王文林 韋媛榮 鄭樹芳 譚秋錦 覃振師 黃錫云 湯秀華 樊松樂 王立豐 陳海生
摘要:【目的】從澳洲堅果(Macadamia integrifolia)葉片中克隆MYB1轉(zhuǎn)錄因子基因(MiMYB1)并進行生物信息學分析,為揭示R2R3-MYB家族轉(zhuǎn)錄因子成員在澳洲堅果中的抗逆作用機制提供參考依據(jù)?!痉椒ā坷肞CR從澳洲堅果品種桂熱一號葉片中克隆MiMYB1基因,采用ProtParam、TMHMM Server v.2.0和SMART:Main page等在線分析軟件對MiMYB1蛋白進行生物信息學分析,運用DNAMAN 7.0進行蛋白氨基酸多序列比對分析,并從NCBI中選取126個擬南芥R2R3-MYB家族成員,以Geneious Pro v4.8.4中的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進化樹?!窘Y(jié)果】從澳洲堅果品種桂熱一號葉片中克隆獲得的MiMYB1基因序列全長1205 bp,包含1062 bp的開放閱讀框(ORF),共編碼353個氨基酸,GenBank登錄號為MN254975。MiMYB1蛋白具有2個SANT保守結(jié)構(gòu)域,屬于R2R3-MYB家族,是無跨膜結(jié)構(gòu)、無信號肽且定位于細胞核的不穩(wěn)定親水性蛋白。MiMYB1氨基酸序列(MN254975)與荷花NnMYB39氨基酸序列(XP_010277911.1)的親緣關(guān)系最近,相似性為71.81%;與哥倫比亞錦葵HuMYB102-like(XP_021293847.1)、榴蓮DzMYB102-like(XP_022777375.1)、木薯MeMYB102-like(XP_021596793.1)和高山櫟QsMYB102-like(XP_023877052.1)的MYB氨基酸序列相似性分別為67.47%、68.63%、64.44%和67.28%。MiMYB1蛋白與126個擬南芥R2R3-MYB家族成員的系統(tǒng)發(fā)育進化分析結(jié)果顯示,MiMYB1與AtMYB41的親緣關(guān)系最近,與AtMYB41、AtMYB74和AtMYB102同屬于S11亞族,具有相似的生物學功能,即與植物抗逆性功能相關(guān)?!窘Y(jié)論】MiMYB1是典型的植物R2R3-MYB轉(zhuǎn)錄因子,在澳洲堅果的抗逆反應中發(fā)揮作用。
關(guān)鍵詞: 澳洲堅果;MiMYB1基因;R2R3-MYB家族;SANT保守結(jié)構(gòu)域;抗逆性
中圖分類號: S664.9? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2020)02-0245-10
Cloning and bioinformatics analysis of MYB1 gene from
Macadamia integrifolia
WANG Wen-lin1, WEI Yuan-rong1, ZHENG Shu-fang1, TAN Qiu-jin1, QIN Zhen-shi1,
HUANG Xi-yun1, TANG Xiu-hua1, FAN Song-le2, WANG Li-feng2, CHEN Hai-sheng1*
(1Guangxi South Subtropical Agricultural Research Institute, Longzhou,Guangxi? 532400, China; 2Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops/Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan? 571101, China)
Abstract:【Objective】The MYB1 transcription factor gene(MiMYB1) was cloned and analyzed the structure and function by bioinformatics from Macadamia integrifolia leaves, which provided the theoretical reference for stress resistance mechanism of R2R3-MYB family transcription factor member M. integrifolia. 【Method】The MiMYB1 gene was cloned in the leaves of M. integrifolia variety Guire No.1 by PCR technique and followed by bioinformatics analysis, such as ProtParam,TMHMM Server v.2.0 and SMART:Main page online tools. Multiple sequence alignment analysis of protein amino acids was performed by DNAMAN 7.0. The phylogenetic evolutionary treewas constructed by 126 Arabidopsis thaliana R2R3-MYB members from NCBI with Neighbor-joining(NJ) method in Geneious Pro v4.8.4 software. 【Result】The cDNA sequence of MiMYB1(GenBank accession number:MN254975) gene obtained by cloning from Guire No.1 leaves was 1205 bp in length, had 1062 bp open reading frame(ORF), encoding 353 amino acids. MiMYB1 protein had two SANT conserved domains belonging to the R2R3-MYB family. It was an unstable hydrophilic protein that had no transmembrane structure, no signal peptide and localizedto the nucleus. Phylogenetic analysis showed that the relationship between the amino acid sequence of MiMYB1 and the NnMYB39 in Nelumbo nucifera(XP_010277911.1) was the clo-sest, sharedidentity of 71.81%. It also shared identity of 67.47%,68.63%,64.44% and 67.28% with Colombian mallow HuMYB102-like(XP_021293847.1),Durio zibethinusDzMYB102-like(XP_022777375.1),Manihot esculenta Crantz MeMYB102-like(XP_021596793.1) and Quercus spinosa QsMYB102-like(XP_023877052.1), respectively. The phylogenetic tree constructed by MiMYB1 protein and 126 A. thaliana R2R3-MYB members showed that MiMYB1 had the closest relationship with AtMYB41, and was clustered into S11 subfamily together with AtMYB41, AtMYB74, and AtMYB102. It indicated that they had similar biological function,relating to stress resistance functions. 【Conclusion】MiMYB1 is a typical plant R2R3-MYB transcription factor and plays a role stress resistance mechanism in M. integrifolia.
Key words: Macadamia integrifolia; MiMYB1 gene; R2R3-MYB family; SANT conserved domain; stress resistance
Foundation item: National Key Research and Development Project(2016YFC0502406);Guangxi Science and Technology Base and Personnel Project(Guike AD18281087);Basic Research Project of Guangxi Academy of Agricultural Sciences(Guinong-ke 2020YM46);Chongzuo Science and Technology Project(Chongkegong 2019039)
0 引言
【研究意義】MYB基因家族是植物中最大的一類轉(zhuǎn)錄調(diào)控因子,按其保守結(jié)構(gòu)域又可劃分為4個家族,分別是R1/R2/R3-MYB、R2R3-MYB、R1R2R3-MYB和R-MYB,在植物生長發(fā)育、細胞形態(tài)、次級代謝和抗逆性等方面扮演著重要角色,涉及各種生物途徑及生理反應(楊雪等,2018;關(guān)淑艷等,2019)。R2R3-MYB家族是MYB家族中成員最多且參與生物途徑最廣泛的一類,在低溫、鹽、干旱、病原體及昆蟲攻擊等生物或非生物脅迫反應中,R2R3-MYB家族轉(zhuǎn)錄因子通過調(diào)控基因表達而發(fā)揮核心作用(Zhang et al.,2018;樊松樂等,2019)。因此,研究R2R3-MYB家族成員的結(jié)構(gòu)與功能對闡明植物抗逆機制、品種改良及促進其產(chǎn)業(yè)發(fā)展均具有重要意義?!厩叭搜芯窟M展】R2R3-MYB家族成員參與調(diào)控植物的初級代謝、次級代謝、細胞分裂與分化、生長發(fā)育及生物和非生物脅迫等生理過程(Dubos et al.,2010)。Lai等(2005)、Wang等(2015)研究發(fā)現(xiàn),AtMYB124和AtMYB88參與擬南芥氣孔細胞系的后期分裂過程及促進其根部向地性生長。Lepiniec等(2006)、Stracke等(2007)研究表明,AtMYB11/PFG1、AtMYB12/PFG1、AtMYB111/PFG3參與擬南芥黃酮類合成途徑,而AtMYB123/TT2調(diào)控擬南芥種皮原花青素的生物合成。楊雪等(2018)從當歸中克隆獲得AsMYB4基因,并推測AsMYB4屬于R2R3-MYB家族,作為轉(zhuǎn)錄抑制因子下調(diào)苯丙烷代謝途徑中相關(guān)酶基因的表達。Ma等(2018)研究表明,MYB165是楊樹黃酮類和苯丙烷類途徑的主要抑制因子,且可能同時影響莽草酸酯途徑。Shen等(2018)研究證實,R2R3-MYB型轉(zhuǎn)錄因子GsMYB15位于細胞核內(nèi),具有轉(zhuǎn)錄激活活性,其過表達能增強轉(zhuǎn)基因擬南芥對鹽脅迫和棉鈴蟲的抗性。Yang等(2018)研究發(fā)現(xiàn),GmMYB181-OX擬南芥突變體改變了花器官形態(tài)、果實大小和植物結(jié)構(gòu),包括向外卷曲的萼片、較小的纖毛,同時增加側(cè)枝和降低株高,說明GmMYB181參與了生殖器官的發(fā)育,在控制植物結(jié)構(gòu)中發(fā)揮重要作用。Zhao等(2018)研究表明,小麥TaMYB31通過上調(diào)蠟質(zhì)生物合成基因和干旱響應基因的表達而發(fā)揮作用。王蓮萍等(2019)從白樺中克隆獲得8個MYB轉(zhuǎn)錄因子基因(BpMYB1~BpMYB8),經(jīng)生物信息學分析發(fā)現(xiàn)BpMYB1~BpMYB8均含有2個SANT結(jié)構(gòu),即屬于R2R3-MYB家族,但在白樺生長發(fā)育過程中具有不同的功能?!颈狙芯壳腥朦c】澳洲堅果(Macadamia integrifolia)是一種原產(chǎn)于澳大利亞東部亞熱帶雨林,兼具營養(yǎng)價值和藥用價值的堅果作物,其富含不飽和脂肪酸(油酸和棕櫚酸)和大量生物活性營養(yǎng)物質(zhì)(蛋白質(zhì)、礦物質(zhì)、膳食纖維、抗氧化劑、植物甾醇及維生素E等)(王文林等,2013),在澳大利亞、南非、夏威夷、巴西和我國均有種植(Buthelezi et al.,2019;Herbert et al.,2019)。澳洲堅果對生長條件要求較高,溫度低于10 ℃或高于30 ℃、降水量在1000 mm以下等均不利于其生長(Persak and Pitzschke,2013),且各種病蟲害如花疫病、果殼斑點病、莖干潰瘍、速衰病、蝽象類、蛀果蛾類、天牛類、蓑蛾類和白蟻類等會影響澳洲堅果的產(chǎn)量和品質(zhì)(張瑞芳,2016;譚德錦等,2017;王文林等,2018),但至今鮮見有關(guān)澳洲堅果MYB家族轉(zhuǎn)錄因子成員結(jié)構(gòu)及其在澳洲堅果抗逆和生長發(fā)育過程中的功能研究?!緮M解決的關(guān)鍵問題】從澳洲堅果葉片中克隆MYB1轉(zhuǎn)錄因子基因(MiMYB1)并進行生物信息學分析,為深入研究澳洲堅果R2R3-MYB家族轉(zhuǎn)錄因子成員的結(jié)構(gòu)和功能及揭示澳洲堅果的抗逆機制提供參考依據(jù)。
1 材料與方法
1. 1 試驗材料
供試澳洲堅果品種為桂熱一號,來自廣西南亞熱帶農(nóng)業(yè)科學研究所澳洲堅果種質(zhì)圃(東經(jīng)106°79′84″, 北緯22°14′34″)。多糖多酚植株總RNA提取試劑盒購自天根生化科技(北京)有限公司;Ex Taq DNA聚合酶、反轉(zhuǎn)錄試劑盒、pMD18-T載體及DL2000 DNA Marker購自寶生物工程(大連)有限公司;凝膠回收試劑盒購自OMEGA公司。
1. 2 試驗方法
1. 2. 1 總RNA提取及cDNA合成 參照多糖多酚植物總RNA提取試劑盒說明提取澳洲堅果正常葉片的總RNA,采用Thermo Fisher NanoDrop 2000超微量核酸蛋白分析儀檢測總RNA濃度和純度,利用反轉(zhuǎn)錄試劑盒將其反轉(zhuǎn)錄合成cDNA,運用澳洲堅果內(nèi)參基因MiACTIN檢測cDNA質(zhì)量,并以1.0%瓊脂糖凝膠電泳檢測RNA完整性及cDNA的濃度和純度。
1. 2. 2 MiMYB1基因全長序列克隆 根據(jù)澳洲堅果轉(zhuǎn)錄組測序的編碼區(qū)(CDS)序列,利用Primer 3.0(http://primer3.ut.ee/)設計引物MiMYB1-F(5'-CGC CCTTCAATTGTTCTGTT-3')和MiMYB1-R(5'-GCT CTTGTCTTGTGGCTCATC-3'),引物委托寶生物工程(大連)有限公司合成。PCR反應體系20.0 μL:1.0 μL cDNA模板(60 μg/L),2×Ex Taq PCR MasterMix 10.0 μL,上、下游引物各0.5 μL,ddH2O補足至20.0 μL。擴增程序:95 ℃預變性3 min;94 ℃ 30 s,55 ℃50 s,72 ℃,90 s,進行35個循環(huán);72 ℃延伸10 min。PCR產(chǎn)物經(jīng)0.8%瓊脂糖凝膠電泳檢測后利用凝膠回收試劑盒進行回收、純化,連接至pMD18-T載體后轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細胞,以含氨芐青霉素的抗性培養(yǎng)基進行篩選,挑取陽性克隆送至寶生物工程(大連)有限公司測序(陸燕茜等,2017)。
1. 2. 3 MiMYB1蛋白生物信息學分析 利用ProtParam、TMHMM Server v.2.0、SMART:Main page、SWISS-MODEL、DeepLoc-1.0、PSIPRED V4.0、SignalP-5.0 Server和MEME等在線分析軟件對MiMYB1蛋白進行生物信息學分析,運用DNAMAN 7.0進行多序列比對分析;以Geneious Pro v4.8.4中的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進化樹(Bootstrap設為1000),用于系統(tǒng)發(fā)育進化分析的擬南芥及其他物種的MYB氨基酸序列均下載自NCBI。
2 結(jié)果與分析
2. 1 MiMYB1基因克隆及測序結(jié)果
從澳洲堅果葉片成功克隆獲得MiMYB1基因全長序列的目的條帶(圖1),經(jīng)測序得知MiMYB1基因序列全長1205 bp,包含1062 bp的開放閱讀框(ORF),共編碼353個氨基酸(圖2)。將MiMYB1基因序列上傳至NCBI數(shù)據(jù)庫,獲得GenBank登錄號為MN254975。
2. 2 MiMYB1蛋白理化性質(zhì)預測分析結(jié)果
利用ProtParam在線預測分析MiMYB1蛋白理化性質(zhì),得知其分子量為40312.00 Da,分子式為C1755H2741N503O559S15,總原子數(shù)為5573,理論等電點(pI)為5.63,帶負電荷殘基總數(shù)(Asp+Glu)為37個,帶正電殘基總數(shù)(Arg+Lys)為30個,不穩(wěn)定系數(shù)為54.32(屬于不穩(wěn)定蛋白),脂肪族氨基酸指數(shù)為79.26,總平均親水性系數(shù)為-0.665(圖3),故推測MiMYB1蛋白是一個不穩(wěn)定的親水性蛋白。
2. 3 MiMYB1蛋白磷酸化位點、跨膜結(jié)構(gòu)及亞細胞定位預測分析結(jié)果
利用NetPhos 3.1預測分析MiMYB1蛋白磷酸化位點,結(jié)果(圖4)顯示MiMYB1肽鏈中可能發(fā)生磷酸化且分值在0.5以上的氨基酸位點有42個,其中蘇氨酸磷酸化位點10個、絲氨酸磷酸化位點24個、酪氨酸磷酸化位點8個。由于MiMYB1肽鏈以絲氨酸磷酸化位點為主,推測MiMYB1蛋白是以絲氨酸為主、蘇氨酸為輔的磷酸化修飾調(diào)控其生物功能。
利用TMHMM Server v.2.0預測分析MiMYB1蛋白跨膜結(jié)構(gòu),結(jié)果表明MiMYB1蛋白無跨膜結(jié)構(gòu)。利用SignalP-5.0 Server預測分析MiMYB1蛋白的信號肽,結(jié)果顯示存在信號肽的概率為0.12%,故推測MiMYB1是非分泌蛋白(圖5)。利用DeepLoc-1.0預測分析MiMYB1蛋白亞細胞定位,發(fā)現(xiàn)其定位于細胞核中的概率為1.0(圖6)。
2. 4 MiMYB1蛋白保守結(jié)構(gòu)域及二、三級結(jié)構(gòu)預測分析結(jié)果
利用SMART:Main page預測分析MiMYB1蛋白保守結(jié)構(gòu)域,得知存在2個SANT結(jié)構(gòu)域和4個Low complexity,按其位置排序分別位于第13~63位、第66~114位、第127~150位、第179~199位、第286~299位和第302~321位氨基酸處(圖7-A),因MiMYB1氨基酸序列具有2個SANT保守結(jié)構(gòu)域,推測其屬于R2R3-MYB家族。利用PSIPRED V4.0預測分析MiMYB1蛋白二級結(jié)構(gòu),結(jié)果顯示其二級結(jié)構(gòu)主要以α-螺旋和無規(guī)則卷曲為主(圖7-B),分別占27.20%和62.61%。利用SWISS-MODEL預測分析MiMYB1蛋白三級結(jié)構(gòu),發(fā)現(xiàn)存在螺旋—轉(zhuǎn)角—螺旋結(jié)構(gòu)(HTH結(jié)構(gòu))(圖7-C),與二級結(jié)構(gòu)預測結(jié)果一致。
2. 5 MiMYB1蛋白的系統(tǒng)發(fā)育進化分析結(jié)果
對MiMYB1氨基酸序列(MN254975)與荷花NnMYB39(Nelumbo nucifera,XP_010277911.1)、哥倫比亞錦葵HuMYB102-like(Herrania umbratica,XP_021293847.1)、榴蓮DzMYB102-like(Durio zibethinus,XP_022777375.1)、木薯MeMYB102-like(Manihot esculenta,XP_021596793.1)和高山櫟QsMYB102-like(Quercus suber,XP_023877052.1)等MYB氨基酸序列進行同源性比對分析,結(jié)果(圖8-A)顯示對應的相似性分別為71.81%、67.47%、68.63%、64.44%和67.28%,與荷花NnMYB39的相似性最高。利用MEME鑒定分析MiMYB1氨基酸與其相似度較高的MYB氨基酸序列,找出排名前三的保守結(jié)構(gòu)域Motif,并標注其在相關(guān)氨基酸序列的具體位置,如圖8-B所示MiMYB1氨基酸序列的3個Motif分別位于第1~50位(a)、第77~126位(b)和第325~353位(c)。同時,將MiMYB1與126個擬南芥R2R3-MYB家族成員進行系統(tǒng)發(fā)育進化分析,結(jié)果顯示MiMYB1與AtMYB41的親緣關(guān)系最近,與AtMYB41、AtMYB74和AtMYB102同屬于S11亞族(圖9),故推測MiMYB1與該亞族成員具有相似的生物學功能,即與植物抗逆性功能相關(guān)。
3 討論
R2R3-MYB亞家族是植物中發(fā)現(xiàn)最豐富的MYB家族,擬南芥基因組含有126個R2R3-MYB家族成員、荷花基因組含有116個、楊樹基因組含有192個、玉米基因組含有157個、水稻基因組含有110個(Du et al.,2012;Tombuloglu,2019;Deng et al.,2016)。R2R3-MYB家族廣泛參與植物的發(fā)育、代謝、衰老及防御等多個生物學過程,因此,研究澳洲堅果R2R3-MYB家族成員的結(jié)構(gòu)與功能對揭示澳洲堅果產(chǎn)量形成和抗逆作用機制及促進澳洲堅果產(chǎn)業(yè)發(fā)展具有重要意義。本研究從澳洲堅果桂熱一號葉片中成功克隆獲得MiMYB1基因序列全長為1205 bp,包含1059 bp的ORF,編碼353個氨基酸,其編碼蛋白是一種具有2個SANT保守結(jié)構(gòu)域、無跨膜結(jié)構(gòu)、無信號肽且定位于細胞核的不穩(wěn)定親水性蛋白。將MiMYB1基因推導氨基酸序列提交到NCBI數(shù)據(jù)庫進行BLAST比對分析,發(fā)現(xiàn)其與荷花NnMYB39氨基酸序列的親緣關(guān)系最近,二者的相似性為71.81%。MiMYB1與126個擬南芥R2R3-MYB家族成員的系統(tǒng)發(fā)育進化分析結(jié)果表明,MiMYB1與AtMYB41親緣關(guān)系最近,與AtMYB41、AtMYB74和AtMYB102聚類于S11亞族,說明MiMYB1是典型的植物R2R3-MYB轉(zhuǎn)錄因子。
已有研究表明,5種24-nt siRNA水平的變化是通過RNA指導DNA甲基化(RdDM)調(diào)控AtMYB74轉(zhuǎn)錄因子響應鹽脅迫(Xu et al.,2015)。MPK6激活AtMYB41磷酸化以響應鹽脅迫,而AtMYB41磷酸化是提高擬南芥耐鹽性的必需條件(Hoang et al.,2012)。AtMYB41(At4g28110)可激活擬南芥和本生煙草(Nicotiana benthamiana)中的脂肪族軟木脂合成及沉積細胞壁相關(guān)軟木脂樣片層,進一步證實AtMYB41在非生物脅迫條件下參與脂肪族軟木脂合成(Kosma et al.,2014)。此外,De Vos等(2006)研究表明擬南芥R2R3-MYB轉(zhuǎn)錄因子AtMYB102對菜青蟲幼蟲攝食具有抗性;Zhu等(2018)研究發(fā)現(xiàn)擬南芥轉(zhuǎn)錄因子AtMYB102通過激活乙烯生物合成而提高植物對蚜蟲的敏感性??梢姡瑪M南芥S11亞族成員主要與植物對昆蟲的抗性及滲透脅迫相關(guān)。本研究的系統(tǒng)發(fā)育進化分析結(jié)果表明,MiMYB1與AtMYB41、AtMYB74和AtMYB102的相似度較高;BLAST比對分析也發(fā)現(xiàn)MiMYB1氨基酸序列與荷花、哥倫比亞錦葵、榴蓮、木薯和高山櫟等物種的MYB1氨基酸序列親緣關(guān)系較近,相似性在64.44%~71.81%。說明MiMYB1屬于S11亞族,且在澳洲堅果的抗逆性中發(fā)揮作用,但具體抗逆機制有待進一步探究。目前,在其他植物也有類似的研究結(jié)論,荷花R2R3-MYB轉(zhuǎn)錄因子NnMYB5與其花色相關(guān),在擬南芥中過表達NnMYB5基因會促進未成熟種子和花梗中花青素的積累(Sun et al.,2016);過表達水稻OsMYB102基因的擬南芥突變體植株可延緩擬南芥葉片衰老,降低其抗逆性(Piao et al.,2019)。Ruan等(2017)利用RNAi技術(shù)得到MeMYB2突變體木薯,且發(fā)現(xiàn)該突變體木薯能提高其對干旱和冷脅迫的耐受性;在干旱和冷脅迫下,MeMYB2基因還影響其他MeMYBs基因及MeWRKYs基因的表達,說明在脅迫條件下木薯MYB和WRKY家族基因功能間存在交叉作用。鑒于擬南芥S11亞族成員與MiMYB1的親緣關(guān)系,可確定MiMYB1參與澳洲堅果的抗逆反應,但尚需通過亞細胞定位、酵母自激活及遺傳轉(zhuǎn)化等技術(shù)進一步對MiMYB1的結(jié)構(gòu)與功能進行驗證。
4 結(jié)論
MiMYB1是典型的植物R2R3-MYB轉(zhuǎn)錄因子,在澳洲堅果的抗逆反應中發(fā)揮作用,為揭示R2R3-MYB家族轉(zhuǎn)錄因子成員在澳洲堅果中的抗逆作用機制打下了理論基礎(chǔ)。
參考文獻:
樊松樂,王紀坤,覃碧,王立豐. 2019. 植物轉(zhuǎn)錄因子研究方法及應用[J]. 分子植物育種,17(15):5003-5009. [Fan S L,Wang J K,Qin B,Wang L F. 2019. Analytic methods and application of plant transcription factors[J]. Molecular Plant Breeding,17(15):5003-5009.]
關(guān)淑艷,焦鵬,蔣振忠,齊拙,夏海豐,曲靜,馬義勇. 2019. MYB轉(zhuǎn)錄因子在植物非生物脅迫中的研究進展[J]. 吉林農(nóng)業(yè)大學學報,41(3):253-260. [Guan S Y,Jiao P,Jiang Z Z,Qi Z,Xia H F,Qu J,Ma Y Y. 2019. Research progress of MYB transcription factors in plant abiotic stress[J]. Journal of Jilin Agricultural University,41(3):253-260.]
陸燕茜,張冬,王立豐,王紀坤. 2017. 巴西橡膠樹HbMYB62轉(zhuǎn)錄因子基因的克隆和表達分析[J]. 植物研究,37(6):953-960. [Lu Y X,Zhang D,Wang L F,Wang J K. 2017. Cloning and expressional analysis of HbMYB62 under multi-stimulation in Hevea brasiliensis Muell. Arg.[J]. Bulletin of Botanical Research,37(6):953-960.]
譚德錦,梁鋒,韓凌云,鄭霞林,賢振華. 2017. 澳洲堅果3種木蠹蛾生物學特性分析[J]. 南方農(nóng)業(yè)學報,48(9):1611-1616. [Tan D J,Liang F,Han L Y,Zheng X L,Xian Z H. 2017. Biological characteristics of three Cossidae pests on Macadamia ternifolia F. Muell.[J]. Journal of Southern Agriculture,48(9):1611-1616.]
王蓮萍,王博,楊春雨,國會艷,任如意. 2019. 白樺8個MYB基因的克隆及其序列分析[J]. 江蘇農(nóng)業(yè)科學,47(18):93-98. [Wang L P,Wang B,Yang C Y,Guo H Y,Ren R Y. 2019. Cloning and sequence analysis of eight MYB genes from Betula platyphylla[J]. Jiangsu Agricultural Sciences,47(18):93-98.]
王文林,黎志,肖海艷,譚秋錦,譚德錦,趙靜,鄭樹芳,覃振師,許鵬,黃錫云,宋海云,陳海生. 2018. 廣西澳洲堅果主要蟲害種類及其防治方法[J]. 南方農(nóng)業(yè),12(25):48-50. [Wang W L,Li Z,Xiao H Y,Tan Q J,Tan D J,Zhao J,Zheng S F,Qin Z S,Xu P,Huang X Y,Song H Y,Chen H S. 2018. Main pest species and control methods of Macadamia integrifolia in Guangxi[J]. South China Agriculture,12(25):48-50.]
王文林,秦斌華,彭素娜,邱文武,覃振師,鄭樹芳,黃錫云,譚德錦,趙靜,韋持章. 2013. 澳洲堅果“桂熱1號”葉片礦質(zhì)養(yǎng)分周年動態(tài)變化研究[J]. 南方農(nóng)業(yè)學報,44(3):463-466. [Wang W L,Qin B H,Peng S N,Qiu W W,Qin Z S,Zheng S F,Huang X Y,Tan D J,Zhao J,Wei C Z. 2013. Annual variation of mineral nutrients in leaves of macadamia nuts Guire 1[J]. Journal of Southern Agriculture,44(3):463-466.]
楊雪,雒軍,楊彩霞,王振恒,夏琦,王引權(quán). 2018. 當歸MYB4轉(zhuǎn)錄因子基因的克隆及表達分析[J]. 河南農(nóng)業(yè)科學,47(12):48-56. [Yang X,Luo J,Yang C X,Wang Z H,Xia Q,Wang Y Q. 2018. Cloning and expression analysis of transcription factor MYB4 gene from Angelica sinensis[J]. Journal of Henan Agricultural Sciences,47(12):48-56.]
張瑞芳. 2016. 澳洲堅果種植主要病蟲害防治措施[J]. 現(xiàn)代園藝,(15):139-140. [Zhang R F. 2016. Key pest control measures for the planting of Macadamia integrifolia[J]. Modern Horticulture,(15):139-140.]
Buthelezi N M D,Magwaza S L,Tesfay Z S. 2019. Postharvest pre-storage processing improves antioxidants,nutritional and sensory quality of macadamia nuts[J]. Scientia Horticulturae,251(1):197-208.
De Vos M,Denekamp M,Dicke M,Vuylsteke M,van Loon L,Smeekens S C,Pieterse C M. 2006. The Arabidopsis thaliana transcription factor AtMYB102 functions in defense against the insect herbivore Pieris rapae[J]. Plant Signaling & Behavior,1(6):305-311.
Deng J,Li M,Huang L Y,Yang M,Yang P F. 2016. Genome-wide analysis of the R2R3 MYB subfamily genes in lotus(Nelumbo nucifera)[J]. Plant Molecular Biology Repor-ter,34(5):1016-1026.
Du H,F(xiàn)eng B R,Yang S S,Huang Y B,Tang Y X. 2012. The R2R3-MYB transcription factor gene family in maize[J]. PLoS One,7(6):e37463.
Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L. 2010. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,15(10):573-581.
Herbert S W,Walton D A,Wallace H M. 2019. The influence of pollen-parent and carbohydrate availability on macadamia yield and nut size[J]. Scientia Horticulturae,251(1):241-246.
Hoang M H T,Nguyen X C,Lee K,Kwon Y S,Pham H T T,Park H C,Yun D J,Lim C O,Chung W S. 2012. Phosphorylation by AtMPK6 is required for the biological function of AtMYB41 in Arabidopsis[J]. Biochemical and Biophysical Research Communications,422(1):181-186.
Kosma D K,Murmu J,Razeq F M,Santos P,Bourgault R,Molina I,Rowland O. 2014. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types[J]. The Plant Journal,80(2):216-229.
Lai L B,Nadeau J A,Lucas J,Lee E K,Nakagawa T,Zhao L,Geisler M,Sack F D. 2005. The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage[J]. The Plant Cell,17(10):2754-2767.
Lepiniec L,Debeaujon I,Routaboul J M,Baudry A,Pourcel L,Nesi N,Caboche M. 2006. Genetics and biochemistry of seed flavonoids[J]. Annual Review of Plant Biology,57:405-430.
Ma D,Reichelt M,Yoshida K,Gershenzon J,Constabel C P. 2018. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar[J]. The Plant Journal,96(5):949-965.
Persak H,Pitzschke A. 2013. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling[J]. PLoS One,8(2):e57547.
Piao W,Sakuraba Y,Paek N C. 2019. Transgenic expression of rice MYB102(OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana[J]. BMB Reports,52(11):653-658.
Ruan M,Guo X,Wang B,Yang Y L,Li W Q,Yu X L,Zhang P,Peng M. 2017. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava(Manihot esculenta)[J]. Journal of Experimental Botany,68(13):3657-3672.
Shen X J,Wang Y Y,Zhang Y X,Guo W,Jiao Y Q,Zhou X A. 2018. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis[J]. International Journal of Molecular Sciences,19(12). doi: 10.3390/ijms19123958.
Stracke R,Ishihara H,Huep G,Barsch A,Mehrtens F,Niehaus K,Weisshaar B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. The Plant Journal,50(4):660-677.
Sun S S,Gugger P F,Wang Q F,Chen J M. 2016. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus(Nelumbo Adans.)[J]. PeerJ,4:e2369. doi: 10.7717/peerj.2369.
Tombuloglu H. 2019. Genome-wide identification and expression analysis of R2R3,3R- and 4R-MYB transcription factors during lignin biosynthesis in flax(Linum usitatissimum)[J]. Genomics,112(1):782-795.
Wang H Z,Yang K Z,Zou J J,Zhu LL,Xie Z D,Morita T M,Tasaka M,F(xiàn)riml J,Grotewold E,Beeckman T,Vanneste S,Sack F,Le J. 2015. Transcriptional regulation of PIN genes by FOURLIPS and MYB88 during Arabidopsis root gravitropism[J]. Nature Communications,6:8822. doi: 10.1038/ncomms9822.
Xu R,Wang Y,Zheng H,Lu W,Wu C G,Huang J G,Yan K,Yang G D,Zheng C C. 2015. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis[J]. Journal of Expri-mental Botany,66(19):5997-6008.
Yang H,Xue Q,Zhang Z,Du J Y,Yu D Y,Huang F. 2018. GmMYB181,a soybean R2R3-MYB protein,increases branch number in transgenic Arabidopsis[J]. Frontiers in Plant Science,9:1027. doi:10.3389/fpls.2018.01027. eCo-llection 2018.
Zhang T,Zhao Y,Wang Y,Liu Z,Gao C. 2018. Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida[J]. Frontiers in Plant Science,9:1303. doi:10. 3389/fpls.2018.01303. eCollection 2018.
Zhao Y,Cheng X Y,Liu X D,Wu H F,Bi H H,Xu H X. 2018. The wheat MYB transcription factor TaMYB(31) is involved in drought stress responses in Arabidopsis[J]. Frontiers in Plant Science,9:1426.doi:10.3389/fpls.2018. 01426.
Zhu L,Guo J,Ma Z,Wang J F,Zhou C. 2018. Arabidopsis transcription factor MYB102 increases plant susceptibility to aphids by substantial activation of ethylene biosynthesis[J]. Biomolecules,8(2). doi: 10.3390/biom8020039.