(1.太原科技大學重型及機械教育部工程研究中心, 山西太原 030024;2.江蘇歐盛液壓科技有限公司, 江蘇啟東 226264; 3.太原工業(yè)學院機械工程系, 山西太原 030024)
液壓傳動以其傳動功率大、結構緊湊等優(yōu)點,在工業(yè)和軍事上有著廣泛的應用[1-4]。隨著微電子技術、計算機技術的迅猛發(fā)展,出現(xiàn)了許多數(shù)字液壓元件[5]。傳統(tǒng)的手動變量泵通過手輪對排量進行調節(jié),不能實現(xiàn)復雜的控制,且在工業(yè)現(xiàn)場中不便于調節(jié),自動化程度低。電液伺服變量泵通過內嵌的控制器和傳感器,方便的實現(xiàn)對排量的控制,自動化程度較高,是將來液壓泵的發(fā)展趨勢之一[6-7]。
軸向柱塞式電液伺服變量泵由變量泵泵體和變量機構組成。變量機構由變量油缸、高頻響比例閥、油缸位移傳感器和控制器組成,是一個電液伺服位置閉環(huán)系統(tǒng)。變量油缸推動變量泵斜盤實現(xiàn)排量的變化。傳感器實時檢測變量油缸的位移信號,控制器根據函數(shù)關系把變量油缸的位移信號轉換成所對應的排量信號,與給定的目標排量信號比較,按照控制算法驅動高頻響比例閥完成變量機構的閉環(huán)控制??梢娫撍欧到y(tǒng)的動態(tài)特性直接影響了變量泵的性能[8]。秦彥凱[9]建立了變量機構的動力學模型,利用ADAMS軟件分析了變量過程中斜盤所受到的阻力矩。 劉峰[10]、王野牧等[11]詳細地探討了變量機構的組成和工作原理,并對變量機構組成的閉環(huán)控制系統(tǒng)進行深入分析。王洪斌等[12]針對電機泵控制系統(tǒng)的非線性、強耦合、多變量的特點,提出了一種模糊滑模控制算法,用于永磁同步電機泵的速度控制,提高了控制系統(tǒng)的魯棒性和動態(tài)性能。然而模糊控制需要建立模糊推理專家數(shù)據庫,滑??刂迫菀讓е孪到y(tǒng)發(fā)生震顫現(xiàn)象。郭洪波等[13]為了解決閥控非對稱缸的非線性問題,提高控制系統(tǒng)的動態(tài)性能,提出了基于backstepping方法的非線性控制器,并且成功應用在液壓機器人的控制上,取得了較好的控制效果。然而backstepping方法運算量大,需要對信號多次微分運算,對控制器的運算能力有一定的要求。
PI控制器由于具有魯棒性好、結構簡單等特點,在工業(yè)自動化領域得到廣泛應用。然而經典PI控制器的系數(shù)是固定的。為了確保系統(tǒng)對較小的誤差做出調節(jié)而把控制器系數(shù)設置的較大[14-15]。然而當系統(tǒng)跟蹤階躍信號時,參考信號發(fā)生大幅變化。在階躍瞬間,系統(tǒng)的誤差很大,此時由于PI控制器的比例系數(shù)較大,控制器輸出就會很大,同時,控制器的積分項輸出也會很大,導致系統(tǒng)發(fā)生振蕩和超調。為了防止積分飽和,一些學者提出了條件抗積分飽和PID算法[16-17]。然而該抗積分飽和方法是不連續(xù)的,當系統(tǒng)在飽和與不飽和狀態(tài)切換時,容易導致沖擊現(xiàn)象。
為了保證電液伺服變量泵的輸出流量穩(wěn)定,解決對階躍信號跟蹤時容易發(fā)生超調的問題,提出一種包含有分段非線性函數(shù)和光滑開關函數(shù)的非線性PI控制方法。先對變量泵的伺服變量機構建立非線性數(shù)學模型,然后為該電液伺服系統(tǒng)設計了非線性PI控制器。試驗結果表明非線性PI控制器比經典PID控制器控制更加平穩(wěn),解決了經典PID對階躍信號跟蹤時容易發(fā)生超調的問題。
圖1為變量機構伺服系統(tǒng)的組成框圖。角位移傳感器檢測斜盤的傾角,并與參考信號比較得出誤差。過控制器輸出控制信號給高頻響比例閥,從而驅動變量缸運動。圖2可知此電液伺服變量機構可考慮為典型的三通閥控制差動缸位置閉環(huán)控制系統(tǒng),如圖3所示。由于高頻響比例閥的固有頻率高于變量機構伺服系統(tǒng)的固有頻率,因此高頻響比例閥的動態(tài)特性用一階慣性環(huán)節(jié)表示如下:
(1)
式中,u—— 輸入到閥的電壓信號
Ksq—— 比例閥內集成放大器的放大系數(shù)
T—— 比例閥的時間常數(shù)
xV—— 閥芯的位移
圖1 伺服系統(tǒng)組成框圖
圖2 電液伺服變量泵變量機構原理圖
圖3 三通閥控制差動缸控制系統(tǒng)
通過閥口的流量方程為:
(2)
式中,kq—— 閥口的流量增益
ps—— 系統(tǒng)的供油壓力
pt—— 系統(tǒng)的回油壓力
p1—— 變量缸控制容腔的壓力
ρ—— 液壓油的密度
函數(shù)s(·)定義為:
(3)
變量缸控制容腔內的壓力方程為:
(4)
式中,βe—— 油液的彈性模量
V0—— 變量缸控制容腔內的初始容積
y—— 柱塞缸的位移
Ct—— 柱塞缸的泄漏系數(shù)
根據牛頓第二定律,系統(tǒng)的運動學方程為:
(5)
式中,m—— 變量缸活塞的質量,包括變量機構運動部件折算到變量缸活塞上的質量
K—— 復位缸內彈簧的剛度
經典PID控制器是基于被控系統(tǒng)的誤差工作的。 PID控制器的輸出通過對誤差比例運算(P)、積分運算(I)和微分運算(D)加權得到,其輸出Uout與輸入e關系為:
(6)
式中,kp,ki,kd分別為比例系數(shù),積分系數(shù)與微分系數(shù)。
經典PID控制方法最大的優(yōu)點是靠誤差來消除誤差,而不依靠被控對象的輸入輸出關系,因此魯棒性較強。然而經典PID控制方法是線性的,當系統(tǒng)的誤差較小時,為了使系統(tǒng)快速地消除微弱的誤差,一般參數(shù)設置的比較大。然而當參考信號發(fā)生較大幅度的變化時,此時系統(tǒng)誤差很大,經典PID控制器的輸出會非常大,這時很容易導致系統(tǒng)的超調和振蕩。
為了解決經典PID控制電液伺服變量機構時造成的流量超調、振蕩,輸出不平穩(wěn)的問題,本研究提出了一種非線性PI控制方法,其控制系統(tǒng)結構如圖3所示。其中非線性PI控制器表示為:
(7)
式中,e—— 系統(tǒng)的誤差
再次,烏江保護聯(lián)動抓手不足。近年來,重慶、貴州兩省市不斷強化烏江環(huán)境保護,不斷深化經濟產業(yè)合作,各級地方政府間交流日益密切。在烏江生態(tài)保護方面,兩省市均在習近平總書記“共抓大保護,不搞大開發(fā)”思想指導下展開大量細致的工作,但基于生態(tài)保護體制機制的聯(lián)動合作相對不足,缺少跨區(qū)域、常態(tài)化、工作化和考核化的生態(tài)保護體制機制與平臺途徑,省市間生態(tài)保護工作互動順暢度不夠、聯(lián)動性不強。因而,應當建立渝黔地區(qū)烏江經濟帶綠色生態(tài)廊道聯(lián)動機制平臺,強化跨區(qū)域政府工作聯(lián)動考核機制,找準文化旅游產業(yè)聯(lián)動抓手,為烏江生態(tài)廊道建設保護提供制度保障和產業(yè)經濟保障。
β1,β2—— 分別為比例系數(shù)和積分系數(shù)
α—— 非線性系數(shù)
δ,γ—— 分別為線性區(qū)間寬度和線性區(qū)間寬度系數(shù)
可見非線性PI控制器包含非線性比例環(huán)節(jié)和非線性積分環(huán)節(jié)。
式(7)中非線性函數(shù)NP(·)定義為:
(8)
式中,δ—— 線性區(qū)間寬度
x—— 輸入
α—— 非線性系數(shù)
式(8)的函數(shù)圖像如圖4所示。
圖4 NP函數(shù)圖像
式(7)中非線性函數(shù)NI(·)定義為:
(9)
式中,γ—— 線性區(qū)間寬度系數(shù)
A—— 積分上限
其函數(shù)圖像如圖5所示。
圖5 NI函數(shù)圖像
借助MATLAB/Simulink對電液伺服變量機構控制系統(tǒng)進行仿真,仿真參數(shù)如表1所示。
表1 仿真參數(shù)
首先針對非線性PI控制器的比例環(huán)節(jié)做對比研究。給定的變量缸位移參考信號為階躍信號,在1 s的時候信號從3 mm階躍到15 mm。PID控制器參數(shù)設置為:8, 0, 0。非線性PI控制器參數(shù)設置為β1=5,α=0.5,δ=1.5,β2=0,仿真結果如圖6所示。圖中可看出,在參考信號剛開始階躍時,由于此時系統(tǒng)誤差較大,兩種控制方法的位移響應大致相同。然而當變量缸位移接近參考信號時,非線性PI控制器工作在線性區(qū)間,增益變大;然而經典PID控制器的增益不變。因此非線性PI控制器比PID控制器更快速地跟蹤考曲線。
圖6 比例環(huán)節(jié)跟蹤曲線對比
圖6中兩種比例控制方式均存在穩(wěn)態(tài)誤差。此穩(wěn)態(tài)誤差可通過增加積分環(huán)節(jié)消除。為了對比非線性PI控制器和經典PID控制器的積分環(huán)節(jié),調節(jié)參數(shù)使得非線性PI控制器的比例環(huán)節(jié)工作在線性區(qū)間,并且比例系數(shù)與PID控制器的比例系數(shù)一致。非線性PI控制器的參數(shù)選取為:β2=20,A=50,γ=1,PID控制器的參數(shù)選取為12, 20, 0,仿真結果如圖7所示。當參考信號發(fā)生階躍時,系統(tǒng)產生較大的誤差,因此PID控制器的積分環(huán)節(jié)產生較大的輸出導致系統(tǒng)超調。然而非線性PI控制器的積分環(huán)節(jié)包含有平滑的開關函數(shù),當系統(tǒng)誤差較大時,為了防止系統(tǒng)超調,NI函數(shù)平滑地限制了積分環(huán)節(jié)的最大輸出范圍,因此非線性PI控制器超調較小。
圖7 積分環(huán)節(jié)跟蹤曲線對比
為了進一步驗證所提出非線性PI控制器的效果,按照圖1所示的電液伺服變量泵原理圖在A10V變量泵上試驗。試驗時,非線性PI控制算法運行在基于ARM 32bit Cortex-M3內核的單片機上。為了降低運算量,算法中的指數(shù)函數(shù)與冪函數(shù)的運算采用了查表法和線性插值法結合的方法。
試驗時,非接觸式角位移傳感器直接測量斜盤角度,如圖8所示。變量缸的活塞位移y通過斜盤角度θ計算得出,函數(shù)關系為:
y=57.2sinθ
(10)
試驗時電機的轉速為1500 r/min,依次測試非線性PI控制器和經典PID控制器的控制效果,試驗結果如圖9所示。可見經典PID控制方法出現(xiàn)超調,非線性PI的控制效果較好。這是因為經典PID控制方法為了保證系統(tǒng)的穩(wěn)態(tài)精度,比例增益參數(shù)設置的偏大。當系統(tǒng)誤差較大時,比例環(huán)節(jié)和積分環(huán)節(jié)輸出較大,導致系統(tǒng)發(fā)生超調。
圖8 電液伺服變量泵
圖9 非線性PI控制器跟蹤曲線
而非線性PI控制方法的比例增益是隨著系統(tǒng)誤差變化的。當系統(tǒng)誤差較大時,比例增益較小,防止系統(tǒng)超調;當系統(tǒng)誤差較小時,比例增益較大,以提高系統(tǒng)的穩(wěn)態(tài)精度。
以電液伺服變量泵的變量機構為研究對象,為了解決伺服變量機構對階躍信號跟蹤時容易發(fā)生超調的問題,建立了變量機構電液伺服系統(tǒng)非線性模型,分析了產生超調的原因,提出了非線性PI控制方法。仿真和試驗結果表明,非線性PI控制方法響應迅速、對階躍信號跟蹤平穩(wěn),具有較好的控制效果。