishment of an ELISA for measuring bovine pregnancy-associated glycoprotein in serum or milk and its application for early pregnancy detection[J]. Reproduction in Domestic Animals,45(1):142-146.
Garbayo J M,Green J A,Manikkam M,Beckers J F,Kiesling D O,Ealy A D,Roberts R M. 2000. Caprine pregnancyassociated glycoproteins(PAG):Their cloning,expression,and evolutionary relationship to other PAG[J]. Molecular Reproduction & Development,57(4):311-322.
Garbayo J M,Serrano B,Lopez-Gatius F. 2008. Identification of novel pregnancy associated glycoproteins(PAG) expressed by the peri-implantation conceptus of domestic ruminants[J]. Animal Reproduction Science,103(1-2):120-134.
Green J A,Parks T E,Avalle M P,Telugu B P,McLain A L,Peterson A J,McMillan W,Mathialagan N,Hook R R,Xie S C,Roberts R M. 2005. The establishment of an ELISA for the detection of pregnancy-associated glycoproteins (PAGs) in the serum of pregnant cows and heifers[J]. Theriogenology,63(5):1481-1503.
Green J A,Xie S,Quan X,Bao B,Gan X,Mathialagan N,Beckers J F,Roberts R M. 2000. Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy[J]. Biology of Reproduction,62(6):1624-1631.
Karen A,de Sousa N M,Beckers J F,Bajcsy ? C,Tibold J,Mádl I,Szenci O. 2015. Comparison of a commercial bovine pregnancy-associated glycoprotein ELISA test and a pregnancy-associated glycoprotein radiomimmunoassay test for early pregnancy diagnosis in dairy cattle[J]. Animal Reproduction Science,159:31-37.
Kaya M S,K?se M,Bozkaya F,Mutlu H,U?ar E H,Atli M O. 2016. Early pregnancy diagnosis using a commercial ELISA test based on pregnancy-associated glycoproteins in Holstein-Friesian heifers and lactating cows[J]. Tur-kish Journal of Veterinary & Animal Sciences,40:694-699.
Kianmehr A,Golavar R,Rouintan M,Mahrooz A,F(xiàn)ard-Esfa-hani P,Oladnabi M,Khajeniazi S,Mostafavi S S,Omidi-nia E. 2016. Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR[J]. Protein Expression and Purification,118:120-125.
Kim C H,Oh Y,Lee T H. 1997. Codon optimization for high-level expression of human erythropoietin(EPO) in mammalian cells[J]. ?Gene,199(1-2):293-301.
Klisch K,de Sousa N M,Beckers J F,Leiser R,Pich A. 2005. Pregnancy associated glycoprotein-1,-6,-7,and -17 are major products of bovine binucleate trophoblast giant cells at midpregnancy[J]. Molecular Reproduction and Deve-lopment,71(4):453-460.
Mansouri M,Mousavy S J,Ehsaei Z,Nazarian S,Zali M R,Moazzeni S M. 2013. The codon-optimization of cfaE gene and evaluating its high expression capacity and conserved immunogenicity in Escherichia coli[J]. Biologicals,41(3):169-175.
Nagappan M,Michael M,Robert S. 2009. Methods for early detection of pregnancy in cows:PAT-US7604950[P]. U.S. Patent.
Patel O V,Takahashi T,Imai K,Hashizume K. 2004. Generation and purification of recombinant bovine pregnancy associated glycoprotein[J]. Veterinary Journal,168(3):328-335.
Ricci A,Carvalho P D,Amundson M C,F(xiàn)ourdraine R H,Vincenti L,F(xiàn)ricke P M. 2015. Factors associated with pregnancy-associated glycoprotein (PAG) levels in plasma and milk of Holstein cows during early pregnancy and their effect on the accuracy of pregnancy diagnosis[J]. Journal of Dairy Science,98(4):2502-2514.
Wooding F B P,Roberts R M,Green J A. 2005. Light and electron microscope immunocytochemical studies of the distribution of pregnancy associated glycoproteins(PAGs) throughout pregnancy in the cow:Possible functional implications[J]. Placenta,26(10):807-827.
Xie S,Green J,Bao B,Beckers J F,Valdez K E,Hakami L,Roberts R M. 1997. Multiple pregnancy-associated glycoproteins are secreted by day 100 ovine placental tissue[J]. Biology of Reproduction,57(6):1384-1393.
Zhou Z P,Dang Y K,Zhou M,Li L,Yu C H,F(xiàn)u J J,Chen S,Liu Y. 2016. Codon usage is an important determinant of gene expression levels largely through its effects on transcription[J]. Proceedings of the National Academy of Sciences of the United States of America,113(41):E6117-E6125.
Zoli A P,Guilbault L A,Delahaut P,Ortiz W B,Beckers J F. 1992. Radioimmunoassay of a bovine pregnancy-associa-ted glycoprotein in serum:Its application for pregnancy diagnosis[J]. Biology of Reproduction,46(1):83-92.
(責任編輯 蘭宗寶)
劉長彬(1977-),博士,研究員,主要從事動物繁育新技術(shù)研究工作。先后主持國家自然科學基金項目、國家引智示范推廣項目、國家科技支撐計劃項目、兵團創(chuàng)新人才培養(yǎng)示范基地計劃項目、兵團中青年科技創(chuàng)新領軍人才項目、院士基金項目等科研項目12項;作為課題核心成員參與國家級或省部級科研項目10余項。在《Analytical and Bioanalytical Chemistry》《Microchimica Acta》《南方農(nóng)業(yè)學報》《西南農(nóng)業(yè)學報》《西北農(nóng)業(yè)學報》《江蘇農(nóng)業(yè)學報》等期刊上發(fā)表學術(shù)論文35篇;以副主編或參編出版專著2部。獲得授權(quán)發(fā)明和實用新型專利16項;獲軟件著作權(quán)6項;獲兵團科技進步獎一等獎2項,二等獎2項;2020年獲兵團中青年科技創(chuàng)新領軍人才項目支持,并獲優(yōu)秀科技特派員榮譽稱號。
收稿日期:2020-03-30
基金項目:國家自然科學基金項目(31860647)
作者簡介:*為通訊作者,盧春霞(1978-),博士,副教授,主要從事食品質(zhì)量安全研究工作,E-mail:shzlcx2002@163.com。劉長彬(1977-),博士,研究員,主要從事動物繁育新技術(shù)研究工作,E-mail:xlchangbin@163.com