葉綠 吳華香 許偉紅
摘要:目的? 研究生物鐘基因芳香烴受體核轉(zhuǎn)位蛋白樣1基因(Bmal1)低表達(dá)對(duì)大鼠胰島細(xì)胞瘤細(xì)胞-1(INS-1)功能的影響。方法? 應(yīng)用大鼠胰島β細(xì)胞系INS-1細(xì)胞,隨機(jī)將INS-1細(xì)胞分為空白組、陰性對(duì)照組和Bmal1 siRNA組,通過(guò)RNA干擾技術(shù)沉默Bmal1,比較三組細(xì)胞內(nèi)活性氧(ROS)水平、胰島素(GSIS)含量、核因子E2相關(guān)因子2(Nrf2)、過(guò)氧化氫酶(CAT)和谷胱甘肽過(guò)氧化物酶(GSH-Px)mRNA表達(dá),并采用透射電鏡觀察線(xiàn)粒體結(jié)構(gòu)變化。結(jié)果? 陰性對(duì)照組與空白組ROS水平、GSIS含量、Nrf2、CAT、GSH-Px mRNA表達(dá)比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);Bmal1 siRNA組ROS水平、Nrf2表達(dá)高于陰性對(duì)照組,GSIS含量、CAT、GSH-Px mRNA表達(dá)低于陰性對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。透射電鏡結(jié)果顯示,在空白組和陰性對(duì)照組中線(xiàn)粒體為圓形或橢圓形,具有完整的膜和少量管狀嵴;Bmal1 siRNA組中線(xiàn)粒體腫脹、形狀不規(guī)則,線(xiàn)粒體嵴斷裂和消失。結(jié)論? Bmal1低表達(dá)可導(dǎo)致β細(xì)胞氧化應(yīng)激增強(qiáng),GSIS下降,其作用機(jī)制可能與影響Nrf2信號(hào)通路有關(guān)。
關(guān)鍵詞:芳香烴受體核轉(zhuǎn)位蛋白樣1基因;β細(xì)胞;核因子E2相關(guān)因子2;氧化應(yīng)激
中圖分類(lèi)號(hào):R733.7? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DOI:10.3969/j.issn.1006-1959.2020.03.020
文章編號(hào):1006-1959(2020)03-0066-03
Effect of Bmal1 Supression on Pancreatic β-Cell Function
YE Lyu,WU Hua-xiang,XU Wei-hong
(Department of Rheumatology, School of Medicine, The Second Affiliated Hospital of Zhejiang University,
Hangzhou 310009, China)
Abstract:Objective? To investigate the effect of brain and muscle arnt-like 1 (Bmal1) on the function of insulinoma cell line (INS-1 cells).Methods? INS-1 cells were randomly divided into blank control group, negative control group and Bmal1 siRNA group. Bmal1 was silenced by RNA interference technology, and the intracellular reactive oxygen species (ROS) levels, glucose-stimulated insulin secretion (GSIS), nuclear factor erythroid-2 related factor 2 (Nrf2), catalase (CAT) and glutathione peroxidase (GSH-Px) mRNA expressions were compared in the three groups. Mitochondrial morphological changes were observed by transmission electron microscopy.Results? There was no significant difference in the ROS level, GSIS, Nrf2, CAT, GSH-Px mRNA expression between the negative control group and the blank group (P>0.05). The Bmal1 siRNA group had higher ROS levels and Nrf2 expression than the negative control group, and the GSIS, CAT, and GSH-Px mRNA expression were lower than the negative control group. The differences were statistically significant (P<0.05). Transmission electron microscopy results showed that the mitochondria were round or oval in the blank group and the negative control group, with a complete membrane and a few cristae. In the Bmal1 siRNA group, the mitochondria were swollen with irregular shape, and the mitochondrial cristae were fragmented and disappeared. Conclusion? Bmal1 inhibition can lead to increased oxidative stress in β-cell and decreased GSIS via Nrf2 signaling pathway.
Key words:Brain and muscle arnt-like 1;Pancreatic β-cell;Nuclear factor erythroid-2 related factor;Oxidative stress
生物鐘調(diào)控哺乳動(dòng)物的生理、能量代謝和行為活動(dòng)的晝夜節(jié)律。時(shí)鐘系統(tǒng)由位于下丘腦視交叉上核的中樞生物鐘以及外周組織的外周生物鐘組成[1],其運(yùn)行受正向調(diào)控成員芳香烴受體核轉(zhuǎn)位蛋白樣1基因(Bmal1)和時(shí)鐘基因與反向調(diào)控成員(周期基因1、周期基因2、隱色素基因1和隱色素基因2)構(gòu)成反饋回路控制[2]。Bmal1是生物鐘基因最重要成員之一,而生物鐘基因異常與糖尿病的發(fā)病密切相關(guān)[3,4],動(dòng)物實(shí)驗(yàn)已證實(shí)[5],敲除小鼠β細(xì)胞Bmal1基因后,小鼠代謝功能紊亂,導(dǎo)致高血糖和低胰島素血癥。然而,目前對(duì)Bmal1調(diào)控胰島β細(xì)胞功能的分子機(jī)制了解較少。此外,β細(xì)胞功能障礙在糖尿病發(fā)病中起關(guān)鍵作用,其中氧化應(yīng)激是導(dǎo)致β細(xì)胞功能障礙的主要原因之一[6]。氧化應(yīng)激時(shí),活性氧(ROS)生成過(guò)多,抗氧化系統(tǒng)[核因子E2相關(guān)因子2(Nrf2)、過(guò)氧化氫酶(CAT)和谷胱甘肽過(guò)氧化物酶(GSH-Px)][7]和氧化系統(tǒng)失衡,導(dǎo)致組織細(xì)胞損傷。而研究Bmal1是否參與調(diào)節(jié)β細(xì)胞的氧化應(yīng)激反應(yīng),有助于進(jìn)一步了解糖尿病的發(fā)病機(jī)制。本研究應(yīng)用大鼠胰島β細(xì)胞系INS-1細(xì)胞,通過(guò)RNA干擾技術(shù)沉默Bmal1,探討B(tài)mal1對(duì)β細(xì)胞功能的作用,現(xiàn)報(bào)道如下。
1材料和方法
1.1實(shí)驗(yàn)細(xì)胞? 大鼠胰島細(xì)胞瘤細(xì)胞-1(INS-1)購(gòu)自武漢普諾賽生命科技有限公司。
1.2試劑? 胎牛血清、巰基乙醇、左旋谷氨酰胺、HEPES、青霉素-鏈霉素溶液和RPMI-1640培養(yǎng)液(美國(guó)Gibco公司),LipofectamineTM 2000(美國(guó)Invitrogen公司)、RNA提取試劑盒(美國(guó)Ambion公司),PCR試劑盒(美國(guó)Vazyme公司)。
1.3細(xì)胞培養(yǎng)? INS-1細(xì)胞的培養(yǎng)條件為含10%胎牛血清、50 μmol/L巰基乙醇、2 mmol/L左旋谷氨酰胺、10 mmol/L HEPES和11.2 mmol/L葡萄糖的RPMI-1640培養(yǎng)液,置于含5% CO2的37℃培養(yǎng)箱中進(jìn)行培養(yǎng)。細(xì)胞隨機(jī)分為空白組、陰性對(duì)照組和Bmal1 siRNA組。
1.4細(xì)胞轉(zhuǎn)染? 將處于對(duì)數(shù)生長(zhǎng)期的INS-1細(xì)胞按照每孔2×105個(gè)細(xì)胞數(shù)接種于細(xì)胞培養(yǎng)6孔板培養(yǎng)過(guò)夜。轉(zhuǎn)染前換成無(wú)血清1640培養(yǎng)基,顯微鏡下觀察細(xì)胞,當(dāng)細(xì)胞密度達(dá)到70%時(shí)使用LipofectamineTM 2000試劑進(jìn)行轉(zhuǎn)染,轉(zhuǎn)染步驟參考試劑說(shuō)明書(shū)進(jìn)行。轉(zhuǎn)染24 h后,加入5.5 mmol/L的葡萄糖,繼續(xù)培養(yǎng)24 h后收集細(xì)胞。
1.5流式細(xì)胞術(shù)檢測(cè)細(xì)胞內(nèi)ROS水平? 按照ROS檢測(cè)試劑盒說(shuō)明書(shū)檢測(cè)細(xì)胞內(nèi)ROS水平:加入1 ml DCFH-DA,37℃避光孵育20 min,每隔3 min混勻一下。使用無(wú)血清細(xì)胞培養(yǎng)液洗滌細(xì)胞3次。收集細(xì)胞用流式細(xì)胞儀進(jìn)行檢測(cè)熒光強(qiáng)度差異,激發(fā)波長(zhǎng)為488 nm,發(fā)射波長(zhǎng)為530 nm。
1.6胰島素分泌測(cè)定? 細(xì)胞經(jīng)轉(zhuǎn)染等處理后,將細(xì)胞培養(yǎng)液換為含2.8 mmol/L葡萄糖的KHB緩沖液37℃孵育1 h;用KHB緩沖液洗細(xì)胞3次,然后分別用含2.8 mmol/L和16.7 mmol/L葡萄糖的KHB緩沖液37℃孵育細(xì)胞1 h,收集上清,檢測(cè)胰島素含量。
1.7實(shí)時(shí)熒光定量PCR(RT-qPCR)檢測(cè)Nrf2、CAT、GSH-Px mRNA的表達(dá)? 用Trizol法提取各組細(xì)胞的總RNA。按試劑盒說(shuō)明書(shū)將RNA反轉(zhuǎn)錄為cDNA。反轉(zhuǎn)錄條件:25℃ 5 min,50℃ 15 min,85℃ 5 min,4℃ 10 min。PCR擴(kuò)增條件:95℃預(yù)變性10 min,95℃變性30 s,60℃退火30 s,循環(huán)40次。根據(jù)2-ΔΔCt法,以GAPDH為內(nèi)參,計(jì)算Nrf2、CAT、GSH-Px基因相對(duì)表達(dá)水平。實(shí)驗(yàn)所有引物序列均由杭州擎科生物公司合成。
1.8透射電鏡觀察線(xiàn)粒體結(jié)構(gòu)? 樣品用2.5%戊二醛固定2 h,然后用鋨酸固定2 h。隨后將樣品在乙醇和丙酮中脫水并包埋在SPI-Pon-812中。使用切片機(jī)將切片切成0.1 mm厚度,隨后用檸檬酸鉛和醋酸鈾染色,最后通過(guò)HT7700-SS電子顯微鏡進(jìn)行觀察。
1.9統(tǒng)計(jì)學(xué)方法? 采用SPSS 16.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析。計(jì)量資料以(x±s)表示,多組間比較使用單因素方差檢驗(yàn),組間兩兩比較使用t檢驗(yàn)。以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1三組ROS水平比較? 陰性對(duì)照組與空白組ROS水平比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);Bmal1 siRNA組ROS水平高于陰性對(duì)照組(P<0.05),見(jiàn)圖1。
2.2三組GSIS含量比較? 陰性對(duì)照組與空白組GSIS含量比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);Bmal1 siRNA組GSIS含量低于陰性對(duì)照組(P<0.05),見(jiàn)圖2。
2.3三組Nrf2、CAT、GSH-Px mRNA表達(dá)比較? 陰性對(duì)照組與空白組Nrf2、CAT、GSH-Px mRNA表達(dá)比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。Bmal1 siRNA組Nrf2表達(dá)高于陰性對(duì)照組,CAT、GSH-Px mRNA表達(dá)低于陰性對(duì)照組(P<0.05),見(jiàn)圖3。
2.4三組胰島β細(xì)胞線(xiàn)粒體結(jié)構(gòu)比較? 在空白組和陰性對(duì)照組中,線(xiàn)粒體為圓形或橢圓形,具有完整的膜和少量管狀嵴;Bmal1 siRNA組中線(xiàn)粒體腫脹,形狀不規(guī)則,線(xiàn)粒體嵴斷裂和消失,見(jiàn)圖4。
3討論
人體多種生理、代謝過(guò)程由生物鐘調(diào)控,具有晝夜節(jié)律性[8]。生物鐘基因在糖尿病發(fā)病中具有重要作用。胰島β細(xì)胞功能衰竭是糖尿病發(fā)病的關(guān)鍵環(huán)節(jié),氧化應(yīng)激是引起β細(xì)胞功能受損的主要機(jī)制之一。但目前關(guān)于Bmal1對(duì)胰島β細(xì)胞作用的研究較少,其生物鐘基因Bmal1是否通過(guò)抗氧化系統(tǒng)調(diào)控β細(xì)胞功能尚不明確。
研究發(fā)現(xiàn)[9],糖尿病患者體內(nèi)氧化應(yīng)激增強(qiáng),β細(xì)胞內(nèi)抗氧化酶含量減少,抗氧化能力低于其他組織,從而對(duì)氧化應(yīng)激損傷較為敏感。當(dāng)糖尿病患者ROS水平升高時(shí),可能會(huì)引起胰島β細(xì)胞GSIS功能受損[10]。本研究結(jié)果發(fā)現(xiàn),陰性對(duì)照組與空白組ROS水平比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);Bmal1 siRNA組ROS水平高于陰性對(duì)照組、GSIS低于陰性對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),說(shuō)明抑制Bmal1表達(dá)后,INS-1細(xì)胞中ROS水平增加,GSIS下降。線(xiàn)粒體是細(xì)胞能量代謝中心,ROS產(chǎn)生的主要部位,線(xiàn)粒體損傷引起的ATP合成減少以及氧化應(yīng)激產(chǎn)物積聚可進(jìn)一步導(dǎo)致細(xì)胞損傷和凋亡。本研究中Bmal1 siRNA組透射電鏡結(jié)果顯示,抑制Bmal1表達(dá)后,β細(xì)胞表現(xiàn)出線(xiàn)粒體腫脹,線(xiàn)粒體嵴斷裂和消失,提示氧化應(yīng)激是Bmal1基因異常導(dǎo)致β細(xì)胞功能損傷的重要機(jī)制之一。
Nrf2是內(nèi)源性抗氧化應(yīng)激的關(guān)鍵轉(zhuǎn)錄因子,通過(guò)調(diào)節(jié)多種抗氧化基因功能(CAT、GSH-Px、血紅素氧化酶-1、超氧化物歧化酶等)在抗氧化、抗凋亡等方面起著重要作用。Nrf2信號(hào)通路活化可減輕氧化應(yīng)激對(duì)細(xì)胞的損傷作用。激活Nrf2可減輕高糖誘導(dǎo)的內(nèi)皮細(xì)胞損傷[11],反之,抑制Nrf2加重高糖誘導(dǎo)的心肌細(xì)胞損傷[7]。本研究發(fā)現(xiàn),陰性對(duì)照組與空白組Nrf2、CAT、GSH-Px mRNA表達(dá)比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。Bmal1 siRNA組Nrf2表達(dá)高于陰性對(duì)照組,CAT、GSH-Px mRNA表達(dá)低于陰性對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),說(shuō)明抑制Bmal1基因后,Nrf2 mRNA表達(dá)增加,但CAT、GSH-Px mRNA表達(dá)下降,提示抑制Bmal1基因?qū)е赂咚降难趸瘧?yīng)激狀態(tài),超出細(xì)胞對(duì)氧化物的抗氧化能力,使得抗氧化系統(tǒng)紊亂,導(dǎo)致細(xì)胞氧化應(yīng)激損傷。
綜上所述,Bmal1低表達(dá)可導(dǎo)致β細(xì)胞氧化應(yīng)激增強(qiáng),GSIS下降,其作用機(jī)制可能與影響Nrf2信號(hào)通路有關(guān)。
參考文獻(xiàn):
[1]Masri S,Sassone-Corsi P.The emerging link between cancer,metabolism,and circadian rhythms [J].Nature Medicine,2018,24(12):1795-1803.
[2]Takahashi JS.Transcriptional architecture of the mammalian circadian clock[J].Nature Reviews Genetics,2016,18(3):164-179.
[3]Johnston JD,Ordovas JM,Scheer FA,et al.Circadian Rhythms,Metabolism,and Chrononutrition in Rodents and Humans[J].Adv Nutr,2016,7(2):399-406.
[4]Lemmer B,Oster H.The Role of Circadian Rhythms in the Hypertension of Diabetes Mellitus and the Metabolic Syndrome[J].Current Hypertension Reports,2018,20(5):43.
[5]Rakshit K,Hsu TW,Matveyenko AV.Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice[J].Diabetologia,2016,59(4):734-743.
[6]Newsholme P,Cruzat VF,Keane KN,et al.Molecular mechanisms of ROS production and oxidative stress in diabetes[J].Biochemical Journal,2016,473(24):4527-4550.
[7]Song Y,Wen L,Sun J,et al.Cytoprotective mechanism of ferulic acid against high glucose-induced oxidative stress in cardiomyocytes and hepatocytes[J].Food Nutr Res,2016,60(1):30323.
[8]Pekovic-Vaughan V,Gibbs J,Yoshitane H,et al.The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis[J].Genes Dev,2014,28(6):548-560.
[9]Miki A,Ricordi C,Sakuma Y,et al.Divergent antioxidant capacity of human islet cell subsets:A potential cause of beta-cell vulnerability in diabetes and islet transplantation[J].PLoS One,2018(13):e0196570.
[10]Jacobi D,Liu S,Burkewitz K,et al.Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness[J].Cell Metabolism,2015,22(4):709-720.
[11]Ding Y,Zhang B,Zhou K,et al.Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis:role of Nrf2 activation[J].Int J Cardiol,2014,175(3):508-514.
收稿日期:2019-12-11;修回日期:2019-12-21
編輯/杜帆