秦 寬,曹成茂,廖移山,王超群,方梁菲,葛 俊
·農業(yè)裝備工程與機械化·
秸稈還田施肥點播機粉碎拋撒裝置結構設計與優(yōu)化
秦 寬1,2,3,曹成茂1,2,3※,廖移山4,王超群1,方梁菲1,葛 俊1
(1. 安徽農業(yè)大學工學院,合肥 230036;2. 安徽省智能農機裝備工程實驗室,合肥 230036;3. 農業(yè)部南方主要農作物生產技術與裝備重點實驗室,合肥 230036;4. 科鳴農業(yè)機械有限公司,宿州 234113)
針對小麥秸稈粉碎還田免耕播種過程中出現(xiàn)的堵塞、架種與晾籽問題,該文對秸稈粉碎還田施肥點播機秸稈粉碎拋撒裝置結構進行設計,采用理論分析、ADAMS仿真方法對切茬甩刀、切茬定刀、切茬粉碎機構與開溝器配合尺寸等秸稈粉碎拋撒裝置關鍵參數(shù)進行設計,通過田間優(yōu)化試驗最終確定開溝器前側至切茬甩刀水平位置端面距離為2.3 cm,秸稈擋板傾斜角為22°,此時晾籽率最低,為1.65%。作業(yè)性能驗證試驗表明:當整機的粉碎拋撒裝置采用設計參數(shù)進行作業(yè)時,播深合格率為81.3%,秸稈粉碎長度合格率為96.6%,秸稈拋撒范圍合格率為90.2%,秸稈拋撒不均勻度為11.9%,均優(yōu)于標準要求,滿足作業(yè)要求,試驗過程全程無堵塞,點播機切茬粉碎拋撒裝置可使秸稈全量還田同時保持機具良好通過性,實現(xiàn)免耕地無殘茬播種并完成高質量秸稈粉碎拋撒蓋種。本研究可為從秸稈粉碎拋撒角度解決堵塞問題、為免耕播種環(huán)境的相關機具研發(fā)提供參考。
農業(yè)機械;設計;免耕播種;秸稈還田;防堵;粉碎
在推廣保護性耕作的大背景下,免耕播種方式發(fā)展迅速[1-2],其中麥茬地免耕種植模式被廣泛采用[3-5]。國內外已研制出針對麥茬地不同作物的免耕播種機[6-8],但由于麥茬地殘茬較多,容易造成免耕播種機堵塞,國內外學者已針對此問題進行了深入研究,如林靜等采用阿基米德螺旋線型缺口圓盤刀實現(xiàn)密植作物留茬地播種防堵[9];侯守印等采用側向滑切清秸刀齒解決了機具作業(yè)過程中秸稈纏繞問題[10];趙宏波等設計了條帶式旋切后拋防堵裝置,解決了玉米秸稈茬地小麥免耕播種機堵塞問題[11];Torbert等利用帶齒圓盤解決高留茬地免耕播種的防堵問題[12],國內外學者通過對開溝器結構改進、增加清茬裝置等減少了免耕播種機的堵塞,提高了通過率,但解決方法多從機器自身結構入手,缺少從秸稈殘茬粉碎拋撒角度進行防堵性能的機理研究,特別是秸稈柔性特性下的機器-秸稈互作機理研究仍不全面[13-14]。
此外,對于玉米、花生、大豆等大籽粒且需精量點播的麥茬地免耕播種[15],要求所播種子應避免落于秸稈殘茬表面而產生架種、晾籽現(xiàn)象[16-18],且應具有合理播種深度[19],本文針對此類作物播種的農藝需求及碎茬防堵需要[20],對秸稈粉碎還田施肥點播機秸稈粉碎拋撒裝置關鍵參數(shù)進行設計,從秸稈拋撒作業(yè)模式方面解決堵塞的發(fā)生,以實現(xiàn)大籽粒作物麥茬地免耕無殘茬精量點播。
秸稈粉碎還田施肥點播機(以下簡稱點播機)總體結構如圖1所示,主要由切茬粉碎機構、精量點播排種機構、排肥機構、傳動裝置組成,其中切茬粉碎機構主要由切茬刀軸、切茬甩刀、切茬定刀組成;排種機構主要由指夾式排種器與鋤鏟式開溝器組成;排肥機構主要由槽輪式排肥器與鋤鏟式開溝器組成。
中央傳動齒輪箱及側向傳動皮帶將拖拉機尾輸出動力傳遞給切茬刀軸,排種器與排肥器動力由地輪提供。點播機主要結構與性能參數(shù)如表1所示。
秸稈粉碎還田施肥點播機與輪式拖拉機配套,拖拉機動力傳遞至變速箱,變速箱通過帶傳動將動力傳遞給切茬刀軸,切茬刀軸高速反轉帶動切茬甩刀轉動,切茬甩刀與切茬定刀相配合,將小麥秸稈切碎,切茬甩刀與后側鋤鏟式開溝器距離較近,使鋤鏟式開溝器前側秸稈殘茬均被切碎并在切茬甩刀高速反轉離心作用下,被均勻拋撒于鋤鏟式開溝器后方,使鋤鏟式開溝器播出種子始終播入無秸稈殘茬的種溝,避免秸稈殘茬在鋤鏟式開溝器處產生壅堵,保證種子無架種、晾籽現(xiàn)象。被均勻拋撒于鋤鏟式開溝器后方的秸稈覆蓋在種子表面。指夾式排種器與外槽輪排肥器橫向等距交替排列,下方分別對應一個鋤鏟式開溝器,種子與肥料通過鋤鏟式開溝器排入溝內,點播機一次作業(yè)可完成秸稈殘茬粉碎拋撒還田、大籽粒作物精量點播、種肥分施(側施肥),在保證秸稈全量還田的同時避免了免耕播種機的堵塞問題,被拋撒于開溝器后側的秸稈覆蓋在土表,達到蓋種、保墑保水、增加土壤肥力的目的。
1.肥箱 2.種箱 3.指夾式排種器 4.排種斗 5.切茬定刀 6.地輪 7.開溝器 8.切茬刀軸 9.切茬刀座 10.切茬甩刀 11.罩殼 12.傳動裝置 13.機架 14.排肥斗 15.槽輪式排肥器
表1 秸稈粉碎還田施肥點播機主要結構與性能參數(shù)
切茬粉碎機構主要由切茬刀軸、切茬甩刀、切茬定刀所組成,其目的是將地表小麥秸稈殘茬完全切碎還田,因此要求切茬刀軸具有一定轉速,切茬甩刀選型正確且在切茬刀軸上排布合理,切茬定刀構型設計需與切茬甩刀相匹配,以配合甩刀切碎秸稈,使其粉碎成段與纖維狀。
2.1.1 切茬甩刀
為保證對秸稈殘茬具有較好粉碎效果,秸稈粉碎機構切茬甩刀選擇Y型粉碎型甩刀,由2片彎刀組成Y型對稱結構,刀片切割部位具有刃口,具有揀拾效果好、粉碎效率高、質量輕、所受阻力小、功率消耗低的特點。切茬甩刀結構如圖2所示。切茬甩刀長度過長將增大機器結構,穩(wěn)定性變差,過小則需增大刀軸轉速才能將秸稈粉碎、增加功耗,切茬甩刀長度應與最小留茬高度相近,本機的切茬粉碎還田為主要功能,要求麥茬留茬高度下限為160 mm,因此切茬甩刀長度1設計為159 mm。在保證強度的情況下,切茬甩刀厚度應在5~10 mm之間[21],過大不易切碎秸稈,過小刀片易彎折,因此厚度設計為7 mm,切茬甩刀寬度過大,單刀阻力增大,彎曲處易彎折,寬度過小,碎茬率低,漏茬現(xiàn)象增加,切茬甩刀寬度應在65~70 mm之間[22],因此切茬甩刀寬度2設計為68 mm。Y型口角度過小會使切茬甩刀切茬受力增大,角度過大則會造成切茬粉碎機構易堵塞,應在90°~150°之間[23],本文取中間值,Y型口角度設計為120°。Y型口高度3是切碎秸稈關鍵參數(shù),應略大于秸稈粉碎長度目標50 mm[24],因此設計為60 mm。切茬甩刀采用65Mn鋼鍛造,入土工作部分經淬火處理,硬度為 HRC50~55,表面采用NiWC合金粉末碰焊,增加表面耐磨性。
注:D1為切茬甩刀長度,mm;h為切茬甩刀厚度,mm;D2為切茬甩刀寬度,mm;φ為Y型口角度,(°);D3為Y型口高度,mm。
2.1.2 切茬甩刀在切茬刀軸上的排布
秸稈粉碎動刀對秸稈切碎方式屬于無支撐切割,切割端線速度要求較高,根據(jù)已有研究結果,動刀刀端線速度應大于34 m/s[25],因此切茬刀軸轉速設計為2 000 r/min,切茬甩刀外圍線速度為36 m/s[26],則刀輥回轉半徑為334 mm,為能夠充分將地面秸稈撿拾粉碎,并在切茬甩刀與刀軸高速旋轉帶動下將粉碎秸稈卷入罩殼與切茬定刀組成的粉碎區(qū)域進行再次粉碎,最終使粉碎秸稈沿罩殼與擋板拋撒于開溝器后方,切茬刀軸采用反轉作業(yè),刀軸直徑不宜過大,否則會增加整機質量,但應大于切茬甩刀長度,以保證除茬深度,因此刀軸直徑設計為185 mm,其長度應略大于機器幅寬,以保證切茬范圍,長度設計為2 138 mm。
秸稈被切碎后,過多的切茬甩刀數(shù)量會影響粉碎秸稈順利排出,且增加功率消耗,而過少則達不到粉碎秸稈的目的,切茬甩刀數(shù)量由式(1)確定[27]。
式中為切茬甩刀排布密度,片/mm;為甩刀數(shù)量,片;為機具作業(yè)幅寬,mm。Y型切茬甩刀排布密度一般為2.3~4片/mm[28],本秸稈粉碎機構切茬甩刀與切茬定刀配合粉碎秸稈殘茬,甩刀排布密度適中較為合理,因此甩刀排布密度確定為3片/mm;本機作業(yè)幅寬為2 000 mm,因此由式(1)確定切茬甩刀為60片,即為30組Y型切茬甩刀。每組甩刀以鉸鏈形式安裝在切茬刀軸刀座上。
30組切茬甩刀在刀軸上采用雙螺旋線形式交錯排列,2條螺旋線相位角成180°[29],由于切茬甩刀以鉸鏈形式安裝在刀軸上,切茬甩刀在切割秸稈殘茬時,切割力、徑向位置、振動都具有一定隨機性,因此確定切茬甩刀在刀軸排列時應考慮動平衡,將一起轉動的切茬甩刀與刀軸看成一個剛體,其旋轉時達到動平衡,甩刀在排列時應同時滿足式(2)~式(5):
式中I、I分別為整個切茬甩刀與刀軸剛體相對于軸、軸的轉動慣量,kg/m2;I、I分別為此剛體在平面、平面截面對軸和軸、軸和軸的慣性積,kg/m2;為刀軸上切茬甩刀組數(shù);為相鄰切茬甩刀之間升角角度,(°),其坐標軸如圖3所示。已知切茬甩刀組數(shù)為30,由式(2)~(5)可知、同一螺旋線上切茬甩刀之間升角為85°。為保證切茬甩刀可以切碎整個工作幅寬內的秸稈殘茬,相鄰2組切茬甩刀之間距離1為67 mm,靠近軸端的2個甩刀端面至軸端面距離2為60.5 mm,切茬甩刀在刀軸上的整體排布如圖3所示。
1. 切茬刀軸 2. 切茬刀座 3. 切茬甩刀
1. Shaft of stubble cutter 2. Holder of stubble cutter 3. Swing stubble cutter
注:、、為坐標軸;為相鄰切茬甩刀之間升角,(°);1為相鄰2個切茬甩刀之間距離,mm;2為靠近軸端的2個甩刀端面至軸端面距離,mm。
Note:,andrepresents coordinate;represents lead angle of adjacent swing stubble cutter, (°);1represents distance of adjacent swing stubble cutter, mm;2represents distance of end face of 2 swing stubble cutter close to shaft to shaft end face, mm.
圖3 切茬甩刀在切茬刀軸上的排布示意圖
Fig.3 Arrangement schematic of swing stubble cutter on shaft of stubble cutter
2.1.3 切茬定刀
切茬定刀固定于罩殼內側,與切茬甩刀相配合切碎秸稈,為使在高速反轉離心作用下帶起的秸稈能夠在速度上升階段與切茬定刀相碰撞并被切斷,切茬定刀在安裝于罩殼內部時與水平方向呈一個傾斜角度,考慮切茬甩刀長度與寬度比例,角度應滿足:
式中為切茬定刀安裝傾斜角,(°);1為切茬甩刀長度,mm;2為切茬甩刀寬度。將切茬甩刀參數(shù)代入式(6),得出為12°,每個切茬定刀對應1組切茬甩刀,因此切茬定刀為30個,切茬定刀安裝位置對應每組切茬甩刀Y型口中心位置,因此每個相鄰切茬定刀之間距離均為67 mm,為與切茬甩刀Y型口緊密配合切碎秸稈且不發(fā)生干涉,切茬定刀總長應大于切茬甩刀Y型口高度,但過大會增大機器結構并減小秸稈拋出距離,考慮加工精度,設計切茬定刀總長3為切茬甩刀Y型口高度的1.42倍,為84 mm,切茬定刀與切茬甩刀Y型口相配合的刃口部分長度應小于切茬甩刀Y型口高度,以滿足切茬定刀順利通過切茬甩刀Y型口并將秸稈切碎,確定切茬定刀與切茬甩刀Y型口相配合的刃口部分長度4約為切茬甩刀Y型口高度的0.83倍,取整為50 mm,在保證切茬定刀與切茬甩刀不干涉的情況下,為滿足切茬定刀與甩刀配合的碎茬效果,應盡量減小切茬定刀末端至切茬甩刀Y型口交點距離5,考慮實際配合間隙,設計為8 mm,因切茬甩刀旋轉通過并與切茬定刀相配合切碎秸稈,因此切茬定刀寬度1應略寬于甩刀,才能保證秸稈與切茬定刀有一定接觸時間以切碎秸稈,因此設計切茬定刀寬度1約為切茬甩刀寬度的1.12倍,取整為76 mm,切茬定刀刃口部分具有一定傾斜角度,以保證定刀既可以切碎秸稈,又可使秸稈在定刀處切割后沿傾斜刃口向后飛出,不發(fā)生堵塞,角應滿足:
式中為切茬定刀對秸稈正切力,N;為切茬定刀刃口傾斜角,(°);為秸稈與切茬定刀碰撞時初速度,m/s;1為秸稈離開切茬定刀時水平速度,m/s;為秸稈質量,g;為秸稈與切茬定刀接觸至離開時間,s。根據(jù)已知研究結果,小麥秸稈正向切斷力應不小于128 N[30],因此切茬定刀對秸稈正切力取128 N;秸稈隨切茬甩刀一起做圓周運動,因此應與甩刀外圍線速度一致,為36 m/s;為保證秸稈在離開切茬定刀后能飛至開溝器后側;根據(jù)秸稈拋出特性[31],1速度應不小于20 m/s,在此取最小值20 m/s;為12°,根據(jù)已知參數(shù),代入式(7)~(8),可得為56.6°,切茬定刀結構如圖4所示。
切茬粉碎機構將秸稈切碎向后拋撒,需將粉碎秸稈拋撒于開溝器后側,為播種作物提供無秸稈殘茬的播種環(huán)境,在秸稈粉碎后飛出速度一定的情況下,其能否落于開溝器后側,與開溝器至切茬甩刀距離、秸稈擋板傾斜角度有關,如圖5所示,因此需對其關鍵配合尺寸參數(shù)開溝器前側至切茬甩刀水平位置端面距離6及秸稈擋板傾斜角進行計算。
1.切茬定刀 2.切茬甩刀 3.定刀刀刃 4.秸稈
1.Fixed stubble cutter 2.Swing stubble cutter 3.Blade of fixed cutter 4.Straw
注:3為切茬定刀總長,mm;4為切茬定刀刃口部分長度,mm;5為切茬定刀末端至切茬甩刀Y型口交點距離,mm;1為切茬定刀寬度,mm;為切茬定刀安裝傾斜角,(°);為切茬定刀刃口傾斜角,(°);為切茬定刀對秸稈正切力,N;為秸稈與切茬定刀碰撞時初速度,m·s-1;1為秸稈離開切茬定刀時水平速度,m·s-1;為秸稈質量,g;為重力加速度,m·s-2。
Note:3represents the length of fixed stubble cutter, mm;4represents the blade length of fixed stubble cutter, mm;5represents the distance of fixed stubble cutter tail end to Y-shaped intersection point of swing stubble cutter, mm;1represents the width of fixed stubble cutter, mm;represents the installation angle of inclination of fixed stubble cutter, (°);represents the inclination blade angle of fixed stubble cutter, (°);represents the tangential force of fixed stubble cutter to straw, N;represents initial velocity of straw colliding with fixed stubble cutter, m·s-1;1represents horizontal velocity of straw leaving with fixed stubble cutter, m·s-1;represents mass of straw, g;is acceleration of gravity, m·s-2.
圖4 切茬定刀結構示意圖
Fig.4 Structure diagram of fixed stubble cutter
1.切茬定刀 2.罩殼 3.秸稈擋板 4.切茬甩刀 5.開溝器
1.Fixed stubble cutter 2.Housing 3.Baffle of straw 4.Swing stubble cutter 5.Furrow opener
注:為機器前進速度,m·s-1;6為開溝器前側至切茬甩刀水平位置端面距離,mm;表示切茬刀軸旋轉速度,r·min-1;為秸稈擋板傾斜角度,(°)。
Note:represents velocity of machine travel, m·s-1;6represents the distance of opener front end to swing stubble cutter horizontal position end face, mm;represents the slope angle of baffle of straw, (°);represents rotational velocity of shaft of stubble cutter, r·min-1;represents the slope angle of straw baffle, (°).
圖5 切茬粉碎機構與開溝器配合關系示意圖
Fig.5 Schematic diagram of matching relationship between stubble crushing mechanism and furrow opener
由于被切茬粉碎機構粉碎拋出的秸稈量大且無序、混亂,單個粉碎秸稈的狀態(tài)特征無法代替整體秸稈群狀態(tài),因此考慮用仿真試驗對整個秸稈群從切茬粉碎機構拋出至落地的過程進行運動學分析,以確定能夠使秸稈落于開溝器后側理想位置的6及的參數(shù)范圍。
2.2.1 柔性體秸稈模型的建立
采用動力學仿真軟件ADAMS對秸稈從切茬粉碎機構拋出后至落地的整個過程進行模擬,為提高仿真結果的準確性,建立與真實秸稈特性一致的柔性體小麥秸稈模型。將Pro/E建立的秸稈模型以IGS格式導入ADAMS,如圖6a所示,根據(jù)麥秸稈自身特性及已有研究結果[32-33]設置秸稈參數(shù):秸稈長度為50 mm,泊松比為0.3,彈性模量為1. 0×106N/m2,密度為241 kg/m,水分滲透深度5.8 mm,采用ADAMS/Flex模塊將秸稈進行網格劃分以進行柔性化[34],網格化后的秸稈如圖6b所示,為使秸稈在與切茬甩刀和定刀碰撞時產生一定形變,建立啞物質[35]固結于秸稈模型上,此時秸稈在受到外力時會產生形變,如圖6c所示。
圖6 秸稈仿真模型
2.2.2 秸稈粉碎拋撒過程仿真試驗
將切茬粉碎機構、秸稈擋板及開溝器模型導入ADAMS,切茬甩刀設置為65Mn鋼,秸稈擋板、開溝器、切茬粉碎機構其他材料設置為45號鋼,建立長度為10 m,高為0.5 m,寬度為2 m的土壤模型,其泊松比為0.4,彈性模量為2. 3×107N/m2,密度為2 500 kg/m[36],將建立的秸稈模型以3.4 N接觸力[34]豎直約束于土壤模型上,切茬甩刀與秸稈接觸類型設置為實體與柔性體接觸,其接觸剛度系數(shù)為3.8×103N/mm,阻尼系數(shù)為1.52 N·s/mm,靜摩擦系數(shù)為0.3,動摩擦系數(shù)為0.01,開溝器與土壤接觸類型設置為實體與實體接觸,其接觸剛度系數(shù)為2.85×103N/mm,阻尼系數(shù)為0.57 N·s/mm,靜摩擦系數(shù)為0.6,動摩擦系數(shù)為0.05[37],根據(jù)根茬覆蓋量實際情況,共設置13 400個秸稈均勻排布于土壤表面,點播機初始位置正對土壤模型,切茬刀軸轉速設置為2 000 r/min反轉,前進速度設置與實際作業(yè)一致,為4.1 km/h,進行秸稈粉碎拋撒仿真試驗,試驗過程如圖7所示。
為使秸稈拋撒于開溝器后側理想位置,開溝器前側至切茬甩刀水平位置端面距離6在不與切茬甩刀干涉的情況下應盡量小,因此仿真過程中6設置4個水平,分別為2、4、6和8 cm;秸稈擋板傾斜角過大秸稈易拋撒于開溝器前側,過小則導致秸稈拋撒過于分散,因此仿真過程設置5個水平,分別為15°、20°、25°、30°和35°,仿真試驗進行2因素全水平試驗,每組因素水平重復3次,試驗考察拋撒范圍合格率,取平均值,拋撒范圍合格率按式(9)計算。
式中P為拋撒范圍合格率,%;1為切茬刀軸旋轉1周拋撒在合格區(qū)域內秸稈個數(shù);為切茬刀軸旋轉1周拋撒秸稈總個數(shù)。其中合格區(qū)域為秸稈拋撒于開溝器后側的1 m區(qū)域范圍。
1.切茬定刀 2.罩殼 3.切茬粉碎機構 4.秸稈 5.秸稈擋板 6.開溝器 7.土壤
1.Fixed stubble cutter 2.Housing 3.Stubble crushing mechanism 4.Straw 5. Straw baffle 6.Furrow opener 7.Soil
圖7 秸稈粉碎拋撒過程仿真
Fig.7 Simulation of straw crushing and scattering process
2.2.3 仿真試驗結果與分析
秸稈拋撒范圍合格率仿真試驗結果如表2所示,由表2可知,當開溝器前側至切茬甩刀水平位置端面距離為2、4 cm時,拋撒范圍合格率均在84.9%以上,其中秸稈擋板傾斜角為20°、25°時,拋撒范圍合格率均在89%以上,因此通過仿真試驗確定開溝器前側至切茬甩刀水平位置端面距離6范圍為2~4 cm,秸稈擋板傾斜角范圍為20°~25°。
表2 秸稈拋撒范圍合格率仿真試驗結果
注:P為拋撒范圍合格率,%。
Note:Prepresents acceptability of scattering range, %.
為檢驗點播機作業(yè)性能、秸稈粉碎拋撒裝置各關鍵參數(shù)設計的合理性及進一步確定切茬粉碎機構與開溝器配合尺寸最優(yōu)值,對秸稈粉碎還田施肥點播機進行田間優(yōu)化試驗。
田間優(yōu)化試驗于2019年6月17日在安徽省宿州市埇橋區(qū)蘆嶺鎮(zhèn)進行,試驗地為未耕留茬地,前茬作物為淮麥22,牽引拖拉機為東方紅LX1000,作業(yè)速度4.1 km/h,試驗機器為安徽農業(yè)大學工學院與宿州科鳴公司聯(lián)合研制的秸稈粉碎還田施肥點播機,切茬刀軸轉速穩(wěn)定在2 000 r/min,播種作物為皖豆33,土壤堅實度為184.1 N,土壤含水率為17.2%,土壤容重為1.13 g/cm3,留茬高度為18~30 cm,根茬覆蓋量為0.67 kg/m2。試驗現(xiàn)場如圖8所示。
圖8 田間優(yōu)化試驗
試驗因素為開溝器前側至切茬甩刀水平位置端面距離6與秸稈擋板傾斜角,因素水平設置以仿真試驗結果為依據(jù),每個因素設置3個水平,試驗因素與水平如表3所示,點播機秸稈粉碎拋撒裝置設計最終以解決堵塞,避免晾籽、架種為目的,因此試驗指標為機具作業(yè)通過性與晾籽率。
表3 試驗因素與水平
3.2.1 通過性試驗
根據(jù)農業(yè)行業(yè)標準《免耕播種機質量評價技術規(guī)范》[38]及農業(yè)部農機鑒定總站免耕播種機性能檢測要求,按照正常的作業(yè)速度前進,觀察機具在作業(yè)過程中能否正常作業(yè),記錄機具清茬次數(shù),往返作業(yè)300 m為1組,共5組。
3.2.2 晾籽率試驗
根據(jù)《免耕播種機質量評價技術規(guī)范》,在單程交錯選取4個小區(qū),每個小區(qū)為1個工作幅寬,長度為10 m,測定每個小區(qū)的面積及晾籽質量,按照式(10)計算晾籽率,結果取平均值。
式中P為晾籽率,%;P為小區(qū)晾籽質量,kg;M單位面積播種量,kg/hm2;S為小區(qū)面積;hm2。
對于點播機通過性試驗結果,整個試驗過程中未發(fā)現(xiàn)開溝器壅堵現(xiàn)象,說明秸稈粉碎拋撒裝置采用甩刀高速反轉與定刀配合切碎并拋撒秸稈至開溝器后側的作業(yè)模式可避免堵塞發(fā)生,機器具有良好通過性。
晾籽率試驗結果如表4所示,試驗后采用Spss19.0 軟件分析試驗因素對指標值的響應效應,變量之間的響應效應關系用二次多項式回歸模型表示,對回歸模型中各項回歸系數(shù)進行方差分析與檢驗,方差分析結果如表5所示。
表4 田間優(yōu)化試驗結果
注:P為晾籽率,%。
Note: Prepresents seed drying rate, %.
根據(jù)表5中所得擬合系數(shù),去除其中不顯著項后,得到響應值與自變量的二次項式回歸模型,如式(11)所示。
由表5可知,目標函數(shù)P的決定系數(shù)為0.92,說明回歸模型具有很高的擬合精度。目標函數(shù)P的失擬項值為0.493 5,大于0.05,說明無失擬因素存在,可以用上述回歸方程代替試驗真實點對試驗結果進行分析。目標函數(shù)P模型顯著性值為0.007 9,說明該模型具有統(tǒng)計學意義,對于目標函數(shù)P,因素6、、2影響非常顯著,因素6、62影響顯著。開溝器前側至切茬甩刀水平位置端面距離6對于目標函數(shù)P的影響程度大于秸稈擋板傾斜角。
將試驗因素對晾籽率影響進行響應曲面分析,結果如圖9。由圖9可知,隨著開溝器前側至切茬甩刀水平位置端面距離與秸稈擋板傾斜角的增大,晾籽率均呈先減小后增大趨勢,當開溝器前側至切茬甩刀水平位置端面距離為2.32 cm、秸稈擋板傾斜角為21.8°時,晾籽率存在一個最優(yōu)值,為1.63%。根據(jù)實際加工精度要求,確定開溝器前側至切茬甩刀水平位置端面距離設計為2.3 cm,秸稈擋板傾斜角設計為22°,此時晾籽率為1.65%。
表5 二次項模型方差分析
注:“**”表示在0.01水平非常顯著;“*”表示在0.05水平顯著。
Note: “**”means very significant at 0.01 level. "*" means significant at 0.05 level.
圖9 晾籽率對試驗因素的響應曲面
對秸稈粉碎還田施肥點播機進行作業(yè)性能驗證試驗,驗證所設計的秸稈粉碎拋撒裝置關鍵參數(shù)可行性及整機作業(yè)質量,重點考察點播機的秸稈防堵、粉碎、拋撒及提供免耕地無殘茬播種環(huán)境的能力。試驗于2019年6月21日在安徽省宿州市埇橋區(qū)蘆嶺鎮(zhèn)進行,試驗環(huán)境與前文田間優(yōu)化試驗一致。
試驗指標與方法根據(jù)NY/T1768-2009《免耕播種機質量評價技術規(guī)范》、JB/T6678-2001《秸稈粉碎還田機》[39]進行設計與考察。
4.1.1 播深合格率試驗
在作業(yè)田塊對角線上隨機選取4個小區(qū),每個小區(qū)幅寬為1個作業(yè)幅寬,長度為4 m,每行選5個測點,在小區(qū)內均布,在測點上垂直切開土層,測定最上層種子的覆土厚度,根據(jù)當?shù)胤N植要求,覆土厚度2~4 cm為合格,按照式(12)計算播種深度合格率。
式中H為播深合格率,%;1為播深合格點數(shù);0為測量總點數(shù)。
4.1.2 秸稈粉碎長度合格率試驗
在機器作業(yè)行程的輪轍間等距測定3點,每點隨機測定1 m2面積,撿拾所有秸稈進行稱質量。從中挑出長度不合格的秸稈并稱質量(長度大于5 cm為不合格),按照式(13)計算秸稈粉碎長度合格率。
式中F為秸稈粉碎長度合格率,%;1為不合格秸稈質量,kg;0為測量秸稈總質量,kg。
4.1.3 秸稈拋撒不均勻度試驗
秸稈拋撒不均勻度的測定與秸稈粉碎長度率測定同時進行,測定方法相同。按照式(14)~式(15)計算秸稈拋撒不均勻度。
式中M為秸稈拋撒不均勻度;M為測定區(qū)內各點平均質量,kg;為測量點數(shù),f為每個測量點秸稈質量,kg。
4.1.4 純生產率試驗
純生產率按式(16)計算。
式中E為純工作小時生產率,hm2/h;Q為純工作時間內作業(yè)面積,hm2;T為純工作時間,h。
作業(yè)性能驗證試驗結果如表6所示。
表6 驗證試驗結果
由表6可知,考察的試驗指標結果均優(yōu)于標準要求值,說明點播機能夠滿足小麥秸稈根茬粉碎拋撒還田及作物播種的作業(yè)質量需求。試驗過程全程無堵塞,晾籽率為1.58%,說明點播機切茬粉碎拋撒裝置的結構及關鍵參數(shù)設計合理,可以保證秸稈全量還田的同時保持機具良好通過性,避免種子發(fā)生架種、晾籽現(xiàn)象。驗證試驗的晾籽率與響應曲面分析所得最優(yōu)值相對誤差為4.4%,在可接受范圍,驗證了田間優(yōu)化試驗的二次多項式回歸模型的可行性與準確性。
針對小麥秸稈粉碎還田免耕精量播種的需要,對秸稈粉碎還田施肥點播機粉碎拋撒裝置關鍵參數(shù)進行設計,從秸稈粉碎拋撒角度解決免耕播種機堵塞問題,避免播種時發(fā)生吊苗、架種現(xiàn)象,主要結果如下:
1)采用理論分析、仿真試驗確定秸稈粉碎拋撒裝置的關鍵參數(shù),包括切茬甩刀、切茬定刀、切茬粉碎機構與開溝器配合尺寸,并通過田間優(yōu)化試驗確定開溝器前側至切茬甩刀水平位置端面距離為2.3 cm,秸稈擋板傾斜角為22°,此時晾籽率最小,為1.65%。
2)作業(yè)性能驗證試驗結果表明,整機作業(yè)的播深合格率為81.3%,秸稈粉碎長度合格率為96.6%,秸稈拋撒范圍合格率為90.2%,秸稈拋撒不均勻度為11.9%,晾籽率為1.58%,均優(yōu)于標準要求值,滿足作業(yè)要求,試驗過程全程無堵塞,說明設計的點播機切茬粉碎拋撒裝置能夠保證秸稈全量還田同時保持良好通過性,在免耕地實現(xiàn)無殘茬播種的同時進行高質量秸稈粉碎拋撒蓋種。
本文的切茬刀軸采用高轉速的反轉作業(yè),高速旋轉的切茬甩刀可將粉碎秸稈卷入罩殼,與切茬定刀組成的粉碎區(qū)域對秸稈進行再次粉碎,且在秸稈擋板的引導下拋撒于開溝器后方的指定區(qū)域,避免了刀軸正轉使甩刀切下的秸稈直接飛向下方,不能到達罩殼與切茬定刀組成的粉碎區(qū)域進行再次粉碎及不能拋撒于開溝器后方的問題。此外,在確定開溝器前側至切茬甩刀水平位置端面距離與秸稈擋板傾斜角范圍時,由于拋撒的秸稈群具有無序、混亂性,且秸稈長度、速度、方向位置均具有一定的不確定性,理論計算難度大,因此嘗試采用ADAMS仿真手段進行仿真,并建立柔性體秸稈模型,此方法的可行性與準確性雖已在田間試驗中得到驗證,但秸稈柔性體模型與真實秸稈狀態(tài)及運動特性仍有一定差距,可在后期深入研究如何利用仿真手段進一步逼近秸稈及秸稈群的運動學及動力學特性。
[1]何進,李洪文,陳海濤,等. 保護性耕作技術與機具研究進[J]. 農業(yè)機械學報,2018,49(4):1-19. He Jin, Li Hongwen, Chen Haitao, et al. Research progress of conservation tillage technology and machine[J]. Transcations of the Chinese Society for Agricultural Machinery, 2018, 49(4): 1-19. (in Chinese with English abstract)
[2]林靜,宋玉秋,李寶筏. 東北壟作區(qū)機械免耕播種工藝[J]. 農業(yè)工程學報,2014,30(9):50-57. Lin Jing, Song Yuqiu, Li Baofa. Mechanical no-tillage sowing technology in ridge area of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 50-57. (in English with Chinese abstract)
[3]Jia H L, Jiang X M, Yuan H F, et al. Stalk cutting mechanism of no-tillage planter for wide/narrow row farming mode[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(2): 26-35.
[4]Susha V S, Das T K, Nath C P, et al. Impacts of tillage and herbicide mixture on weed interference, agronomic productivity and profitability of a maize–wheat system in the north-western Indo-Gangetic Plains[J]. Field Crops Research, 2018, 219(4): 180-191.
[5]Francetto T R, Alon?o A S, Carpes D P, et al. Specific demands to the traction of cutting discs and furrow openers for the no-tillage system[J]. Australian Journal of Crop Science, 2016, 10(7): 1040-1046.
[6]王奇,朱龍圖,李名偉,等. 指夾式玉米免耕精密播種機振動特性及對排種性能的影響[J]. 農業(yè)工程學報,2019,35(9):9-18.Wang Qi, Zhu Longtu, Li Mingwei, et al. Vibration characteristics of corn no-tillage finger-type precision planter and its effect on seeding performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 9-18. (in Chinese with English abstract)
[7]付乾坤,薦世春,賈洪雷,等. 玉米滅茬起壟施肥播種機的設計與試驗[J]. 農業(yè)工程學報,2016,32(4):9-16. Fu Qiankun, Jian Shichun, Jia Honglei, et al. Design and experiment on maize stubble cleaning fertilization ridging seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 9- 16. (in Chinese with English abstract)
[8]吳南,林靜,李寶筏. 免耕播種機精量穴施肥系統(tǒng)設計與試驗[J]. 農業(yè)機械學報,2018,49(7):64-72. Wu Nan, Lin Jing, Li Baofa. Design and test on no-tillage planter precise hole fertilization system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 64-72. (in Chinese with English abstract)
[9]林靜,李寶筏,李宏哲. 阿基米德螺線型破茬開溝和切撥防堵裝置的設計與試驗[J]. 農業(yè)工程學報,2015,31(17):10-19. Lin Jing, Li Baofa, Li Hongzhe. Design and experiment of archimedes spiral type stubble breaking ditching device and stubble breaking anti blocking device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 10-19. (in Chinese with English abstract)
[10]侯守印,陳海濤,鄒震,等. 原茬地種床整備側向滑切清秸刀齒設計與試驗[J]. 農業(yè)機械學報,2019,50(6):41-51. Hou Shouyin, Chen Haitao, Zou Zhen, et al. Design and test of side-direction straw-cleaning blade for seedbed treatment of original stubble planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 41-51. (in Chinese with English abstract)
[11]趙宏波,何進,李洪文,等. 條帶式旋切后拋防堵裝置設計與試驗[J]. 農業(yè)機械學報,2018,49(5):65-75. Zhao Hongbo, He Jin, Li Hongwen, et al. Design and experiment of strip rotary-cut-throw anti-blocking implement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 65-75. (in Chinese with English abstract)
[12]Torbert H A, Ingram J T, Prior S A. High residue conservation tillage system for cotton production: a farmer's perspective[J]. Agrophysical Journal, 2015, 2(1): 1-14.
[13]章志強,何進,李洪文,等. 可調節(jié)式秸稈粉碎拋撒還田機設計與試驗[J]. 農業(yè)機械學報,2017,48(9):76-86. Zhang Zhiqiang, He Jin, Li Hongwen, et al. Design and experiment on straw chopper cum spreader with adjustable spreading device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 76-86. (in Chinese with English abstract)
[14]牛萌萌,方會敏,Chandio F A,等. 秸稈分撥引導式玉米免耕防堵機構設計與試驗[J]. 農業(yè)機械學報,2019,50(8):52-58. Niu Mengmeng, Fang Huimin, Chandio F A. et al. Design and experiment of separating-guiding anti-blocking mechanism for no-tillage maize planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 52-58. (in Chinese with English abstract)
[15]朱瑞祥,葛世強,翟長遠,等. 大籽粒作物漏播自補種裝置設計與試驗[J]. 農業(yè)工程學報,2014,30(21):1-8. Zhu Ruixiang, Ge Shiqiang, Zhai Changyuan, et al. Design and experiment of automatic reseeding device for miss-seeding of crops with large grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 1-8. (in Chinese with English abstract)
[16]王韋韋,朱存璽,陳黎卿,等. 玉米免耕播種機主動式秸稈移位防堵裝置的設計與試驗[J]. 農業(yè)工程學報,2017,33(24):10-17. Wang Weiwei, Zhu Cunxi, Chen Liqing, et al. Design and experiment of active straw-removing anti-blocking device for maize no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 10-17. (in Chinese with English abstract)
[17]顧峰瑋,胡志超,陳有慶,等. “潔區(qū)播種”思路下麥茬全秸稈覆蓋地花生免耕播種機研制[J]. 農業(yè)工程學報,2016,32(20):15-23. Gu Fengwei, Hu Zhichao, Chen Youqing, et al. Development and experiment of peanut no-till planter under full wheat straw mulching based on “clean area planting”[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 15-23. (in Chinese with English abstract)
[18]Mourtzinis S, Marburger D, Gaska J, et al. Corn and soybean yield response to tillage, rotation, and nematicide seed Treatment[J]. Crop Science, 2017, 57(3): 1-9.
[19]秦寬,丁為民,方志超,等. 收獲開溝埋草一體機雙圓盤開溝機構設計與參數(shù)優(yōu)化[J]. 農業(yè)工程學報,2017,33(18):27-35. Qin Kuan, Ding Weimin, Fang Zhichao, et al. Design and parameter optimization of double disk opener mechanism for harvest ditch and stalk-disposing machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 27-35. (in Chinese with English abstract)
[20]Sharipov G M, Paraforos D S, Pulatov A S, et al. Dynamic performance of a no-till seeding assembly[J]. Biosystems Engineering, 2017, 158(6): 64-75.
[21]章志強. 玉米秸稈粉碎拋撒還田機的設計與秸稈運動特性研究[D].北京:中國農業(yè)大學,2018.Zhang Zhiqiang. Research on Corn Straw Chopping and Spreading Machine Design and Dynamic Characteristic of Straw[D]. Beijing: China Agricultural University, 2018.
[22]賈洪雷,姜鑫銘,郭明卓,等. V-L 型秸稈粉碎還田刀片設計與試驗[J]. 農業(yè)工程學報,2015,31(1):28-33.Jia Honglei, Jiang Xinming, Guo Mingzhuo, et al. Design and experiment of V-L shaped smashed straw blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 28-33. (in Chinese with English abstract)
[23]王慶杰,劉正道,何進,等. 砍切式玉米秸稈還田機的設計與試驗[J]. 農業(yè)工程學報,2018,34(2):10-17. Wang Qingjie, Liu Zhengdao, He Jin, et al. Design and experiment of chopping-type maize straw returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 10-17. (in Chinese with English abstract)
[24]趙艷忠,王運興,劉海濤,等. 帶狀深松滅茬機滅茬部件設計與試驗[J]. 農業(yè)機械學報,2018,49(3):94-102.Zhao Yanzhong, Wang Xingyun, Liu Haitao, et al. Design and test of stubble-breaking components on strip subsoiling and stubble-breaking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 94-102. (in Chinese with English abstract)
[25]陳松濤,周學建,師清翔,等. 小麥秸稈還田機粉碎裝置性能影響因素試驗與優(yōu)化[J]. 農業(yè)機械學報,2007,38(9):67-70. Chen Songtao, Zhou Xuejian, Shi Qingxiang, et al. Experiment and optimization on factors affecting the performance of wheat stalk macerator smashing devices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(9): 67-70. (in Chinese with English abstract)
[26]陳黎卿,梁修天,曹成茂. 基于多體動力學的秸稈還田機虛擬仿真與功耗測試[J]. 農業(yè)機械學報,2016,47(3):106-111. Chen Liqing, Liang Xiutian, Cao Chengmao. Virtual simulation and power test of straw counters field based on multi body dynamics[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(3): 106-111. (in Chinese with English abstract)
[27]中國農業(yè)機械科學研究院. 農業(yè)機械設計手冊上冊[M]. 北京:中國農業(yè)科學技術出版社,2007.
[28]王瑞麗,楊鵬,Rabiu F J,等. 秸稈深埋還開溝滅茬機設計與試驗[J]. 農業(yè)工程學報,2017,33(5):4-47.Wang Ruili, Yang Peng, Rabiu F J, et al. Design and experiment of combine machine for deep furrowing, stubble chopping,returning and burying of chopped straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 40-47. (in Chinese with English abstract)
[29]秦寬,丁為民,方志超,等. 犁翻旋耕復式作業(yè)耕整機的設計與試驗[J]. 農業(yè)工程學報,2016,32(16):7-16. Qin Kuan, Ding Weimin, Fang Zhichao, et al. Design and experiment of plowing and rotary tillage combined machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 7-16. (in Chinese with English abstract)
[30]李小城,劉梅英,牛智有. 小麥秸稈剪切力學性能的測試[J]. 華中農業(yè)大學學報,2012,31(2):253-257. Li Xiaocheng, Liu Meiying, Niu Zhiyou. Test of shear mechanical properties of wheat stalks[J]. Journal of Huazhong Agricultural University, 2012, 31(2): 253-257. (in Chinese with English abstract)
[31]吳峰,徐弘博,顧峰瑋,等. 秸稈粉碎后拋式多功能免耕播種機秸稈輸送裝置改進[J]. 農業(yè)工程學報,2017,33(24):18-26. Wu Feng, Xu Hongbo, Gu Fengwei, et al. Improvement of straw transport device for straw-smashing back-throwing type multi-function no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 18-26. (in Chinese with English abstract)
[32]方會敏,姬長英,Tagar A A,等. 秸稈-土壤-旋耕刀系統(tǒng)中秸稈位移仿真分析[J]. 農業(yè)機械學報,2016,47(1):60-67. Fang Huimin, Ji Changying, Tagar A A, et al. Analysis of straw movement in straw-soil-rotary blade system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 60-67. (in Chinese with English abstract)
[33]Lenaerts B, Aertsen T, Tijskens E, et al. Simulation of grain-straw separation by discrete element modeling with bendable straw particles[J]. Computers and Electronics in Agriculture, 2014, 101(2): 24-33.
[34]蒲明輝,吳江. 基于ADAMS的甘蔗柔性體模型建模研究[J]. 系統(tǒng)仿真學報,2009,21(7):1930-1932. Pu Minghui, Wu Jiang. Study on flexible sugarcane modeling based on ADAMS software[J]. Journal of System Simulation, 2009, 21(7): 1930-193. (in Chinese with English abstract)
[35]崔濤,劉佳,張東興,等. 基于ANSYS和ADAMS的玉米莖稈柔性體仿真[J]. 農業(yè)機械學報,2012,43(S1):112-115. Cui Tao, Liu Jia, Zhang Dongxing, et al. Flexible body simulation for corn stem based on ANSYS and ADAMS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(S1): 112-115. (in Chinese with English abstract)
[36]韓賓,李增嘉,王蕓. 土壤耕作及秸稈還田對冬小麥生長狀況及產量的影響[J]. 農業(yè)工程學報,2007,23(2):48-53. Han Bin, Li Zengjia, Wang Yun. Effects of soil tillage and returning straw to soil on wheat growth status and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(2): 48-53. (in Chinese with English abstract)
[37]Ucgul M, John M F, Chris S. Three dimensional discrete element modeling of tillage: determination of a suitable contact modeland parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121(5): 105-117.
[38]中華人民共和國農業(yè)部. 免耕播種機質量評價技術規(guī)范:NY/T1768-2009[S]. 北京:中國標準出版社,2009.
[39]中國機械工業(yè)聯(lián)合會. 秸稈粉碎還田機:JB/T6678-2001[S].北京:中國標準出版社,2001.
Design and optimization of crushing and throwing device for straw returning to field and fertilizing hill-seeding machine
Qin Kuan1,2,3, Cao Chengmao1,2,3※, Liao Yishan4, Wang Chaoqun1, Fang Liangfei1, Ge Jun1
(1.,230036,; 2.,230036,; 3.230036,; 4.234113,)
To satisfy the need of stubbles and straws crushing returning to field and no-till seeding, a stubble crushing returning to field and fertilizing hill-seeding machine was designed. The machine could accomplish stubbles and straws crushing and returning to field, precision sowing of large grain crops and sidefertilization. In order to avoid the blockage of no-till seeding machine in field and seeds falling on crushed stubbles, the key parameters of crushing and scattering device were designed through theoretical analysis, ADAMS simulation and field experiments. Based on theses, it was determined that the length of swing stubble cutter was 159 mm, the thickness of swing stubble cutter was 7 mm, the width of swing stubble cutter was 68 mm, the included angle of Y-shaped intersection of swing stubble cutter was 120°, the height of Y-shaped intersection of swing stubble cutter was 60 mm, the swing stubble cutter was 30 groups, the lead angle of adjacent swing stubble cutter was 85°, the distance of adjacent swing stubble cutter was 67 mm, the distance of two swing stubble cutter end face to shaft end face was 60.5 mm, the length of fixed stubble cutter was 84 mm, the blade length of fixed stubble cutter was 50 mm, thedistance of fixed stubble cutter tail end to Y-shaped point of intersection of fixed stubble cutter was 8 mm, thewidth of fixed stubble cutter was 76 mm, the installation angle of inclination of fixed stubble cutter was 12°, and the blade angle of inclination of fixed stubble cutter was 56.6°. The simulation experiments confirmed that the ranges of the distance of opener front end to swing stubble cutter horizontal position end face was 2-4 cm and the slope angle of straw baffle was 20°~25°. Further, the field optimization experiments of two factors and three levels was carried out in Yongqiao district, Luling town, Suzhou city, Anhui province. The three levels of the distance of opener front end to swing stubble cutter horizontal position end face were 2, 3 and 4 cm, the three levels of the slope angle of straw baffle were 20°, 22.5° and 25°. The quadratic multiple regression equation of test factors and seed drying rate was obtained by fitting the test results, and variance analysis and response surface analysis were carried out. The results of analysis showed that the distance of opener front end to swing stubble cutter horizontal position end face had greater influence on the seed drying rate than the slope angle of straw baffle. when the distance of opener front end to swing stubble cutter horizontal position end face was 2.3 cm and the slope angle of straw baffle was 22°, the seed drying rate was 1.65%. The verification experiment showed that the machine was not blocked during the working process, the seed drying rate was 1.58%, acceptability of seeding depth was 81.3%, acceptability of straw smashing length was 96.6%, acceptability of straw scattering range was 90.2%, uneven rate of straw scattering was 11.9%, and pure productivity was 0.37 hm2/h, the results of verification experiment was better than the standard requirements. The stubble returning to field and fertilizing hill-seeding machine meet the working quality requirement of stubble smashing spilling returning to field and no-till precision sowing.
agricultural machinery; design; no-till seeding; straws returning to field; anti-blockage; crushing
秦 寬,曹成茂,廖移山,王超群,方梁菲,葛 俊. 秸稈還田施肥點播機粉碎拋撒裝置結構設計與優(yōu)化[J]. 農業(yè)工程學報,2020,36(3):1-10.doi:10.11975/j.issn.1002-6819.2020.03.001 http://www.tcsae.org
Qin Kuan, Cao Chengmao, Liao Yishan, Wang Chaoqun, Fang Liangfei, Ge Jun. Design and optimization of crushing and throwing device for straw returning to field and fertilizing hill-seeding machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 1-10. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.001 http://www.tcsae.org
2019-10-09
2019-11-06
安徽省科技重大專項(711305938042; 812136763034)
秦 寬,講師,主要研究方向為農業(yè)機械設計理論與方法。Email:qinkuan@ahau.edu.cn
曹成茂,教授,博士生導師,主要從事智能農業(yè)機械化裝備研究。Email:caochengmao@sina.com
10.11975/j.issn.1002-6819.2020.03.001
S223.25
A
1002-6819(2020)-03-0001-10