国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

近固壁氣泡空蝕過程及機(jī)制研究進(jìn)展

2020-02-29 10:39劉雅璐李成海劉繼輝李發(fā)琪
科技創(chuàng)新與應(yīng)用 2020年6期
關(guān)鍵詞:沖擊波溫度

劉雅璐 李成?!⒗^輝 李發(fā)琪

摘? 要:近固壁氣泡空化所產(chǎn)生綜合極端條件會(huì)對(duì)材料產(chǎn)生侵蝕作用。目前,對(duì)于空化的研究已經(jīng)實(shí)現(xiàn)了從空蝕損傷到合理利用的轉(zhuǎn)化,但空蝕對(duì)需要在液體環(huán)境中服役材料造成的損失仍十分嚴(yán)重。近固壁空化泡破裂時(shí)所產(chǎn)生的高溫高壓、微射流及沖擊波等效應(yīng)都會(huì)對(duì)固壁產(chǎn)生一定影響,但目前對(duì)于其損傷過程及機(jī)制都還沒有形成統(tǒng)一理論,其機(jī)制涉及氣泡動(dòng)力學(xué)、流體力學(xué)及材料學(xué)等多個(gè)方面,十分復(fù)雜。因此,綜述了近固壁氣泡空蝕損傷過程及損傷機(jī)制等方面的研究進(jìn)展,為空蝕的進(jìn)一步研究提供參考。

關(guān)鍵詞:空蝕;沖擊波;微射流;溫度

中圖分類號(hào):TB126? ? ? ? ?文獻(xiàn)標(biāo)志碼:A? ? ? ? ?文章編號(hào):2095-2945(2020)06-0001-04

Abstract: Comprehensive extreme conditions generated by the near-wall bubble cavitation can erode the material. At present, research on cavitation has realized the conversion from cavitation damage to rational utilization, but the damage caused by cavitation to the materials required to be used in a liquid environment is still very serious. The effects of high temperature and high pressure, microjet and shock wave generated by the collapse of the near-wall cavitation bubble will have certain effects on the solid wall, but no unified theory has been formed for its damage process and mechanism. Its mechanism involves many aspects such as bubble dynamics, fluid mechanics and materials science, which are very complicated. Therefore, the research progress of cavitation damage process and damage mechanism of near-solid wall bubble is reviewed, which provides a reference for further research of cavitation erosion.

Keywords: cavitation; shock wave; microjet; temperature

引言

上世紀(jì)初,Rayleigh[1]對(duì)船舶螺旋槳上的損傷進(jìn)行了研究,首先提出了空蝕現(xiàn)象。隨后,研究者們通過許多實(shí)驗(yàn)及理論模擬對(duì)空蝕產(chǎn)生、增強(qiáng)的過程及機(jī)制進(jìn)行了研究。目前,通過對(duì)空蝕的研究已經(jīng)可以有效減少其帶來的損傷,并將其廣泛應(yīng)用到各個(gè)領(lǐng)域,例如,超聲清潔[2]、超聲珩磨[3]、組織消融[4]等。因此,近固壁氣泡對(duì)固壁產(chǎn)生損傷過程及機(jī)制的研究具有非常重要價(jià)值。

空化是指液體由于外力作用導(dǎo)致空化核外部壓力變化,從而使其生長(zhǎng)、振蕩、崩潰的過程??栈瘯?huì)伴隨產(chǎn)生高溫、高壓以及沖擊波等效應(yīng)。極端高溫可以誘發(fā)自由基(OH-)生成[5]和聲致發(fā)光現(xiàn)象[6]。而對(duì)于靠近固壁的空泡由于固壁的存在會(huì)使空泡近固壁一側(cè)和遠(yuǎn)離固壁一側(cè)壓力不均衡,遠(yuǎn)離固壁的一側(cè)壓力大于靠近固壁一側(cè),導(dǎo)致氣泡非球形塌縮,形成指向壁面具有一定速度的微射流。大振幅沖擊波和微射流的相互作用有可能在材料表面產(chǎn)生高達(dá)幾百兆帕的流體動(dòng)壓峰值,從而導(dǎo)致材料嚴(yán)重?fù)p壞[7,8]。目前對(duì)于空蝕損傷過程及損傷機(jī)制都還沒有形成統(tǒng)一理論,它是空泡潰滅時(shí)產(chǎn)生的綜合極端條件與材料相互作用的結(jié)果。為此,本文對(duì)近固壁氣泡空蝕損傷過程及損傷機(jī)制的研究進(jìn)展進(jìn)行了綜述,為空蝕的進(jìn)一步研究提供參考。

1 空蝕損傷過程的研究

固體表面空蝕很大程度上取決于產(chǎn)生空化的方式(聲學(xué),激光,流體動(dòng)力)和試樣特性。超聲、電火花及激光產(chǎn)生的空化會(huì)在同一位置生長(zhǎng),水力所產(chǎn)生的空化更為隨機(jī)。因此有些通過ASTM G32-10測(cè)試具有抗空蝕性能的材料在實(shí)際應(yīng)用中并不能很好的起到抗空蝕的作用。當(dāng)空化泡與固壁面的距離小于其最大半徑的兩倍(r=s/Rmax<2,s為空化泡中心到固體表面的距離,Rmax為氣泡最大半徑)時(shí)就會(huì)對(duì)固體表面產(chǎn)生損傷[9]。首先空泡會(huì)在光滑的固體表面上隨機(jī)的產(chǎn)生凹坑,導(dǎo)致固體表面輪廓發(fā)生變化,此階段并不一定產(chǎn)生質(zhì)量損失,為孵化期[10]。Chen等[11]通過對(duì)水力空化的研究發(fā)現(xiàn),表面輪廓的變化會(huì)使固體表面產(chǎn)生壓力波動(dòng),凹坑的上升邊緣會(huì)產(chǎn)生高壓區(qū)域,導(dǎo)致氣泡在上升沿上崩潰。當(dāng)表面上有兩個(gè)接觸凹坑時(shí),將形成兩個(gè)高壓區(qū)域。氣泡可能在第一個(gè)高壓域上升沿崩潰,在兩個(gè)凹坑之間的脊上形成一個(gè)新的凹坑,從而形成“凹坑鏈”。最后當(dāng)凹坑底部的粗糙度足以生成高壓區(qū)域時(shí),氣泡會(huì)在底部坍塌,從而使侵蝕垂直發(fā)展,空蝕沿著縱向和橫向同時(shí)發(fā)展,并且空蝕區(qū)域材料強(qiáng)度的減弱也會(huì)導(dǎo)致其產(chǎn)生更嚴(yán)重的損傷。粗糙度較高的表面還更容易形成空化核,加劇固體表面空蝕損傷程度。Arndt[12]建立了表面粗糙程度與空化初期空化泡數(shù)量之間的關(guān)系。除了表面粗糙度以外,表面的潤(rùn)濕性也對(duì)空化腐蝕結(jié)果有一定的影響[13]。

由于空蝕從產(chǎn)生到潰滅是一個(gè)十分快速并且復(fù)雜的過程,因此固體表面空蝕過程的觀察一直以來都是一個(gè)難題。Philipp和Lauterborn[9]通過使用激光產(chǎn)生相同直徑大小空化泡對(duì)材料損傷的研究表明,單個(gè)空化氣泡的破裂會(huì)導(dǎo)致多個(gè)腐蝕坑。Dular等[14]通過立體視圖及形狀陰影算法對(duì)高速攝像拍攝的超聲空化作用下鋁箔表面凹坑形貌進(jìn)行了重建,對(duì)其進(jìn)行了定量分析,實(shí)現(xiàn)了空蝕過程的實(shí)時(shí)評(píng)估。Wang[15]等通過對(duì)Si、Al3Ti和Al3V三種不同力學(xué)性能及形貌初晶的研究發(fā)現(xiàn)初晶在破裂之前經(jīng)歷了多個(gè)氣泡云的空蝕,認(rèn)為初晶中裂縫的形成和傳播可能與疲勞機(jī)制有關(guān)。因此,通過對(duì)材料表面空蝕損傷的研究可以使我們對(duì)空蝕的過程有進(jìn)一步的認(rèn)識(shí)。

2 空蝕損傷機(jī)制的研究

對(duì)于空化損傷的機(jī)制,最早認(rèn)為是由球形腔附近產(chǎn)生的高壓所導(dǎo)致。1944年Kornfeld和Suvorov提出損傷是由固體表面附近氣泡上形成的液體射流引起的。隨后Benjamin和Ellis[16]通過實(shí)驗(yàn)證明了微射流的存在,當(dāng)微射流撞擊到固體表面對(duì)其產(chǎn)生應(yīng)變的過程類似于水錘作用。Plesset等[17]通過理論進(jìn)一步肯定了射流在空化損傷中的決定性作用。Tzanakis[18]等使用3D光學(xué)干涉儀觀察到實(shí)驗(yàn)后材料表面有對(duì)稱圓錐和不規(guī)則形狀兩種凹坑,認(rèn)為其中不規(guī)則的凹坑可能是微射流和沖擊波共同作用的結(jié)果,而對(duì)稱的圓錐凹坑是由微射流單獨(dú)作用所形成的,表明了微射流及沖擊波都會(huì)對(duì)材料造成損傷。Wang等人[19]采用邊界積分法(Boundary Integral Method, BIM)對(duì)空蝕的模擬結(jié)果表明微射流撞擊壁面時(shí)所產(chǎn)生的沖擊壓力為空蝕損傷的主要機(jī)制,而溫度、沖擊波等為輔助機(jī)制。因此,目前對(duì)于空化損傷的主要機(jī)制普遍認(rèn)為是力的作用,主要是微射流和沖擊波[20]。微射流在到達(dá)固壁之前會(huì)因流體產(chǎn)生很大程度的衰減[21],因此當(dāng)氣泡在距固體壁超出一定距離時(shí)沖擊波在最小氣泡體積下以高壓振幅的方式發(fā)出[19]起到主要作用,其速度可以高達(dá)4000m/s、壓力高達(dá)106kPa[22]。而當(dāng)一定距離內(nèi)(r≤0.7)[9]微射流則為主要原因[23]。除力學(xué)機(jī)制外,由于空泡在潰滅時(shí)會(huì)產(chǎn)生高達(dá)5000K的高溫[24],熱效應(yīng)也是造成熔點(diǎn)低于空泡有效溫度材料空化損傷的重要因素之一。Chen等[25,26]在不銹鋼材料表面空蝕現(xiàn)象的研究中發(fā)現(xiàn)低碳鋼表面侵蝕坑周圍因熱氣泡的作用產(chǎn)生了主要成分為Fe2O3的高溫氧化彩虹環(huán)。除此之外,空蝕形成及進(jìn)一步的增強(qiáng)與液體中氣泡高速振蕩所形成的微聲流也有很大的關(guān)系[27]。

2.1 空蝕損傷中的微射流

影響微射流的因素有很多,Philipp[9]的實(shí)驗(yàn)結(jié)果和Wang[19]的數(shù)值模擬結(jié)果都顯示空泡中心與壁面間距越小微射流的直徑越大,并且相對(duì)于坍塌而言微射流的形成越早。隨后,Aganin[28]等使用基于邊界元法(Boundary Element Method, BEM)的歐拉公式研究了空化泡橫縱軸比率及其與壁面距離對(duì)微射流速度及壓力的影響。而Shan等[29]使用基于D2Q9方格的多重松弛時(shí)間Shan-Chen(Multiple relaxation time Shan-Chen, MRT-SC)模型研究了初始狀態(tài)下氣泡內(nèi)外壓強(qiáng)差和氣泡與固壁面之間的距離對(duì)氣泡坍塌的影響,并且證明了MRT-SC模型能夠準(zhǔn)確描述其過程。除了以上這些影響因素外,超聲發(fā)生器與樣品的俯仰角也會(huì)對(duì)微射流的速度產(chǎn)生影響,俯仰角越大微射流速度越小,從而導(dǎo)致腐蝕坑的數(shù)量和大小都有所減小[21]。

對(duì)于微射流速度及沖擊壓力也有許多定量的研究報(bào)告。最初Lauterborn和Bolle[30]采用高速攝像拍攝到了單個(gè)空化泡在近固壁表面坍塌時(shí)初始階段的動(dòng)力學(xué)行為,通過對(duì)實(shí)驗(yàn)結(jié)果的觀測(cè)得出微射流的速度為幾百米每秒的結(jié)論。隨后隨著空蝕現(xiàn)象的研究,許多學(xué)者通過對(duì)材料表面空蝕坑的研究來反演分析作用在材料表面力的相關(guān)信息。Tzanakis等[18]通過對(duì)鋼樣上空化所致凹坑幾何特征及形變模式的分析計(jì)算得出單個(gè)空泡產(chǎn)生的微射流速度為200-700m/s,流體動(dòng)壓沖擊壓力為0.4-1GPa。而Ye[31]的研究認(rèn)為凹坑的深度是由微射流的速度和直徑共同決定的,當(dāng)將徑深比為16~68的凹坑看作單個(gè)微射流作用結(jié)果時(shí)反演分析得出其速度為310~370m/s,沖擊強(qiáng)度為420~500MPa。表1為一些學(xué)者通過不同方式產(chǎn)生空化后對(duì)微射流速度的研究結(jié)果。

表1 微射流速度的定量研究

2.2 空蝕損傷中的溫度

Nowotny[37]和Gavranek等人[38]觀察到氣泡崩塌的最后階段泡內(nèi)高溫使金屬?gòu)?qiáng)度降低甚至使金屬表面產(chǎn)生熔化。但對(duì)于泡內(nèi)溫度一直都沒有定論,因?yàn)榭栈菰诩眲】s塌過程中的高溫局部而短暫,且由于溶液介質(zhì)的存在加熱冷卻速率超過1010K/s[24],這使我們很難直接測(cè)量到其溫度,只能通過一些實(shí)驗(yàn)現(xiàn)象及數(shù)值模擬去間接推算其溫度。Wu和Roberts[39]通過理論計(jì)算得出聲空化泡在急速潰滅時(shí)泡內(nèi)溫度可達(dá)108K,但他們的研究并沒有考慮液體的可壓縮性、表面張力以及傳熱等因素,因此得到的泡內(nèi)溫度較為理想化。之后,Kwak等[40,41]在考慮了液體可壓縮性和傳熱因素后,得出聲空化的泡內(nèi)溫度范圍為7000~44000 K。但實(shí)際空蝕過程中,由于傳熱問題,金屬表面的有效溫度并不能達(dá)到這么高。王等[42]通過實(shí)驗(yàn)推測(cè)出空泡潰滅后到達(dá)樣品表面的有效溫度可以達(dá)到1100K左右,其在奧氏體鋼空蝕樣表面發(fā)現(xiàn)了高溫η-Ni3Ti相和晶粒尺寸為30nm納米晶的存在。目前通過理論及實(shí)驗(yàn)得出的空泡溫度差異較大,無法形成統(tǒng)一定論,并且驅(qū)動(dòng)壓力及空泡半徑等都會(huì)對(duì)泡內(nèi)溫度產(chǎn)生影響,空泡平衡半徑的增加會(huì)使泡內(nèi)溫度逐漸減少,而壓力的增加則使泡內(nèi)溫度逐漸增加[43,44]。因此,對(duì)于泡內(nèi)溫度及其短暫存在時(shí)間帶來的效應(yīng)還值得更深入的研究。

3 結(jié)束語(yǔ)

空化及其所產(chǎn)生空蝕效應(yīng)的研究在臨床增效及材料科學(xué)領(lǐng)域都具有重要的研究意義和應(yīng)用價(jià)值。一方面,對(duì)空蝕的合理利用及負(fù)面影響的有效避免在很多情況下能夠?yàn)槲覀兊纳a(chǎn)、生活提供便利,也能夠使人們對(duì)空化的過程及機(jī)制有更深的認(rèn)識(shí),完善其應(yīng)用。另一方面,對(duì)空蝕過程及機(jī)制的研究也有助于了解材料在空化這種綜合極端物理環(huán)境下的力學(xué)行為,對(duì)需要在液體中服役需要具有超強(qiáng)抗空蝕性能材料的研發(fā)及制備具有重大意義。但目前,關(guān)于近固壁氣泡動(dòng)力學(xué)的實(shí)驗(yàn)及數(shù)值模擬多為常壓下單個(gè)氣泡的研究,對(duì)于實(shí)際空蝕過程中多泡的研究仍然很少。并且,雖然我們可以通過高速攝像及emICCD等儀器觀測(cè)到空化泡,但仍然無法準(zhǔn)確地捕獲到空蝕的過程。因此,對(duì)于氣泡動(dòng)力學(xué)、空蝕過程及機(jī)制的研究仍然具有很大的挑戰(zhàn)。

參考文獻(xiàn):

[1]F.R.S L R O M. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine, 1917,34(200):94-98.

[2]Mat-Shayuti M S Y T M Y S T, Abdullah M Z, Et Al. Progress in ultrasonic oil-contaminated sand cleaning: a fundamental review[J]. Environmental Science and Pollution Research International,2019,26(26).

[3]Ye Linzheng Z X. Analysis of cavitation orthogonal experiments in power ultrasonic honing[J]. Advances in Mechanical Engineering, 2017,9(7):168781401771294.

[4]Curtiss G A, Leppinen D M, Wang Q X, et al. Ultrasonic cavitation near a tissue layer[J]. Journal of Fluid Mechanics, 2013,730(730):245-272.

[5]Takahashi M, Chiba K, Li P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Journal of Physical Chemistry B, 2007,111(6):1343-1347.

[6]Biryukov D A, Val'yano G E, Gerasimov D N. Damage of an Ultrasonic-Waveguide Surface during Cavitation Accompanied by Sonoluminescence[J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2018,12(1):175-178.

[7]Williams P R, Williams P M, Brown S W J. A technique for studying liquid jets formed by cavitation bubble collapse under shockwaves, near a free surface[J]. Journal of Non-Newtonian Fluid Mechanics, 1997,72(1):101-110.

[8] Prentice P, Cuschieri A, Dholakia K, et al. Membrane disruption by optically controlled microbubble cavitation[J]. Nature Physics, 2005,1(2):107-110.

[9]Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998,361:75-116.

[10] Qiao Y, Tian Z, Cai X, etal. Cavitation Erosion Behaviors of a Nickel-Free High-Nitrogen Stainless Steel[J]. Tribology Letters, 2019,67(1).

[11]Haosheng C, Yongjian L, Darong C, etal. Experimental and numerical investigations on development of cavitation erosion pits on solid surface[J]. Tribology Letters, 2007,26(2):153-159.

[12]Arndt R E A, Ippen A T. Rough Surface Effects on cavitation inception[J]. Journal of Basic Engineering, 1968,90(2):249-261.

[13]Jones S F, Evans G M, Galvin K P. Bubble nucleation from gas cavities-a review[J]. Advances in Colloid & Interface Science, 1999,80(1):27-50.

[14]Dular M, Delgosha O C, Petkovsek M. Observations of cavitation erosion pit formation[J]. Ultrasonics Sonochemistry, 2013,20(4):1113-20.

[15]Wang F, Tzanakis I, Eskin D, et al. In-situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys[J]. Ultrasonics Sonochemistry, 2017,39:66-76.

[16]Benjamin T B, Ellis A T. The Collapse of Cavitation Bubbles and the Pressures thereby Produced against Solid Boundaries[J]. Philosophical Transactions of the Royal Society of London, 1966,260(1110):221-240.

[17]Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971,47(2):283-290.

[18]Tzanakis I, Eskin D G, Georgoulas A, et al. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble[J]. Ultrasonics Sonochemitry, 2014,21(2):866-878.

[19]Wang Qianxi L W, Zhang A. M,Sui Yi. Bubble dynamics in a compressible liquid in contact with a rigid boundary[J]. Interface Focus, 2015,5(5):20150048.

[20]Liu Wei Z Y, Yao Zhiming,Et Al. RESEARCH PROGRESS ON CAVITATION EROSION OF METALLIC MATERIALS[J]. Journal of Chinese Society For Corrosion and Protection, 2001,21(4):250-255.

[21]Chen H S, Wang J D, Li Y J, et al. Effect of hydrodynamic pressures near solid surfaces in the incubation stage of cavitation erosion[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008,222(4):523-531.

[22]Pecha R, Gompf B. Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale[J]. Physical Review Letters, 2000,84(6):1328.

[23]A. Shima K T a Y T. Mechanisms of the bubble collapse near a solid wall and the induced impact pressure generation[J]. Rep. Inst. High Speed Mech, 1984,48.

[24]Suslick K S, Flannigan D J. Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation[J]. Annual Review of Physical Chemistry, 2008,59(1):659-683.

[25]Haosheng C, Jiang L. A ring area formed around the erosion pit on 1Cr18Ni9Ti stainless steel surface in incipient cavitation erosion[J]. Wear, 2009,266(7-8):884-887.

[26]Chen H. Iridescent rings around cavitation erosion pits on surface of mild carbon steel[J]. Wear, 2010,269(7-8):602-606.

[27]陳偉中.聲空化物理[M].北京:科學(xué)出版社,2014:178-181.

[28]Aganin A A, Ilgamov M A, Kosolapova L A, et al. Dynamics of a cavitation bubble near a solid wall[J]. Thermophysics and Aeromechanics, 2016,23(2):211-220.

[29]Xue H-H, Shan F, Guo X-S, et al. Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan-Chen Lattice Boltzmann Model[J]. Chinese Physics Letters, 2017,34(8):084301.

[30]W Lauterborn H B. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1975,72(2):391-399.

[31]Ye Linzheng Z X. Analysis of the effect of impact of near-wall acoustic bubble collapse micro-jet on Al 1060[J]. Ultrasonics Sonochemistry, 2017,36:507-516.

[32]M. Mcd.? Grant? P a L. Liquid impact on a bilinear elastic-plastic solid and its role in cavitation erosion[J]. Journal of Fluid Mechanics, 1987,176:237-252.

[33]Chen H, Jiang L, Chen D, et al. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water[J]. Wear, 2008,265:692-698.

[34]Petkovek R, Gregori P. A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography[J]. Journal of Applied Physics, 2007,102(4):044909-044909-9.

[35]Gonzalez Avila S R S C, Ohl C D. Fast transient microjets induced by hemispherical cavitation bubbles[J]. Journal of Fluid Mechanics, 2015,767:31-51.

[36]Futakawa M N T, Kogawa H, Et Al. Micro-impact damage caused by mercury bubble collapse[J]. JSME International Journal, 2005,48(4):234-239.

[37]Nowotny H. Destruction of Materials by Cavitation[J]. VDI-Verlag, 1942.

[38]V.V. Gavranek, D.N. Bol'shutkin, Zel'dovich V I. Thermal and mechanical action of a cavitation zone on the surface of a metal[J]. Fiz. Metal IMetalloved, 1960,10:262-268.

[39]Wu C C, Roberts P H. Shock-wave propagation in a sonoluminescing gas bubble[J]. Phys Rev Lett, 1993,70(22):3424-3427.

[40]Kwak H, Yang H, Hong J. An aspect of sonoluminescence from hydrodynamic theory[J]. The Journal of the Acoustical Society of America, 1994,96(5):3253-3253.

[41]Ho-Young Kwak J H N. Hydrodynamic Solutions for a Sonoluminescing Gas Bubble[J]. Physical Review Letters, 1996,77(21):4454-4457.

[42]王者昌,張毅,張曉強(qiáng).空蝕過程中的熱效應(yīng)[J].材料研究學(xué)報(bào),2001,15(3):287-290.

[43]Huai X, Yan R, Cai J, et al. Dynamic analysis on temperature evolution inside a single bubble due to hydrodynamic cavitation under turbulence[J]. Chinese Science Bulletin, 2011,56(12):947-955.

[44]Flannigan D J, Suslick K S. Plasma formation and temperature measurement during single-bubble cavitation[J]. Nature, 2005,434(7029):52-55.

猜你喜歡
沖擊波溫度
沖擊波聯(lián)合中藥蠟療治療骨折術(shù)后延遲愈合的臨床效果觀察
沖擊波,疼痛康復(fù)治療的新“神器”
化開了
溫度計(jì)為什么 能測(cè)溫度?
一頭豬的哼哧
溫度與情緒大作戰(zhàn)?
身處韓國(guó),感受薩德“沖擊波”
體外沖擊波碎石治療泌尿系結(jié)石的效果分析
測(cè)個(gè)溫度再蓋被
采用體外沖擊波碎石治療46例泌尿結(jié)石的臨床效果分析