陶珊 劉秀平 卓志強(qiáng)
[摘要] 目的 觀察小鼠高強(qiáng)度噪聲短時(shí)暴露后,其行為學(xué)的改變,探索噪聲對(duì)小鼠行為和聽(tīng)力的影響及機(jī)制。 方法 選取生后15 d的C57小鼠,隨機(jī)分為兩組,噪聲暴露組30只,123 dB SPL白噪聲固定時(shí)間暴露2 h;對(duì)照組30只,正常喂養(yǎng),2個(gè)月后,檢測(cè)ABR反應(yīng)閾,將兩組小鼠根據(jù)是否給予MWM訓(xùn)練再分為兩個(gè)亞組,剝離小鼠海馬,檢測(cè)氧化應(yīng)激水平,實(shí)時(shí)熒光定量PCR 法測(cè)定各組小鼠海馬組織中即刻早基因IEGs的表達(dá)水平。 結(jié)果 強(qiáng)噪聲單次暴露后2個(gè)月,與對(duì)照組比較,噪聲暴露組動(dòng)物ABR反應(yīng)閾升高,小鼠的Morris水迷宮行為表現(xiàn)顯著改變,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);兩組小鼠海馬組織中氧化應(yīng)激水平比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。小鼠海馬組織中即刻早基因例如Npas4、Arc的表達(dá)量可通過(guò)學(xué)習(xí)與訓(xùn)練來(lái)上調(diào),但噪聲暴露組動(dòng)物通過(guò)學(xué)習(xí)訓(xùn)練致使兩基因上調(diào)的變化低于對(duì)照組(P<0.05)。 結(jié)論 高強(qiáng)度噪聲短時(shí)暴露對(duì)小鼠的行為和聽(tīng)力有負(fù)性影響。學(xué)習(xí)訓(xùn)練可顯著上調(diào)小鼠海馬組織中即刻早基因的表達(dá),而噪聲暴露的作用在統(tǒng)計(jì)學(xué)上無(wú)顯著性差異,這可能是噪聲影響學(xué)習(xí)記憶能力的分子機(jī)制之一。
[關(guān)鍵詞] 噪聲;認(rèn)知功能;氧化應(yīng)激;海馬;即刻早基因
[中圖分類號(hào)] R285.5? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-9701(2020)34-0044-04
[Abstract] Objective To observe the behavioral changes of mice exposed to high intensity noise for a short time, and to investigate the impacts of noise on behavior and hearing of mice and its mechanism. Methods C57 mice of 15 days after birth were randomly divided into the noise exposure group(n=30) and the control group(n=30). The noise exposure group was exposed to 123 dB SPL white noise for 2 hours, while the control group was fed normally. After 2 months, the ABR response threshold was detected. The two groups of mice were divided into two subgroups according to whether they were given MWM training or not. The hippocampus of mice was stripped, and the oxidative stress level was detected. The expression level of immediate early genes(IEGs) in hippocampus of mice in each group was determined by real-time fluorescence quantitative PCR method. Results Two months after single exposure to strong noise, compared with the control group, the ABR threshold of animals in the noise exposure group was increased, and the Morris water maze behavior of mice was changed significantly, with statistically significant difference(P<0.05). There was no significant difference in oxidative stress level between the two groups of mice(P>0.05). The expression amount of IEGs such as Npas4 and Arc in hippocampus of mice could be up-regulated by learning and training, but the changes of up-regulation of the two genes in the noise exposure group were lower than those in the control group through learning and training(P<0.05). Conclusion Short-term exposure to high intensity noise has negative impacts on the behavior and hearing of mice. Learning and training can significantly up-regulate the expression of IEGs in hippocampus of mice, while the effect of noise exposure has no statistically significant difference, which may be one of the molecular mechanisms of noise impacting learning and memory ability.
[Key words] Noise; Cognitive function; Oxidative stress; Hippocampus; Immediate early genes
噪聲是一種常見(jiàn)的有害因素,其對(duì)人體的危害不僅是聽(tīng)力損失,而且對(duì)非聽(tīng)覺(jué)系統(tǒng)也可以產(chǎn)生不利的影響,可導(dǎo)致學(xué)習(xí)記憶能力下降、免疫力下降、血壓上升等一系列的健康問(wèn)題[1-2]。嬰幼兒因自身發(fā)育未成熟,更易受外界環(huán)境的影響,如病房持續(xù)的噪聲對(duì)新生兒重癥監(jiān)護(hù)室里的患兒有諸多不利影響[3]。本研究通過(guò)模擬噪聲暴露環(huán)境,觀察發(fā)育早期小鼠給予噪聲暴露后,成年小鼠聽(tīng)性腦干反應(yīng)(Auditory brainstem response,ABR)反應(yīng)閾值、行為學(xué)、氧化應(yīng)激水平以及海馬組織中多種即刻早基因(Immediate early genes,IEGs)的變化情況,探索噪聲對(duì)學(xué)習(xí)記憶的影響及可能的發(fā)生機(jī)制。
1 材料與方法
1.1 儀器與試劑
1.1.1 主要儀器? RZ6聽(tīng)覺(jué)電生理系統(tǒng),美國(guó);Morris水迷宮(Morris water maze,MWM)系統(tǒng),上海欣軟信息科技有限公司;SOD(superoxide dismutase)測(cè)定試劑盒、MDA(madondialdehyde)測(cè)定試劑盒,南京建成生物工程研究所;Real Time PCR儀,美國(guó)ABI公司
1.1.2 主要試劑? 戊巴比妥鈉,美國(guó);Primer引物,上海捷瑞生物工程有限公司;Prime ScriptTM RT reagent Kit with gDNA Eraser,日本Takara公司
1.2 實(shí)驗(yàn)動(dòng)物及分組
本實(shí)驗(yàn)選用生后15 d的C57小鼠,購(gòu)于江蘇大學(xué)實(shí)驗(yàn)動(dòng)物中心,動(dòng)物許可證號(hào)為SCXK(蘇)2011-0003,飼養(yǎng)于東南大學(xué)醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物中心,隨機(jī)分為兩組,即噪聲暴露組(30只)與對(duì)照組(30只)。遵循東南大學(xué)實(shí)驗(yàn)動(dòng)物醫(yī)學(xué)倫理委員會(huì)規(guī)定。
1.3 噪聲暴露
采用123 dB聲壓級(jí)(Sound pressure level,SPL)的白噪聲對(duì)暴露組小鼠進(jìn)行固定時(shí)間暴露2 h。對(duì)照組無(wú)噪聲暴露,其他條件與暴露組相同。
1.4 實(shí)驗(yàn)方法
1.4.1 聽(tīng)覺(jué)功能測(cè)試? 暴露結(jié)束2個(gè)月后,通過(guò)聽(tīng)性腦干反應(yīng)(ABR)測(cè)定小鼠的聽(tīng)力情況,具體操作:將小鼠麻醉后置于固定架上,應(yīng)用美國(guó)TDT(Tucker-Davis Technology)系統(tǒng)Ⅲ和Biosig軟件,其中電極的連接方案及參數(shù)的設(shè)置見(jiàn)參考文獻(xiàn)[4],ABR信號(hào)為10 ms短純音,測(cè)試頻率:2、4、8、16 kHz。測(cè)試從90 dB SPL開(kāi)始,衰減間隔為5 dB,以Ⅲ波存在的最低聲強(qiáng)為反應(yīng)閾值。
1.4.2 行為學(xué)測(cè)試? Morris水迷宮根據(jù)趙瑛等[5]文章的方式進(jìn)行。將小鼠頭朝池壁放入水中,放入的位置隨機(jī),先予60 s引導(dǎo)實(shí)驗(yàn),若小鼠60 s內(nèi)找不到平臺(tái),則引導(dǎo)小鼠至平臺(tái),使其在平臺(tái)停留15 s。每只小鼠每天訓(xùn)練4次,每次間隔時(shí)間不少于30 min,訓(xùn)練5 d。第6天,撤去隱藏的平臺(tái),將小鼠由開(kāi)始的4個(gè)位置放入水中。空間記憶的檢測(cè)指標(biāo):小鼠到達(dá)平臺(tái)所花的時(shí)間;撤掉平臺(tái)后小鼠進(jìn)入平臺(tái)范圍內(nèi)的次數(shù)。
1.4.3 海馬組織SOD含量和MDA活力測(cè)定? 將小鼠快速處死后取海馬組織,分別制備10%組織勻漿,每組10個(gè)樣本分別測(cè)試SOD含量及MDA活力,參照南京建成生物工程研究所試劑盒進(jìn)行。
1.4.4 熒光實(shí)時(shí)定量PCR(Quantitative real time-polymerase chain reaction,RT-qPCR)檢測(cè)? 擴(kuò)增引物:Npas4(Neuronal Per-Arnt-Sim domain protein 4),正向5'-AGCAAGAGCCTGAGCGAAAAGA-3', 反向5'-CTTGGTGGATCGGTACATGACTG-3';Arc(Activity-regulated cytoskeleton-associated protein),正向5'-CTCAGAGGAGTTCTTAGCCTGTTCG-3',反向5'-ATC TCAGCTCGGCACTTACCAAT-3';β-Actin正向5'-TGAGAGGGAAATCGTGCGTGAC-3',反向5'- GCTC GTTGCCAATAGTGATGACC-3'。PCR引物由TaKaRa寶生物工程有限公司設(shè)計(jì),海馬組織中的總RNA由Trizol試劑提取,并及鑒定RNA樣品的濃度及純度。通過(guò)實(shí)時(shí)熒光定量PCR系統(tǒng),β-Actin作為內(nèi)參行實(shí)時(shí)逆轉(zhuǎn)錄PCR(qRT-PCR),計(jì)算Npas4及Arc兩者mRNA的相對(duì)表達(dá)量。
1.5 統(tǒng)計(jì)學(xué)方法
采用SPSS20.0統(tǒng)計(jì)學(xué)軟件,數(shù)據(jù)經(jīng)過(guò)正態(tài)性檢驗(yàn),且全部符合正態(tài)分布,計(jì)量數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,采用t檢驗(yàn)及進(jìn)行單因素或雙因素ANOVA分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 兩組小鼠ABR反應(yīng)閾值比較
兩組小鼠噪聲暴露后ABR反應(yīng)閾值比較,在多個(gè)頻率,噪聲暴露組小鼠ABR反應(yīng)閾顯著高于對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)表1。
2.2 行為學(xué)測(cè)試結(jié)果
2.2.1 隱藏平臺(tái)獲得實(shí)驗(yàn)? 在前5 d訓(xùn)練階段的實(shí)驗(yàn)中,兩組小鼠的逃避潛伏期在第1~3天,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。但在第4天、第5天,兩組小鼠找到平臺(tái)的時(shí)間比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)表2。
2.2.2 空間定向?qū)嶒?yàn)? 空間定向?qū)嶒?yàn)中,噪聲暴露組小鼠穿越平臺(tái)次數(shù)減少,即(2.19±0.27)次,而對(duì)照組小鼠為(3.61±0.42)次,差異有統(tǒng)計(jì)學(xué)意義(t=3.173,P=0.005)。
2.3 兩組海馬組織SOD含量和MDA活力測(cè)定
噪聲可引起機(jī)體氧化應(yīng)激反應(yīng),利用商品化試劑盒檢測(cè)了小鼠海馬組織中MDA的含量及SOD的活性。噪聲暴露組、對(duì)照組SOD含量及MDA活力見(jiàn)表3,兩組比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
2.4 噪聲暴露后2個(gè)月海馬中的基因表達(dá)情況比較
有訓(xùn)練對(duì)照組、無(wú)訓(xùn)練對(duì)照組、有訓(xùn)練噪聲組、無(wú)訓(xùn)練噪聲組,這四個(gè)組進(jìn)行交叉比較,Npas4及Arc基因表達(dá)量的情況見(jiàn)表4。對(duì)噪聲暴露及訓(xùn)練做雙因素方差分析,Npas4及Arc兩基因的表達(dá)水平,提示訓(xùn)練的作用比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),而噪聲的作用比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
3 討論
隨著環(huán)境污染的加重,人們?cè)絹?lái)越關(guān)注噪聲暴露的危害。噪聲暴露不僅可以對(duì)聽(tīng)覺(jué)系統(tǒng)產(chǎn)生不良的影響,而且對(duì)非聽(tīng)覺(jué)系統(tǒng)的影響更深、更廣,可引起心率及血壓等的變化,并產(chǎn)生應(yīng)激相關(guān)的激素,導(dǎo)致機(jī)體焦慮、學(xué)習(xí)記憶能力下降等[6]。
嬰幼兒因自身發(fā)育未成熟,易受外界環(huán)境的影響,如病房持續(xù)的噪聲等。研究報(bào)道新生兒重癥監(jiān)護(hù)室(Neonatal intensive care unit,NICU)噪聲水平遠(yuǎn)高于美國(guó)兒科學(xué)會(huì)推薦的NICU噪聲控制標(biāo)準(zhǔn)[7]。而噪聲對(duì)嬰幼兒可產(chǎn)生諸多不利影響,如心率增快、血壓上升、血氧飽和度下降、聽(tīng)力損傷、睡眠障礙等,甚至可以影響新生兒神經(jīng)系統(tǒng)的發(fā)育,導(dǎo)致成年期的認(rèn)知困難等[8]。
中樞的聽(tīng)覺(jué)通路與大腦的邊緣系統(tǒng)和皮層存在廣泛的神經(jīng)聯(lián)系,因此噪聲暴露可引發(fā)認(rèn)知相關(guān)的神經(jīng)系統(tǒng)功能發(fā)生異常,與神經(jīng)系統(tǒng)相關(guān)疾病具有一定的關(guān)聯(lián)性[9-10]。相關(guān)的實(shí)驗(yàn)研究提示,噪聲可影響大鼠的空間學(xué)習(xí)記憶能力,其可能機(jī)制是損傷海馬的神經(jīng)細(xì)胞再生功能,引起神經(jīng)遞質(zhì)傳導(dǎo)過(guò)程障礙[11]。研究顯示噪音暴露的動(dòng)物空間學(xué)習(xí)記憶都會(huì)受損[12]。
研究發(fā)現(xiàn),小鼠出生后第10~14天,聽(tīng)力功能才開(kāi)始出現(xiàn),生后第14天小鼠耳蝸的功能基本成熟[13]。而此時(shí)大腦的發(fā)育尚未完成[14]。通過(guò)檢索文獻(xiàn),聽(tīng)覺(jué)系統(tǒng)發(fā)育關(guān)鍵期是出生后的早期,其發(fā)育的關(guān)鍵期會(huì)隨年齡增長(zhǎng)消失,因此研究小鼠在出生后15 d對(duì)噪聲暴露的影響可間接提示出生早期的相關(guān)情況,在本研究中,選擇在聽(tīng)覺(jué)發(fā)育關(guān)鍵期(P15)建立模型。
實(shí)驗(yàn)研究顯示,聽(tīng)力正常的小鼠噪聲暴露后ABR發(fā)生明顯閾移,且ABR的閾值明顯提高[15-16]。這與本實(shí)驗(yàn)結(jié)果一致。本研究結(jié)果顯示,噪聲組小鼠的聽(tīng)覺(jué)閾值在多個(gè)頻率均顯著高于對(duì)照組(表1),提示發(fā)育早期噪聲暴露對(duì)C57小鼠聽(tīng)覺(jué)系統(tǒng)有不良影響。
Morris水迷宮是用來(lái)檢測(cè)空間學(xué)習(xí)及記憶能力的經(jīng)典行為學(xué)實(shí)驗(yàn),具有良好的記憶量化指標(biāo)[17]。前5 d的定航實(shí)驗(yàn)主要檢測(cè)小鼠的學(xué)習(xí)能力,潛伏期的延長(zhǎng)可提示空間學(xué)習(xí)能力的降低;第6天的空間測(cè)試階段測(cè)試小鼠的記憶能力。本研究Morris水迷宮試驗(yàn)結(jié)果顯示,前5 d訓(xùn)練階段的實(shí)驗(yàn)中,兩組小鼠的潛伏期在第1、2、3天差異無(wú)統(tǒng)計(jì)學(xué)意義,但在第4、5天噪聲組的逃避潛伏期比對(duì)照組明顯延長(zhǎng),并且在第6天測(cè)試階段跨臺(tái)次數(shù)明顯減少,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),提示噪聲可影響小鼠的空間學(xué)習(xí)及記憶能力。
強(qiáng)噪聲暴露可致海馬組織中抗氧化酶及自由基清除劑的活性下降,使其氧化和抗氧化體系統(tǒng)的平衡失調(diào),引起氧化應(yīng)激反應(yīng),最終機(jī)體內(nèi)產(chǎn)生過(guò)多的氧化應(yīng)激產(chǎn)物及炎癥因子等[18],超過(guò)機(jī)體的清除能力,脂質(zhì)的過(guò)氧化反應(yīng)將生成多余的脂質(zhì)過(guò)氧化物,最終分解為丙二醛(MDA),引起海馬組織DNA損傷及蛋白質(zhì)表達(dá)的異常。超氧化物歧化酶(SOD)可清除氧自由基,是機(jī)體的一道保護(hù)防線。
研究表明,持續(xù)的噪聲暴露,小鼠海馬組織中的SOD含量顯著降低,MDA含量明顯上升,提示噪聲暴露導(dǎo)致學(xué)習(xí)記憶能力下降的主要原因是由于海馬組織自由基代謝異常,神經(jīng)系統(tǒng)的結(jié)構(gòu)發(fā)生退變引起的[19-20]。本研究結(jié)果顯示,與對(duì)照組相比,噪聲組SOD及MDA水平差異無(wú)統(tǒng)計(jì)學(xué)意義,這可能是因?yàn)闄C(jī)體的氧化應(yīng)激水平的變化是短暫的,而本研究觀察的氧化應(yīng)激水平是噪聲暴露后2個(gè)月的長(zhǎng)期效應(yīng)。
外周聽(tīng)覺(jué)系統(tǒng)的損傷可導(dǎo)致各級(jí)聽(tīng)覺(jué)神經(jīng)軸神經(jīng)元的破壞,影響神經(jīng)遞質(zhì)的傳遞及細(xì)胞內(nèi)的代謝。研究發(fā)現(xiàn),海馬組織內(nèi)有多種學(xué)習(xí)記憶相關(guān)聯(lián)的即刻早基因(IEGs),它們能將神經(jīng)元的活性及可塑性與學(xué)習(xí)相關(guān)的基因轉(zhuǎn)導(dǎo)相關(guān)聯(lián)起來(lái)[21-22]。Npas4即神經(jīng)元PAS結(jié)構(gòu)域蛋白,可用于神經(jīng)元突觸的連接部位,在神經(jīng)突觸可塑性及學(xué)習(xí)記憶的形成過(guò)程中起重要作用[23]。Arc即活性調(diào)節(jié)基因,可通過(guò)腦源性神經(jīng)營(yíng)養(yǎng)因子,調(diào)節(jié)神經(jīng)信號(hào)通路,促進(jìn)神經(jīng)突觸的可塑性[24]。研究報(bào)道,噪聲暴露或認(rèn)知訓(xùn)練引起海馬組織中相關(guān)IEGs表達(dá)的改變[25]。
[參考文獻(xiàn)]
[1] Mathias B,Mark B,Abigail B,et al. ICBEN review of research on the biological effects of noise 2011-2014[J]. Noise & Health,2015,17(75):57-82.
[2] Amirreza AM,Yahya R,Tohid K,et al. Inflammatory and immunological changes caused by noise exposure:A systematic review[J]. Journal of Environmental Science and Health Part C,Toxicology and Carcinogenesis,2020,38(1):61-90.
[3] 曹霞,李仁鳳,李梅,等.新生兒重癥監(jiān)護(hù)室聲光觸環(huán)境因素對(duì)低體質(zhì)量早產(chǎn)兒生理功能的影響及改進(jìn)方案[J].中國(guó)實(shí)用護(hù)理雜志,2020,36(4):284-288.
[4] 張紀(jì)帥,陳星睿,吳軍,等.白噪聲暴露前后豚鼠聽(tīng)覺(jué)功能的檢測(cè)[J].中華耳科學(xué)雜志,2015,13(1):141-144.
[5] 趙瑛,高偉瑩,余群星,等.基于Morris水迷宮的小鼠學(xué)習(xí)記憶規(guī)律研究[J].哈爾濱商業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,36(2):131-136,141.
[6] Charlotte C,Clare C,Notley,et al. Evidence for environmental noise effects on health for the united kingdom policy context:A systematic review of the effects of environmental noise on mental health,wellbeing,quality of life,cancer,dementia,birth,reproductive outcomes,and cognition[J]. International Journal of Environmental Research and Public Health,2020,17(2):1-34.
[7] Smith S,Ortmann A,Clark W. Noise in the neonatal intensive care unit:A new approach to examining acoustic events[J].Noise and Health,2018,20(95):121-130.
[8] Santos J,Pearce SE,Stroustrup A.Impact of hospital-based environmental exposures on neurodevelopmental outcomes of preterm infants[J]. Current Opinion in Pediatrics,2015,27(2):254-260.
[9] L Us,G Cl,R Gl. Effects of loud noise on hippocampal and cerebellar-related behaviors.Role of oxidative state[J].Brain Research,2010,1361:102-114.
[10] Oscar GP,Oscar CC,F(xiàn)ernando JH,et al. Stress by noise produces differential effects on the proliferation rate of radial astrocytes and survival of neuroblasts in the adult subgranular zone[J]. Neuroscience Research,2011,70(3):243-250.
[11] Cui B,Wu M,She X. Effects of chronic noise exposure on spatial learning and memory of rats in relation to neurotransmitters and NMDAR2B alteration in the hippocampus[J].Japan Society for Occupational Health,2009, 51(2):152-158.
[12] Lijie L,Pei S,Tingting H,et al. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice[J]. Scientific Reports, 2016,6(1):31-34.
[13] Mikaelian D,Ruben RJ.Development of hearing in the normal Cba-J mouse:Correlation of physiological observations with behavioral responses and with cochlear anatomy[J].Taylor & Francis,2009,59(2-6):451-461.
[14] Semple BD, Blomgren K, Gimlin K, et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species[J]. Progress in Neurobiology,2013,106: 1-16.
[15] 楊衛(wèi)平,許陽(yáng),胡博華,等.耳蝸基底膜組織巨噬細(xì)胞對(duì)噪聲的反應(yīng)[J].中華耳科學(xué)雜志,2018,16(1):73-79.
[16] Galle N,Marie-Pierre P,G Lpc.Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss,with an emphasis on noise[J].The Journal of the Acoustical Society of America,2019, 146(5):3743-3769.
[17] 楊玉潔,李玉姣,李杉杉,等.用于評(píng)價(jià)大小鼠學(xué)習(xí)記憶能力的迷宮實(shí)驗(yàn)方法比較[J].中國(guó)比較醫(yī)學(xué)雜志,2018, 28(12):129-134.
[18] Molina SJ,Miceli M,Guelman LR. Noise exposure and oxidative balance in auditory and extra-auditory structures in adult and developing animals. Pharmacological approaches aimed to minimize its effects[J]. Pharmacological Research,2016, 109:86-91.
[19] Manikandan S,Padma MK,Srikumar R,et al. Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical-imbalance in hippocampus and medial prefrontal cortex[J]. Neuroscience Letters,2006,399(1-2):17-22.
[20] Cheng L,Wang SH,Chen QC,et al. Moderate noise induced cognition impairment of mice and its underlying mechanisms[J]. Physiology & Behavior,2011,104(5):981-988.
[21] S P,E A,S C,et al. Early genomics of learning and memory:A review[J]. Genes,Brain,and Behavior,2006,5(3):209-221.
[22] Kim S,Kim H, Um JW.Synapse development organized by neuronal activity-regulated immediate-early genes[J]. Experimental & Molecular Medicine,2018,50(4):355-363.
[23] Stefano BG,B HMG,P DSN,et al. Genomic decoding of neuronal depolarization by stimulus-specific NPAS4 heterodimers[J]. Cell,2019,179(2):373-391,e27.
[24] Guzowski JF,Setlow B,Wagner EK,et al. Experience-dependent gene expression in the rat hippocampus after spatial learning:A comparison of the immediate-early genes Arc,c-fos,and zif268[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience,2001,21(14): 5089-5098.
[25] Minatohara K,Akiyoshi M,Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace[J]. Frontiers in Molecular Neuroscience,2015,8:78.
(收稿日期:2020-08-31)