劉 平,王春穎,秦洪政,侯加林
拱棚自動插架裝置設(shè)計與試驗
劉 平,王春穎,秦洪政,侯加林※
(山東農(nóng)業(yè)大學機械與電子工程學院山東省園藝機械與裝備重點實驗室,智能化農(nóng)業(yè)機械與裝備實驗室,泰安 271018)
目前建造拱棚主要以手工為主,為了提高其機械化、自動化水平以及建造拱棚的效率,該文設(shè)計與研制了拱棚智能插架覆膜機的拱棚自動插架裝置?;诠芭锎罱ǖ娜胪辽疃?、棚架寬度、棚架高度等技術(shù)要求和曲柄存在的條件,對其關(guān)鍵部件曲柄滑塊機構(gòu)和彎折手臂進行結(jié)構(gòu)設(shè)計與優(yōu)化。當曲柄的長度為230 mm,連桿的長度為220 mm,偏心距為220 mm時,達到最好的傳力效果和運動效率;同時對曲柄滑塊機構(gòu)進行運動分析,確定插架作業(yè)時曲柄的初始角度和最大位置角度分別為132°和30°;設(shè)計彎折手臂使棚桿變彎,確保棚桿垂直入土;然后基于ANSYS分析拱棚抗風性能,當棚度架寬與棚桿長度的比值在0.60~0.66之間時,拱棚抗風性最強;最后通過田間試驗測量分析棚架平均寬度、棚桿平均入土深度和棚架平均高度分別為93.85、15.23和56.19 cm,獲得棚架高度、棚架寬度的穩(wěn)定系數(shù)均為99%。裝置插架效果滿足農(nóng)藝需求,進一步驗證了裝置設(shè)計的正確性和方案的可行性。研究結(jié)果可為實現(xiàn)拱棚的自動插架覆膜機研制提供理論基礎(chǔ)。
農(nóng)業(yè)機械;優(yōu)化;建造拱棚;插架裝置;抗風性能
現(xiàn)代農(nóng)業(yè)生產(chǎn)中,拱棚在蔬菜栽培、育苗等方面的應(yīng)用越來越廣泛[1]。利用竹木、鋼材等材料作為棚桿,并覆蓋塑料薄膜,建成拱形棚,可提早或延遲蔬菜供應(yīng),提高蔬菜供應(yīng)量、新鮮度以及品質(zhì),增加經(jīng)濟效益[2-8],是保護地蔬菜栽培的重要類型,發(fā)展?jié)摿薮蟆?/p>
小拱棚成本較低,加蓋草后,增溫的效果并不比大型的溫室大棚差,棚架寬度多為80~150 cm,棚架高度約為40~100 cm,常用于園藝作物的育苗、提早定植或矮小植株的作物栽培。但小拱棚的棚架仍是人工搭建[7],手動彎桿插入土中,勞動強度大,棚架直線度低,影響拱棚的牢固性和抗風性。
隨著農(nóng)業(yè)裝備智能化的發(fā)展,實現(xiàn)拱棚建造的機械化、自動化和智能化是必然的趨勢。國外拱棚機的研究較為成熟,日本藤木農(nóng)機制作所研制了棚桿打孔掩埋機,但需要人工參與作業(yè),例如重復(fù)進行行走啟動和液壓復(fù)位控制。美國ANDROS公司的拱棚機和Dubois Agrinovation公司研制的Machanical Transplanter Tunnel Layer Model 95可以通過人工彎桿,由拖拉機牽引實現(xiàn)自動插架。Mark William 研制的拱棚機通過拖拉機牽引,可完成人工放桿,拱棚機自動彎桿、覆膜。Tunnelmatic、LesAgrisudvennde公司研制的拱棚機,基于拖拉機牽引實現(xiàn)插架覆膜一體化搭建拱棚。目前國內(nèi)相關(guān)研究多為地膜覆膜機[9-12],戴飛等[13]設(shè)計了橫腰帶覆土式全膜雙壟溝覆膜聯(lián)合作業(yè)機器實現(xiàn)起壟、覆膜、覆土等作業(yè)。國外的拱棚機多為拖拉機牽引,并不能滿足國內(nèi)蔬菜種植農(nóng)戶以及地形的要求。總結(jié)國外拱棚機的研究現(xiàn)狀可知,拱棚插架裝置是拱棚機實現(xiàn)自動化的主要裝置。因此,針對國內(nèi)現(xiàn)有地膜覆膜機不能實現(xiàn)自動彎桿、插架的問題,設(shè)計與優(yōu)化拱棚自動插架裝置,提高拱棚建造的效率,降低勞動強度,確保棚桿的入土深度,保證拱棚的牢固性和抗風性,實現(xiàn)機械化、自動化建造拱棚。
目前對于拱棚的抗風性分析多集中于大拱棚和溫室,如Rackwoo等[14]、Briassoulis等[15]和丁敏等[16]考慮風向、風雪天氣、跨度數(shù)等因素,分析了溫室的結(jié)構(gòu)失效問題。并且丁敏等[17-18]模擬了單片薄膜受風,研究薄膜厚度、尺寸(長度×寬度)、預(yù)張力和外荷載對單膜承載力的影響。吳昆等[19]進一步研究了拱形塑料群棚模型在不同風向角、不同棚間距下的表面風壓特性。小拱棚骨架柔長細薄,結(jié)構(gòu)外側(cè)覆蓋著柔性的塑料薄膜,對風荷載較為敏感[20],因此保證拱棚的抗風性尤其重要。拱棚的抗風性不僅與拱棚插架裝置的機械性能有關(guān),而且與棚桿材料及其長度選擇有關(guān)。本試驗采用玻璃纖維的棚桿作為試驗材料,為提高小拱棚的抗風性,針對不同栽培方法需求的棚架寬度,通過ANSYS仿真分析,獲得抗風性最強的棚架寬度與棚桿長度的比值。
該文設(shè)計的拱棚智能插架覆膜機的拱棚自動插架裝置在液壓系統(tǒng)帶動下,通過關(guān)鍵部件彎折手臂和扦插機構(gòu)實現(xiàn)棚桿的彎折與扦插,其扦插效果決定拱棚的穩(wěn)定性進而決定拱棚插架裝置的拱棚建造質(zhì)量。首先分析拱棚自動插架裝置的工作原理及工作過程;其次對該插架機構(gòu)關(guān)鍵部件曲柄滑塊進行設(shè)計與優(yōu)化,以達到最好的傳力效果;并設(shè)計彎折手臂的結(jié)構(gòu),選擇合適的彎折壓板位置和長度,在相同作用力的仿真情況下,棚桿產(chǎn)生的形變最大。通過田間試驗對機械結(jié)構(gòu)進行驗證,分析裝置的作業(yè)數(shù)據(jù)和效果,對各關(guān)鍵部件的參數(shù)進一步優(yōu)化和確定。該文設(shè)計的拱棚自動插架裝置能夠?qū)崿F(xiàn)直棚桿的有序彎折扦插,可為拱棚智能插架覆膜機的設(shè)計提供借鑒,提高國內(nèi)拱棚建造作業(yè)的機械化、自動化水平。
針對目前國內(nèi)小拱棚農(nóng)藝需求,棚架寬度多為80~150 cm,棚架高度約為40~100 cm,該文設(shè)計的拱棚自動插架裝置主要由液壓傳動系統(tǒng)、曲柄滑塊機構(gòu)、棚桿扦插機構(gòu)、彎折手臂機構(gòu)等組成,具體如圖1,其中液壓參數(shù)如表1。
1.液壓傳動系統(tǒng) 2.彎折手臂機構(gòu) 3.機架 4.曲柄滑塊機構(gòu) 5.棚桿扦插機構(gòu) 6.車輪 7.進桿裝置
表1 拱棚自動插架裝置技術(shù)參數(shù)表
拱棚插架覆膜機的工作過程如圖2,包括取桿、放桿、彎桿和壓桿。而拱棚自動插架裝置實現(xiàn)其中的2步作業(yè),具體過程如下:
1)棚桿扦插機構(gòu)下壓。通過自動進桿裝置自動取桿后,棚桿由彎折手臂的擋板支撐。此時液壓傳動系統(tǒng)工作,液壓泵在發(fā)動機帶動下轉(zhuǎn)動,通過液壓動作帶動曲柄滑塊機構(gòu)運動,作為曲柄滑塊部分中的滑塊(棚桿扦插機構(gòu))向下作業(yè),其中彎折手臂的導(dǎo)軌軸承固定在棚桿扦插機構(gòu)上,進而彎折手臂從水平位置旋轉(zhuǎn)到豎直位置,使棚桿變彎,棚桿扦插機構(gòu)繼續(xù)向下作業(yè),將彎棚桿壓入土。
2)棚桿扦插機構(gòu)復(fù)位。棚桿入土后,彎折手臂的擋板回彈,與棚桿分離,進而液壓動作帶動棚桿扦插機構(gòu)復(fù)位,完成一次插架作業(yè)。
圖2 拱棚插架覆膜機的工作過程
拱棚自動插架裝置實現(xiàn)自動彎桿、扦插作業(yè),提高了效率,為拱棚插架覆膜機機械化、自動化作業(yè)提供了保障。
為實現(xiàn)拱棚自動插架裝置扦插功能,該文利用偏心曲柄滑塊機構(gòu)和滾輪滑槽,帶動棚桿扦插機構(gòu)在豎直方向運動。如圖3a,偏心曲柄滑塊機構(gòu)由連桿、曲柄和滑塊組成。
注:AC2為滑塊行程最大處位置;AB1C1為滑塊行程最小處位置;AB3C3為曲柄與滑塊運動方向垂直位置處;C1C2為滑塊運動行程h,mm;e為偏心距離,mm;a為曲柄AB長度,mm;b為連桿BC長度,mm;γ為傳動角,(°);θ為極位角,(°);為輔助角,(°)。
設(shè)計偏心曲柄滑塊機構(gòu)如圖3b,以點為固定鉸鏈點,包括偏心曲柄滑塊機構(gòu)的3種形態(tài):1)連桿與滑塊運動方向相同(11);2)曲柄與滑塊運動方向垂直(33);3)曲柄與連桿在同一直線上(2),此時機構(gòu)形成死點。
式中為行程速度比系數(shù)。
偏心曲柄滑塊機構(gòu)的幾何結(jié)構(gòu)關(guān)系為
其中
基于MATLAB仿真軟件進行優(yōu)化仿真,得到最小傳動角γmin與K、的關(guān)系示意圖(圖4)。分析可知:當曲柄滑塊的行程速度比系數(shù)K=1.25,=0.6981 rad= 40.01°時得到最大的最小傳動角γmin=1.5 rad=85.98°。此時,壓力角最小,a=226.5 mm,b= 221.5 mm,e=223.9 mm,達到最好的傳力效果和運動效率[23-27],行程速度比系數(shù)K小于2,插架機構(gòu)產(chǎn)生的沖擊慣性較小,插架裝置進行扦插時運行穩(wěn)定。因此,通過對上述數(shù)據(jù)取整,曲柄滑塊的具體設(shè)計尺寸:曲柄AB的長度為230 mm,連桿BC的長度為220 mm,偏心距為220 mm。
為驗證曲柄滑塊機構(gòu)中各構(gòu)件的運動是否滿足要求,對其進行運動分析,模型如圖5。12分別為曲柄和連桿與水平方向的夾角,(°)。1、2分別為2種曲柄滑塊狀態(tài)時的工作位移,且=1?2,對機構(gòu)運動分析如下:
對時間進行求導(dǎo),=,得到角速度關(guān)系:
進一步對時間()進行求導(dǎo),=,得到角加速度關(guān)系:
注:為曲柄;為連桿;為偏心距離,mm;為曲柄長度,mm;為連桿長度,mm;1為曲柄與水平方向的夾角,(°);2為連桿與水平方向的夾角,(°);為工作位移,mm。
Note:is crank;is connecting rod;is eccentric distance, mm;is crank length, mm;is connecting rod length, mm;1is angle between crankand the horizontal direction, (°);θis angle between connecting rodand the horizontal direction, (°);is slider displacement, (°).
圖5 曲柄滑塊機構(gòu)運動分析簡圖
Fig.5 Schematic diagram of motion analysis of crank slider mechanism
圖6 曲柄滑塊機構(gòu)運動仿真結(jié)果
圖6a中,max=387 mm,min=?200 mm,可知Δ大于所需工作行程,滿足設(shè)計要求。因此選擇=62 mm和=max=387 mm作為曲柄的初始位置和結(jié)束位置,曲柄的初始角度和最大位置角度分別為132°(2.304 rad)和30°(0.5236 rad)。從圖6b可知,θ始終在一個銳角范圍內(nèi)變化,因此曲柄與連桿之間的夾角小于180°,滿足設(shè)計要求。
彎折手臂機構(gòu)如圖7所示,安裝在機架兩側(cè),包括彎折壓板、導(dǎo)軌、導(dǎo)軌軸承、固定端點軸和擋板,其中導(dǎo)軌軸承與棚桿扦插機構(gòu)相連,固定端點軸固定導(dǎo)軌在機架上,且導(dǎo)軌能夠繞固定端點軸旋轉(zhuǎn)。
當直棚桿送至彎折手臂擋板處,通過固定在棚桿扦插機構(gòu)的導(dǎo)軌軸承在導(dǎo)軌中運動,固定端點軸處對棚桿起支撐作用,彎折壓板對棚桿作用向下的力,使棚桿變彎,棚桿受力如圖8所示。彎折壓板保持棚桿彎曲狀態(tài),并確保棚桿能兩端垂直入土。對棚桿在初始狀態(tài)時的受力進行分析,結(jié)果如表2,其中受力位置指的是彎折壓板末端距離棚桿兩端的距離,距離越近,產(chǎn)生的形變最大。因此預(yù)留棚桿入土深度后,設(shè)定總的彎折手臂長度為44 cm,其中7 cm為彎折壓板長度。
1.彎折壓板 2.導(dǎo)軌 3.導(dǎo)軌軸承 4.固定端點軸 5.擋板 1.Platen 2.Guide 3.Guide bearing 4.Fixed axis 5.Baffle
注:F為彎折壓板對棚桿向下的作用力,N;N為固定端點軸對棚桿的支撐力,N。
表2 初始狀態(tài)下棚桿的靜力學分析
小拱棚對蔬菜、作物的栽培具有重要意義,抗風性是衡量小拱棚牢固性的重要指標。不同栽培方式對棚架寬度有不同的需求,從0.80~1.50 m不等,因此本文利用ANSYS分析棚桿的抗風性,以明確在棚架寬度確定條件下抗風性最好時的棚桿長度。
該文采用的拱棚材料是玻璃纖維棒,在常溫(20℃)條件下,該材料的抗壓強度為40.59 MPa、抗折強度為85.76 MPa、拉伸強度為83.68 MPa,剪切強度為7.53 MPa、拉伸彈性模量為1.61 GPa、硬度為52.1 N/mm2、密度為1.53 g/cm3。由于該材料輕質(zhì)高強,棚桿彎折入土后,棚桿在地面上方會形成自然弧線,形成拱棚,通過SOILDWORKS建立棚桿模型。
在相同風載情況下,添加棚桿兩端的固定約束,模擬棚桿入土后土壤對棚桿的固定;并對不同棚桿的左側(cè)添加風載荷,模擬10級風力下棚桿的受力情況,分析不同棚架寬度和棚桿長度的應(yīng)力、應(yīng)變和變形。
當棚桿長度為2 m時,不同棚架寬度的最大應(yīng)力、應(yīng)變和變形如表3。當棚架寬度為1.20 m時,不同棚桿長度的最大應(yīng)力應(yīng)變和變形如表4。
表3 棚桿長度為2 m時,不同棚架寬度下的受力仿真
注:風載為60 N·m-2。下同。
Note: Wind load is 60 N·m-2. Same below
表4 棚架寬度為1.2 m時,不同棚桿長度下的受力仿真
從表3和表4可知,棚桿長度為2 m的棚架寬度1.20 m時,形變且應(yīng)力應(yīng)變最小,抗風性最強,應(yīng)力為6.38×106N/m2,形變?yōu)?.58 cm。棚架寬度1.20 m時,棚桿長度1.80 m的形變且應(yīng)力應(yīng)變最小,抗風性最強。因此,較優(yōu)的棚桿選取方案為棚架寬度/桿長為0.60~0.66。
拱棚自動插架裝置樣機采用功率為7.35 kW的發(fā)動機,排量為30 mL/r的液壓泵,液壓桿的直徑為25 mm。拱棚自動插架裝置扦插棚桿時,壓強為13 MPa。自動插架裝置尺寸為:1 100 mm×600 mm,曲柄長度為230 mm,連桿長度為220 mm,偏心距為220 mm,曲柄角度1范圍為132°~30°,且連桿的長度可以根據(jù)入土深度需求調(diào)節(jié),范圍為200~300 mm。選取1.60 m的棚桿搭建0.95 m的拱棚,此時,棚架寬度/桿長=0.60。測量棚架高度、棚架寬度和棚桿入土的深度等關(guān)鍵參數(shù),分析是否滿足拱棚扦插工藝要求,驗證上述仿真的正確性和方案的可行性。
選擇春季進行試驗,此時土壤含水率低,土壤堅實度較大。試驗用地的土壤為黃土,土壤分析知土壤含水率為20%,土壤堅實度平均值為850 kPa。試驗中,拱棚自動插架裝置各部件運行穩(wěn)定,工作安全可靠,棚桿扦插穩(wěn)定,利用卷尺、秒表和直尺進行測量,采集棚架高度、棚架寬度和棚桿的入土深度進行分析,如圖9,插架效果如圖10。經(jīng)試驗測定并對數(shù)據(jù)進行統(tǒng)計分析,結(jié)果如表5。棚桿入土深度對棚架高度的影響較小,但對于棚架寬度的影響較大,從圖9可以看出,當左右入土深度差距較大時,棚架寬度明顯高于平均值。
圖9 試驗結(jié)果分析
表5 試驗結(jié)果參數(shù)
圖10 插架效果圖
總體來看,棚架高度、棚架寬度的誤差在允許范圍10 cm內(nèi),棚架高度、棚架寬度的平均值分別為56.19和93.85 cm,其穩(wěn)定系數(shù)(穩(wěn)定系數(shù)=1-變異系數(shù),表征數(shù)據(jù)波動情況)均為99%,拱棚自動插架裝置運行穩(wěn)定。棚桿的入土深度穩(wěn)定系數(shù)較低,左右兩側(cè)入土深度存在差異,原因是由于左右兩側(cè)的彎折手臂的擋板未能同時回彈,造成某側(cè)并不是垂直插入土中,而是斜著硬壓入土。后期將進一步對彎折手臂擋板進行改進優(yōu)化。
1)確定拱棚自動插架裝置進行插架作業(yè)時,曲柄的長度為230 mm,連桿的長度為220 mm,偏心距為220 mm,達到最好的傳力效果和運動效率。進而確定曲柄的初始角度和最大位置角度分別為132°和30°。設(shè)計彎折手臂彎折壓板位置使棚桿最容易變彎,并保證棚桿垂直入土。
2)對小拱棚的抗風性進行分析,通過ANSYS仿真分析得到在棚架寬度/桿長為0.6~0.66時,抗風性最好。
3)棚架平均入土深度為15.23 cm,穩(wěn)定系數(shù)為97.86%;棚架高度、棚架寬度的平均值為56.19和93.85 cm,穩(wěn)定系數(shù)均為99%,穩(wěn)定性高,進一步驗證了裝置設(shè)計的正確性和方案的可行性。
針對棚桿入土深度穩(wěn)定性以及左右兩側(cè)入土深度差異的問題,后續(xù)工作將研究與改進彎折手臂的擋板,保證棚桿左右兩側(cè)同時接觸地面來減少棚桿左右入土深度差異,提高穩(wěn)定性。
[1]王曉東. 發(fā)揮拱棚生產(chǎn)優(yōu)勢推進蔬菜產(chǎn)業(yè)發(fā)展[J]. 農(nóng)業(yè)與技術(shù),2018,38(10):150.
Wang Xiaodong. Give full play to the production advantages of the arch shed to promote the development of the vegetable industry[J]. Agriculture and Technology, 2018, 38(10): 150. (in Chinese with English abstract)
[2]張國森,殷學云,蔣宏,等. 西北多層覆蓋大跨度拱棚蔬菜有機生態(tài)型無土栽培[J]. 中國蔬菜,2014(2):83-85.
Zhang Guoshen, Yin Xueyun, Jiang Hong, et al. Organic eco-type soilless cultivation of vegetables with multi-layer cover and large span arch shed in northwest China[J]. China Vegetables, 2014(2): 83-85. (in Chinese with English abstract)
[3]郭宗萬,王春夏,高林夏. 青島地區(qū)春胡蘿卜植繩播種中拱棚無公害栽培技術(shù)[J]. 農(nóng)業(yè)科技通訊,2018(7):311-312.
Guo Zongwan, Wang Chunxia, Gao Linxia. Technique of pollution-free cultivation of spring carrot in Qingdao area[J]. Agricultural Science and Technology communication, 2018(7): 311-312. (in Chinese with English abstract)
[4]谷端銀,焦娟,劉中良,等. 減施化肥配施有機肥對大拱棚早春西瓜生長及品質(zhì)的影響[J]. 北方園藝,2019(23):48-56.
Gu Ruiyin, Jiao Juan, Liu Zhongliang, et al. Effects of reduced application of chemical fertilizer and organic fertilizer on the growth and quality of watermelon in early spring in large arch shed[J]. Northern Horticulture, 2019(23): 48-56. (in Chinese with English abstract)
[5]陳曉東,王舜. 脫毒馬鈴薯—荷蘭15早春小拱棚高產(chǎn)栽培技術(shù)[J]. 河南農(nóng)業(yè),2018(25):18.
Chen Xiaodong, Wang Shun. Detoxification potato - Dutch 15 early spring small arch shed high yield cultivation technology[J]. Henan Agricultural, 2018(25): 18. (in Chinese with English abstract)
[6]蘆月琴. 塑料拱棚雙膜覆蓋娃娃菜、冬瓜、油白菜一年三茬高效栽培技術(shù)[J]. 農(nóng)業(yè)工程技術(shù),2018,38(13):86-89.
Lu Yueqin. Plastic arch canopy double membrane covering baby vegetables, winter gourd, oil cabbage three crops a year efficient cultivation technology[J]. Agricultural Engineering Technology, 2018, 38(13): 86-89. (in Chinese with English abstract)
[7]高秀瑞,李冰,張敬敬,等. 西瓜早春小拱棚地膜雙覆蓋生產(chǎn)技術(shù)規(guī)范[J]. 中國瓜菜,2019,32(11):94-96.
Gao Xiurui, Li Bing, Zhang Jingjing, et al. Technical specification for double mulch production of small arch shed plastic film for watermelon in early spring[J]. China Cucurbits and Vegetables, 2019, 32(11): 94-96. (in Chinese with English abstract)
[8]丁艷禮. 葡萄簡易鋼骨小拱棚建造方法及避雨栽培技術(shù)[J]. 現(xiàn)代農(nóng)業(yè)科技,2013(23):122-123.
Ding Yianli. Construction method and rain-proof cultivation technique of grape simple steel frame small arch shed[J]. Modern Agricultural Science and Technology, 2013(23): 122-123. (in Chinese with English abstract)
[9]戴飛,趙武云,馬明義,等. 雙壟耕作施肥噴藥覆膜機工作參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機械學報,2016,47(1):83-90.
Dai Fei, Zhao Wuyun, Ma Mingyi, et al. Parameters optimization of operation machine for tillage-fertilization and spraying-filming on double ridges[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 83-90. (in Chinese with English abstract)
[10]王維,賀功民,王亞妮,等. 辣椒起壟覆膜機的設(shè)計與試驗研究[J]. 農(nóng)機化研究,2020,42(6):57-62.
Wang Wei, He Gongmin, Wang Yani, et al. Design and experimental research of pepper ridging and laminating machine[J]. Journal of Agricultural Mechanization Research, 2020, 42(6): 57-62. (in Chinese with English abstract)
[11]史瑞杰,戴飛,趙武云,等. 全膜雙壟溝起壟覆膜機橫向土帶堆放機構(gòu)的設(shè)計與試驗[J]. 中國農(nóng)業(yè)大學學報,2019,24(5):140-149.
Shi Ruijie, Dai Fei, Zhao Wuyun, et al. Design and experiment of transverse soil-belt stacking mechanism for full-film double-furrow ridge mulching laminating machine[J]. Journal of China Agricultural University, 2019, 24(5): 140-149. (in Chinese with English abstract)
[12]王伯凱,胡良龍,王少康,等. 甘薯雙壟旋耕起壟覆膜機的設(shè)計及試驗研究[J]. 中國農(nóng)業(yè)大學學報,2018,23(7):116-125.
Wang Bokai, Hu Lianglong, Wang Shaokang, et al. Design and experiment of sweet potato transplanting operation machine with rotary tillage, ridging and covering film functions[J]. Journal of China Agricultural University, 2018, 23(7): 116-125. (in Chinese with English abstract)
[13]戴飛,趙武云,史瑞杰,等. 橫腰帶覆土式全膜雙壟溝覆膜聯(lián)合作業(yè)機設(shè)計與試驗[J]. 農(nóng)業(yè)機械學報,2019,50(6):130-139.
Dai Fei, Zhao Wuyun, Shi Ruijie, et al. Design and experiment of operation machine for filming and girdle covering on double ridges[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 130-139. (in Chinese with English abstract)
[14]Rackwoo K, Sewoon H, Inbok L, et al. Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model[J]. Biosystems Engineering, 2017, 164(11): 257-280.
[15]Briassoulis D, Dougka G, Dimakogianni D, et al. Analysis of the collapse of a greenhouse with vaulted roof[J]. Biosystems Engineering, 2016, 151(11): 495-509.
[16]丁敏,朱丹,許晶,等. 風雪荷載作用下Venlo型溫室結(jié)構(gòu)整體性能研究[J]. 中國農(nóng)業(yè)大學學報,2017,22(1):120-128.
Ding Min, Zhu Dan, Xu Jing, et al. Space robustness of Venlo greenhouse structure under wind and snow load[J]. Journal of China Agricultural University, 2017, 22(1): 120-128. (in Chinese with English abstract)
[17]丁敏,李密密,施旭棟,等. 考慮覆蓋材料蒙皮效應(yīng)的溫室結(jié)構(gòu)穩(wěn)定承載力計算[J]. 農(nóng)業(yè)工程學報,2016,32(1):224-232.
Ding Min, Li Mimi, Shi Xudong, et al. Stable bearing capacity coculation of greenhouse structures considering skin effect of covering material[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 224-232. (in Chinese with English abstract)
[18]丁敏,施旭棟,李密密,等. 薄膜承載力及其對日光溫室結(jié)構(gòu)穩(wěn)定性能的影響[J]. 農(nóng)業(yè)工程學報,2013,29(12):194-202.
Ding Min, Shi Xudong, Li Mimi, et al. Load-bearing capacity of films and its effect on structure stability of Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 194-202. (in Chinese with English abstract)
[19]吳昆,王少杰,張廣鵬,等. 拱形塑料大棚風致干擾效應(yīng)及風壓特性研究[J]. 農(nóng)業(yè)工程學報,2019,35(15):165-174.
Wu Kun, Wang Shaojie, Zhang Guangpeng, et al. Wind-induced interference effects and wind pressure characteristics of arched plastic greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 165-174. (in Chinese with English abstract)
[20]姜迎春,白義奎,王永剛,等. 塑料大棚結(jié)構(gòu)風振響應(yīng)規(guī)律研究[J]. 華中農(nóng)業(yè)大學學報,2018,37(5):123-130.
Jiang Yingchun, Bai Yikui, Wang Yonggang, et al. Study on the law of wind vibration response of plastic greenhouse structure[J]. Journal of Huazhong Agricultural University, 2018, 37(5): 123-130. (in Chinese with English abstract)
[21]魯春發(fā),夏德洲. 偏心曲柄滑塊機構(gòu)中偏心距對機構(gòu)傳動性能的影響[J]. 湖北汽車工業(yè)學院學報,2003(2):21-23.
Lu Chunfa, Xia Dezhou. Influence of eccentricity on transmission performance of mechanism in eccentric crank slider mechanism[J]. Journal of Hubei Automotive Industries Institute, 2003(2): 21-23. (in Chinese with English abstract)
[22]冀曉紅,丁勇. 基于最佳傳動性能的偏心曲柄滑塊機構(gòu)設(shè)計[J]. 機械研究與應(yīng)用,2011,24(6):102-106.
Ji Xiaohong, Ding Yong. Design of eccentric crank slider mechanism based on the best transmission performance[J]. Mechanical Research and Application, 2011, 24(6): 102-106. (in Chinese with English abstract)
[23]韓剛,龔燈. 偏置曲柄滑塊機構(gòu)的運動仿真與分析[J]. 機械工程與自動化,2012(5):57-58.
Han Gang, Gong Deng. Motion simulation and analysis of offset crank slider mechanism[J]. Mechanical Engineering and Automation, 2012(5): 57-58. (in Chinese with English abstract)
[24]朱苛婁,閆廣超,李禹生. 曲柄滑塊機構(gòu)優(yōu)化設(shè)計和運動仿真分析[J]. 電氣制造,2014(9):60-64.
Zhu Goulou, Yan Guangchao, Li Yusheng. Optimization design and motion simulation analysis of crank slider mechanism[J]. Electrical Manufacturing, 2014(9): 60-64. (in Chinese with English abstract)
[25]高國華,馬帥. 曲柄滑塊滾輪滑槽用于蔬菜封膜裝置設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(5):9-16.
Gao Guohua, Ma Shuai. Simulation and test of film sealing device for tray packaged vegetables preservation based on crank-slider mechanism and roller chute mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 9-16. (in Chinese with English abstract)
[26]汲文峰,吳啟明,黃海東,等. 基于振動機理的藜蒿扦插機分苗機構(gòu)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(增刊1):21-27.
Ji Wenfeng, Wu Qiming, Huang Haidong, et al. Design and experiment of seedling seperation device of Artemisia arborescens transplanter based on vibration mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 21-27. (in Chinese with English abstract)
[27]雷昌毅,陳建能,李鵬鵬,等. 非圓齒輪—曲柄滑塊壓捆機構(gòu)反求設(shè)計[J]. 農(nóng)業(yè)工程學報,2012,28(13):22-27.
Lei Changyi, Chen Jianneng, Li Pengpeng, et al. Reverse design of non-circular gear-crank slider hay baler mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 22-27. (in Chinese with English abstract)
[28]閆俊月,周磊,周長吉,等. 塑料大棚設(shè)計中基本風壓取值方法[J]. 農(nóng)業(yè)工程學報,2014,30(12):171-176.
Yan Junyue, Zhou Lei, Zhou Changji, et al. Method for calculating basic wind pressure of plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 171-176. (in Chinese with English abstract)
[29]姜迎春,白義奎,王永剛,等. 考慮脈動風速的平面剛架日光溫室結(jié)構(gòu)動力響應(yīng)規(guī)律[J]. 中國農(nóng)業(yè)大學學報,2019,24(4):136-147.
Jiang Yingchun, Bai Yikui, Wang Yonggang, et al. Dyanmic response anslyses of plane frame solar greenhouse considering fluctuating wind speed[J]. Journal of China Agricultural University, 2019, 24(4): 136-147. (in Chinese with English abstract)
[30]郭韋佟,朱丹,宓林,等. 拱形屋面溫室縱向抗風分析中的曲梁剛度矩陣模型[J]. 中國農(nóng)業(yè)大學學報,2017,22(10):113-119.
Guo Weitong, Zhu Dan, Mi Lin, et al. Curved beam stiffness matrix model for the longitudinal wind resistance analysis of arch roof green house[J]. Journal of China Agricultural University, 2017, 22(10): 113-119. (in Chinese with English abstract)
Design and test of automatic cuttage device for arched shed
Liu Ping, Wang Chunying, Qin Hongzheng, Hou Jialin※
(,,,271018,)
In modern agricultural production, the arched shed is more and more widely used in vegetable cultivation and seedling breeding. The arched shed is mainly built by manual. At present, the agricultural demand of arched shed width is about 0.8-1.5 m, and the height of arched shed is about 0.4-1 m. In order to improve the mechanization and automation level and the efficiency in the process of building arched shed, automatic cuttage device of arched shed was designed in this paper. Automatic cuttage device of arched shed was mainly composed of hydraulic transmission system, arm bending, crank slide mechanism, and tent pole cuttage mechanism. The hydraulic transmission system was the power source of the device. According to the technical requirements of building the arched shed and the conditions for the existence of crank, the structural optimization design of the crank slider mechanism was carried out, which was the critical component of automatic cuttage device of arched shed. When the length of the crank was 230 mm, the length of the connecting rod was 220 mm, and the eccentricity was 220 mm, the best force transmission effect and the movement efficiency were achieved. In addition,, the motion analysis of the crank slider mechanism was carried out. The initial angle and the maximum position angle of the crank were determined as 132° and 30°, respectively. The bending arm was designed to bend the shed rod, and at the same time to ensure that the shed rod vertical into the soil. The stress analysis of the rod in the initial state was simulated with different place of application of force, which is the different distance between the end of the bending platen and both ends of the rod. The closer this distance is, the greater the deformation will be. Therefore, the total bending arm length was set to be 44 cm, of which the length of bending platen was 7 cm. The thin and soft skeleton of the arched shed was covered with a flexible plastic film on the outside of the structure, which is more sensitive to the wind load. It is particularly important to ensure the wind resistance of the arch canopy. The wind resistance of small arch shed was analyzed by ANSYS, and it was found that the wind resistance of arched shed was the best when the ratio of frame width to frame length was between 0.60-0.66. The key parameters such as the height of the roof from the top of the shed, the width of arbor and the depth of shed insert soil were measured. The average buried depth was 15.23 cm, and the stability coefficient was 97.86%. The average height and width of the tunnel were 56.19 cm and 93.85 cm respectively, the stability coefficient of them were 99%. Combined with the agricultural demand, the errors were within the allowable range. The correctness of the optimized design, the feasibility of the solution and the stability of the machine operation are further verified.
agricultural machinery; optimization; arched shed; cuttage device; wind resistant
劉 平,王春穎,秦洪政,侯加林. 拱棚自動插架裝置設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2020,36(3):21-29.doi:10.11975/j.issn.1002-6819.2020.03.003 http://www.tcsae.org
Liu Ping, Wang Chunying, Qin Hongzheng, Hou Jialin. Design and test of automatic cuttage device for arched shed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 21-29. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.003 http://www.tcsae.org
2019-09-26
2020-01-30
國家自然科學基金(31700644);山東省農(nóng)機裝備研發(fā)創(chuàng)新計劃項目(2018YF004);山東省重點研發(fā)計劃(2017CXGC0926)
劉 平,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)裝備智能控制技術(shù)、機器人控制與導(dǎo)航等方面的教學與科研工作。Email:liupingsdau@126.com
侯加林,教授,博士生導(dǎo)師,主要從事智能農(nóng)業(yè)裝備和機械自動化等方面的教學與科研工作。Email:jlhou@sdau.edu.cn
10.11975/j.issn.1002-6819.2020.03.003
S224
A
1002-6819(2020)-03-0021-09