陳瑞 唐秀梅 張琪 楊蓉 黃蕾蕾 任晴雯 朱森林 劉鵬
摘要:【目的】探究氯化鈉(NaCl)脅迫對(duì)黑小麥根系DNA損傷的影響,為尋求減輕環(huán)境因子對(duì)植物DNA損傷的方法及培育耐鹽黑小麥品種提供參考?!痉椒ā恳院谛←溒贩N漯珍1號(hào)為材料,采用5個(gè)NaCl質(zhì)量濃度(0、3、6、9、12和15 g/L)溶液處理黑小麥幼苗根系,通過(guò)彗星電泳試驗(yàn),利用CASP 1.2.2分析代表黑小麥幼苗根系DNA損傷的尾部DNA含量、尾長(zhǎng)和尾矩等指標(biāo)?!窘Y(jié)果】隨著NaCl質(zhì)量濃度的增加,彗星頭部漸小,拖尾漸長(zhǎng),黑小麥根系DNA損傷片斷的遷移水平逐步上升。尾部DNA含量、尾長(zhǎng)和尾矩均隨著NaCl質(zhì)量濃度的增加呈升高趨勢(shì),在15 g/L處理下,三者的升幅分別達(dá)67.56%、139.40%和39.88%。隨著NaCl質(zhì)量濃度的增加,Olive尾矩(OTM)均有提高,但增長(zhǎng)率慢慢下降,12~15 g/L的增長(zhǎng)率降至5.42%,說(shuō)明黑小麥具有一定的耐鹽性。【結(jié)論】NaCl脅迫會(huì)引起黑小麥根系DNA損傷,且受損程度隨著NaCl質(zhì)量濃度的增加而愈發(fā)嚴(yán)重,但黑小麥對(duì)NaCl脅迫仍存在一定抗性。
關(guān)鍵詞: 黑小麥;NaCl脅迫;彗星電泳;根系DNA損傷
中圖分類號(hào): S512.1? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)02-0299-06
Effects of NaCl stress on root DNA damage of black
kernel wheat
CHEN Rui1,2, TANG Xiu-mei3, ZHANG Qi1,2, YANG Rong1,2, HUANG Lei-lei1,2,
REN Qing-wen1,2, ZHU Sen-lin4, LIU Peng1,2*
(1Key Laboratory of Botany, Zhejiang Normal University, Jinhua, Zhejiang? 321004, China; 2Research Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang? 321004, China; 3Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning? 530007, China; 4Agricultural and Bioengineering Institute,Jinhua Polytechnic, Jinhua, Zhejiang? 321007, China)
Abstract:【Objective】Effects of? sodium chloride(NaCl) stress on root DNA damage of black kernel wheat were explored in order to provide an important theoretical reference for finding a way to reduce the damage of environmental factors to plant DNA and salt tolerant black kernel wheat varieties breeding. 【Method】Using black kernel wheat (Luozhen No.1)as the materials,five NaCl mass concentrations(0,3,6,9,12 and 15 g/L) were set for black kernel wheat root treatment. This research was studied by comet assay. Indexes representing root DNA damage of black kernel wheat,such as tail DNA content,tail length and tail moment,were analyzed using CASP software. 【Result】The comet head was gradually becoming small and trailing gradually extended as NaCl concentration aggravated. Furthermore,the migration level of DNA damage fragments in the root increased. Tail DNA content,tail length and tail moment increased with the augment of NaCl concentration. Under 15 g/L treatment,the increases of tail DNA content,tail length and tail moment each were 67.56%,139.40% and 39.88%. With the increase of NaCl mass concentration,Olive tail moment(OTM)values increased but the increasing rate slowly declined,even fell to 5.42% between 12 g/L and 15 g/L concentration,indicating that black kernel wheat had certain salt tolerance. 【Conclusion】NaCl stress causes root DNA damage of black kernel wheat,and DNA damage enhances as the NaCl mass concentration increases, but black kernel wheat still has certain resistance to NaCl stress.
Key words: black kernel wheat; NaCl stress; comet assay; root DNA damage
Foundation item: National Natural Science Foundation of China(41571049); Zhejiang Public Welfare Technology Application Research Project(2015C32127)
0 引言
【研究意義】小麥(Triticum aestivum L.)為禾本科小麥屬一年生草本植物,其中黑小麥?zhǔn)仟?dú)具特色的一類品種,其籽粒呈藍(lán)色、紫色、深褐色或接近于黑色。黑小麥的氨基酸、粗蛋白、可溶性蛋白及膳食纖維等營(yíng)養(yǎng)價(jià)值較高,各種礦質(zhì)元素和維生素含量極豐富,是較突出的黑色食品資源之一(Sun et al.,2011),具有補(bǔ)鈣、防癌、益壽、滋補(bǔ)的功效。但目前我國(guó)鹽漬土分布十分廣泛,土壤鹽漬化嚴(yán)重危害農(nóng)業(yè)生產(chǎn)和生態(tài)環(huán)境,鹽脅迫對(duì)黑小麥的質(zhì)量和產(chǎn)量造成嚴(yán)重威脅。因此,探索鹽脅迫對(duì)黑小麥根系DNA損傷的影響,對(duì)于尋求減輕環(huán)境因子對(duì)植物DNA損傷的方法及培育耐鹽黑小麥品種具有重要意義?!厩叭搜芯窟M(jìn)展】國(guó)內(nèi)外已有較多關(guān)于在逆境脅迫下植物DNA損傷的研究,主要涉及黃芪(姜志艷等,2013)、三七(朱美霖等,2014)和擬南芥(宋婕,2017)等植物。有研究表明,紫外輻射會(huì)引起煙草(Nicotiana tabacum L.)DNA受損(賈敬芬,2010)。在銅、鎘等重金屬脅迫下,隨脅迫濃度升高植物DNA損傷逐漸嚴(yán)重(茍本富,2011;魏志琴等,2013)。目前與鹽脅迫對(duì)植物影響相關(guān)的報(bào)道主要集中于耐鹽性、染色體及基因表達(dá)、抗氧化損傷等方面。陳桂平等(2003)采用cDNA-AFLP技術(shù),闡明小麥耐鹽突變體在鹽脅迫下基因表達(dá)的過(guò)程與差異。陳小燕等(2003)研究表明,氯化鈉(NaCl)脅迫會(huì)引起染色體黏連、斷裂及不均等分離等問(wèn)題。楊飛等(2013)研究發(fā)現(xiàn),NaCl脅迫會(huì)導(dǎo)致菘藍(lán)(Isatis indigotica Fortune)DNA甲基化模式改變,部分DNA發(fā)生超甲基化和去甲基化。Zou等(2015)探明了殼寡糖(COS)可增強(qiáng)抗氧化活性,從而保護(hù)小麥免受鹽脅迫的損害?!颈狙芯壳腥朦c(diǎn)】目前,鮮見從分子水平探究NaCl脅迫對(duì)黑小麥DNA損傷情況的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)單細(xì)胞凝膠電泳試驗(yàn),探討黑小麥幼苗根系DNA在不同NaCl質(zhì)量濃度處理下的損傷程度,并拍攝彗星圖像,檢測(cè)DNA損傷遷移部分的遷移長(zhǎng)度、尾部DNA含量、尾矩、尾長(zhǎng)及Olive尾矩,綜合分析NaCl脅迫下黑小麥根系DNA損傷情況,為尋求減輕環(huán)境因子對(duì)植物DNA損傷的方法及培育耐鹽黑小麥品種提供參考。
1 材料與方法
1. 1 試驗(yàn)材料
供試黑小麥品種為漯珍1號(hào),采自山東省泰安市優(yōu)質(zhì)黑小麥專業(yè)種植基地。供試土壤為浙江師范大學(xué)附近的農(nóng)區(qū)酸性紅壤,經(jīng)檢測(cè)土壤基本性狀為:pH 5.97、有機(jī)質(zhì)18.1 g/kg、陽(yáng)離子代換量3.92 cmol/kg、水溶性鹽總量2.66 g/kg、全氮0.54 mg/kg、水解氮22.90 g/kg、速效磷60.60 mg/kg及速效鉀147.80 mg/kg。
1. 2 試驗(yàn)方法
分別挑選大小一致、顆粒飽滿的黑小麥種子,經(jīng)0.1%升汞溶液表面消毒后放入蒸餾水中,吸漲4 h后,播于鋪有2層濾紙的培養(yǎng)皿(直徑10 cm)內(nèi),每皿100粒。待種子萌發(fā)后,挑取發(fā)育健壯、長(zhǎng)勢(shì)一致的幼苗各15株,分別植于5 kg桶裝土內(nèi),每桶施入基肥(尿素2.14 g、磷酸二氫鈣1.17 g、氯化鉀1.58 g、鉬酸銨0.02 g、四硼酸鈉0.04 g),用NaCl溶液處理土壤,共設(shè)5個(gè)NaCl質(zhì)量濃度處理組,分別為T0(0 g/L,對(duì)照)、T1(3 g/L)、T2(6 g/L)、T3(9 g/L)、T4(12 g/L)和T5(15 g/L),每處理重復(fù)3次。在黑小麥整個(gè)生長(zhǎng)時(shí)期均以蒸餾水灌溉。
1. 3 測(cè)定項(xiàng)目及方法
1. 3. 1 機(jī)械法分離細(xì)胞核 參考林愛軍等(2005)機(jī)械分離法,取各NaCl質(zhì)量濃度溶液處理過(guò)的幼苗根系放于預(yù)冷的玻璃培養(yǎng)皿中,并加入一定體積的磷酸緩沖液(PBS),用刀片在該緩沖液中輕輕將小麥根系豎直切開,使根系細(xì)胞核進(jìn)入緩沖液,獲得根系細(xì)胞核的懸浮液。為避免光線對(duì)試驗(yàn)結(jié)果的影響,所有操作均在紅光燈下進(jìn)行。
1. 3. 2 凝膠制備 參照郭煒(2008)單細(xì)胞凝膠電泳法,采用“三明治”瓊脂糖凝膠進(jìn)行電泳。將載玻片浸入PBS配制的1%正常熔點(diǎn)瓊脂糖中,迅速取出,加蓋玻片,4 ℃凝固10 min或室溫凝固;取細(xì)胞核懸液50 μL和l%低熔點(diǎn)瓊脂糖50 μL混合均勻,滴加到第一層凝膠上,加蓋玻片,4 ℃凝固10 min;揭去蓋玻片,將100 μL預(yù)熱的0.5%岫滴加到載玻片上,加蓋玻片。
1. 3. 3 裂解和電泳 參照張來(lái)軍等(2010)的方法,將制備好的瓊脂糖凝膠載玻片浸入堿性裂解液(2.5 mol/L NaCl,0.1 mol/L EDTA,10 mol/L HCl,1%肌氨酸鈉,pH 10)中裂解0.5~3.0 h,之后用清水進(jìn)行沖洗并放入水平電泳槽中,加入新配制的預(yù)冷堿性電泳液(0.00l mol/L Na2EDTA,0.3 mol/L NaOH,pH>13),在電壓26 V、電流300 mA下電泳15~40 min。
1. 3. 4 中和及染色 電泳結(jié)束后,用0.4 mol/L Tris-HCl反復(fù)沖洗3次,每次5 min,濾紙吸干后在每張載玻片上加入30 μL溴化乙錠進(jìn)行染色(Singh et al.,2009)。
1. 4 統(tǒng)計(jì)分析
運(yùn)用SPSS 20.0中的單因素方差分析法(One-way ANOVA)和Duncans新復(fù)極差法進(jìn)行差異顯著性分析,采用Origin 8.5制圖。彗星觀察及數(shù)據(jù)分析在激發(fā)光546 nm、濾光片590 nm的條件下,用熒光顯微鏡觀察(該條件下和溴化乙錠結(jié)合的DNA發(fā)出紅色熒光),以CCD拍照獲取彗星圖像,并用CASP 1.2.2分析獲取單個(gè)細(xì)胞核彗星試驗(yàn)的相關(guān)數(shù)據(jù)。
2 結(jié)果與分析
2. 1 NaCl脅迫對(duì)黑小麥根系DNA損傷的情況
黑小麥經(jīng)不同質(zhì)量濃度NaCl溶液脅迫后,通過(guò)電泳試驗(yàn)獲得的彗星狀圖像(圖1)顯示,在相同電泳條件下,T0組細(xì)胞無(wú)拖尾現(xiàn)象,T1組拖尾并不明顯。隨著NaCl質(zhì)量濃度的增加,拖尾漸長(zhǎng),遷移水平逐漸上升,揭示高質(zhì)量濃度的NaCl脅迫對(duì)黑小麥根系細(xì)胞核DNA損傷有明顯影響,彗星尾長(zhǎng)均高于對(duì)照T0組,細(xì)胞核受損越來(lái)越嚴(yán)重,尤其是在15 g/L NaCl脅迫下拖尾現(xiàn)象最顯著,說(shuō)明高質(zhì)量濃度NaCl脅迫會(huì)引起黑小麥根系DNA的破壞。
2. 2 彗星電泳圖像各項(xiàng)指標(biāo)分析結(jié)果
由圖2可知,T0和T1組尾部DNA各項(xiàng)指標(biāo)無(wú)顯著差異(P>0.05,下同),說(shuō)明低質(zhì)量濃度NaCl脅迫下,黑小麥根系DNA幾乎沒有受損。但NaCl質(zhì)量濃度超過(guò)6 g/L時(shí),尾部DNA含量、尾長(zhǎng)和尾矩等指標(biāo)均明顯上升,于15 g/L處理(T5)下達(dá)最大值,分別較T0組增加67.56%、139.40%和39.88%。其中尾長(zhǎng)的升高趨勢(shì)最明顯,T1、T2、T3、T4和T5組尾長(zhǎng)分別較T0組增加3.17%、29.85%、53.11%、122.83%和139.40%,且T2~T5組與T0組差異顯著(P<0.05,下同)。表明NaCl質(zhì)量濃度增加會(huì)加重黑小麥根系DNA的損害,即NaCl質(zhì)量濃度與DNA損傷存在明顯的劑量—效應(yīng)關(guān)系。綜上所述,低質(zhì)量濃度NaCl脅迫下,黑小麥根系DNA損傷不明顯,但隨著NaCl質(zhì)量濃度的增加,根系DNA的損傷狀況不斷加劇。
2. 3 DNA損傷程度代表值Olive尾矩(OTM)的變化曲線
OTM表示尾部DNA含量占總DNA含量百分比與頭、尾部中心間距的乘積(何晶等,2008),可同時(shí)反映彗星拖尾中DNA含量和彗尾的形狀特征,是DNA損傷定量化的常用指標(biāo)(Lovell and Omori,2008)。從圖3可看出,隨著NaCl質(zhì)量濃度的增加,黑小麥DNA的OTM不斷增大,在15 g/L NaCl溶液處理(T5組)下達(dá)最大值,較T0組增加39.82%。當(dāng)NaCl質(zhì)量濃度小于3 g/L(T1組)時(shí),根尖細(xì)胞中DNA損傷的OTM較小,屬于輕度損傷范圍,T1組的OTM增幅也不明顯,表明幾乎無(wú)DNA損害。相較于T0組,T1、T2、T3、T4和T5組的OTM分別提高1.77%、11.93%、21.28%、32.64%和39.82%。但其增長(zhǎng)率波動(dòng)下降,分別為1.77%、9.99%、8.35%、9.36%和5.42%??梢?,OTM增長(zhǎng)速度整體上較平緩,其最高增長(zhǎng)率為9.99%(介于T1~T2),而在T4~T5的增長(zhǎng)率降到5.42%,證明黑小麥具有一定的耐鹽性。
3 討論
斷鏈DNA和堿易變性DNA片段在堿性溶液(pH>13)中會(huì)分解為單鏈向陽(yáng)極移動(dòng),其遷移速度較未斷裂DNA快,從而產(chǎn)生拖尾,形成彗星狀圖像(沈丹艷等,2013)。且DNA損害程度越大,遷移DNA量越多,遷移距離便越長(zhǎng),拖尾現(xiàn)象越明顯(Collins,2017)。因此,彗星圖像中的拖尾長(zhǎng)度可評(píng)定細(xì)胞DNA損傷程度,確定外界作用因素與DNA損傷間的劑量—效應(yīng)關(guān)系(Meng and Zhang,1998;宋超等,2013)。本研究結(jié)果顯示,T1、T2、T3、T4和T5組與T0組相比,尾長(zhǎng)分別增加3.17%、29.85%、53.11%、122.83%和139.40%,OTM分別提高1.77%、11.93%、21.28%、32.64%和39.82%。在低NaCl脅迫水平下,黑小麥根系DNA拖尾現(xiàn)象并不明晰,OTM較小,與張建新等(2017)研究發(fā)現(xiàn)的低濃度錳脅迫處理后臭牡丹(Clerodendrum bungei Sterd.)根系DNA拖尾不清晰,DNA損傷較弱的結(jié)論相似;姜志艷等(2013)對(duì)鋅脅迫下黃芪[Astragalus membranaceus(Fisch.)Bunge.]的DNA損傷探索中也呈現(xiàn)出相似結(jié)果。這可能是由于黑小麥具有一定的DNA自身修復(fù)能力,Rowan等(2010)也曾指出RecA介導(dǎo)同源重組DNA修復(fù)機(jī)制是最具典型性的損傷修復(fù)系統(tǒng)。從彗星圖像中可看出,隨著NaCl質(zhì)量濃度的增加,NaCl脅迫顯著引起黑小麥根系DNA遷移,該趨勢(shì)與沈丹艷等(2013)對(duì)鋁脅迫下蕎麥(Fagopyrum esculentum Moench.)根系DNA損傷的拖尾長(zhǎng)度變化,公新忠等(2010)對(duì)鈾脅迫下大豆[Glycine max (Linn.) Merr.]幼莖尾長(zhǎng)變化探究均有較好的相關(guān)性。由此可知,低質(zhì)量濃度NaCl脅迫處于黑小麥DNA損傷修復(fù)能力的承受范圍之內(nèi),植株在一定程度上可適應(yīng)NaCl脅迫環(huán)境,但高質(zhì)量濃度(12~15 g/L)NaCl脅迫已超出其自身修復(fù)限度,從而導(dǎo)致黑小麥根系DNA明顯遷移,拖尾長(zhǎng)度變長(zhǎng),尾部DNA含量增加且OTM變大。
植物在外界非生物脅迫下,DNA會(huì)引起不同程度的損傷變異,甚至斷裂(Waterman et al.,2006)。本研究結(jié)果表明,隨著NaCl質(zhì)量濃度的增加,黑小麥尾部DNA含量、尾長(zhǎng)和尾矩均逐漸增大,與郭煒(2008)進(jìn)行的紫外輻照脅迫會(huì)引起6種植物材料[柴胡(Bupleurm scorzonerifolium Willd.)、鹽芥(The-llungiella salsuginea)、擬南芥(Arabidopsis thaliana (L.) Heynh.)、中間堰麥草(Thinopyrum intermedium (Hest)Nevski)、小麥(Triticum aestivum L.)和簇毛麥(Haynaldia villosa L. Schur.)]DNA損傷的研究結(jié)果相同。在本研究中顯現(xiàn)出的拖尾長(zhǎng)度及尾矩變化趨勢(shì),與高曦等(2014)對(duì)菲脅迫下蠶豆(Vicia faba L.)根尖細(xì)胞DNA損傷的探討有較好的一致性。當(dāng)NaCl質(zhì)量濃度增加時(shí),OTM逐步增長(zhǎng),黑小麥根系DNA的損傷程度逐漸加強(qiáng),與魏志琴等(2013)探索銅脅迫下擬南芥根細(xì)胞DNA損傷的OTM變化規(guī)律相似。由此可知,尾部DNA含量、尾長(zhǎng)、尾矩、OTM與NaCl質(zhì)量濃度均具有明顯的正相關(guān)性,高質(zhì)量濃度NaCl脅迫對(duì)黑小麥根系DNA損傷影響顯著大于低質(zhì)量濃度NaCl脅迫,其間存在劑量—效應(yīng)關(guān)系。
已有研究表明,NaCl脅迫下的丙二醛含量(王文銀等,2017)、質(zhì)膜NADPH氧化酶活性、抗氧化酶活性(周萬(wàn)海等,2015)等指標(biāo)均可用于檢測(cè)小麥對(duì)鹽害的敏感度,但相關(guān)研究主要集中于植物生長(zhǎng)發(fā)育的外在表現(xiàn)、內(nèi)部結(jié)構(gòu)、抗氧化酶系統(tǒng)及根系生態(tài)效應(yīng)等方面,很少涉及分子層面。本研究從DNA分子水平出發(fā),運(yùn)用現(xiàn)代分子生物學(xué)技術(shù)綜合分析,采用彗星電泳方法檢測(cè)黑小麥在NaCl脅迫下的損傷程度并進(jìn)行耐鹽性鑒定,發(fā)現(xiàn)低質(zhì)量濃度NaCl脅迫處理后的根系DNA拖尾不清晰,且OTM雖隨著NaCl質(zhì)量濃度的增加逐漸加大,但其增長(zhǎng)率呈波動(dòng)下降,6、9、12和15 g/L NaCl脅迫下,分別為9.99%、8.35%、9.36%和5.42%。說(shuō)明其增長(zhǎng)速度均較平緩,植株表現(xiàn)出一定的耐鹽性,在張瑞富等(2007)的研究中也得到相似結(jié)論。綜上所述,在一定質(zhì)量濃度范圍的NaCl脅迫下,黑小麥的OTM、尾部DNA含量和尾矩均呈波動(dòng)下降趨勢(shì),表明其具有較好的耐鹽性。
土壤鹽漬化嚴(yán)重危害農(nóng)業(yè)生態(tài)環(huán)境,降低土地資源利用率,進(jìn)而影響農(nóng)作物的產(chǎn)量和質(zhì)量,造成巨大的經(jīng)濟(jì)損失。鹽漬土的改良利用:一方面可將土壤鹽含量降低到作物能適應(yīng)的范圍內(nèi),另一方面通過(guò)強(qiáng)化作物的耐鹽能力,而適應(yīng)土壤鹽漬環(huán)境。在黑小麥的規(guī)?;a(chǎn)中,可先選擇對(duì)鹽脅迫有一定適應(yīng)能力的抗性品種,并重點(diǎn)考慮對(duì)作物生長(zhǎng)具有顯著影響的NaCl成分,結(jié)合黑小麥對(duì)其耐受程度,在鹽漬化的種植土壤中,控制NaCl質(zhì)量濃度低于3 g/L,以期獲得最佳栽培效果。
4 結(jié)論
NaCl脅迫會(huì)引起黑小麥根系DNA損傷,且受損程度隨著NaCl質(zhì)量濃度的增加而愈發(fā)嚴(yán)重,但黑小麥對(duì)NaCl脅迫仍存在一定抗性。
參考文獻(xiàn):
陳桂平,黃占景,馬聞師,沈銀柱. 2003. 鹽脅迫下小麥耐鹽突變體后代差異cDNA的分離和鑒定[J]. 中國(guó)農(nóng)業(yè)科學(xué),36(9):996-999. [Chen G P,Huang Z J,Ma W S,Shen Y Z. 2003. Isolation and characterization of the cDNA fragments of wheat involved in salt stress[J]. Scientia Agricultura Sinica,36(9):996-999.]
陳小燕,秦素平,何蓓如. 2003. NaCl脅迫對(duì)黑麥根尖細(xì)胞染色體行為的影響[J]. 麥類作物學(xué)報(bào),23(4):10-14. [Chen X Y,Qin S P,He B R. 2003. Effect of salt stress on chromosomal behavior of root tip cells in rye(Secale cereale L.)[J]. Journal of Triticeae Crops,23(4):10-14.]
高曦,盛月慧,高彥. 2014. 菲、芘對(duì)蠶豆的氧化脅迫和DNA損傷[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),33(10):1873-1881. [Gao X,Sheng Y H,Gao Y. 2014. Oxidative stresses and DNA damages in cells of Vicia faba exposed to phenanthrene and pyrene[J]. Journal of Agro-Environment Science,33(10):1873-1881.]
公新忠,李廣悅,丁德馨,胡南,聶小琴,殷杰. 2010. 鈾脅迫對(duì)大豆幼苗細(xì)胞DNA損傷的彗星試驗(yàn)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),29(3):418-425. [Gong X Z,Li G Y,Ding D X,Hu N,Nie X Q,Yin J. 2010. Damages to DNA of soybean cell caused by the stress from uranium using comet assay[J]. Journal of Agro-Environment Science,29(3):418-425.]
茍本富. 2011. 銅脅迫對(duì)蠶豆幼苗基因組DNA損傷效應(yīng)的研究[J]. 北方園藝,(4):158-160. [Gou B F. 2011. Study on DNA damages in Vicia faba seedings under copper stress[J]. Northern Horticulture,(4):158-160.]
郭煒. 2008. 紫外輻照導(dǎo)致植物細(xì)胞DNA損傷的彗星電泳檢測(cè)及生理指標(biāo)的測(cè)定[D]. 濟(jì)南:山東大學(xué). [Guo W. 2008. Evaluation of UV damage at DNA level in several plant protoplasts using SCGE and UV resistant physiologi-cal indicators detecting[D]. Jinan: Shandong University.]
何晶,李強(qiáng),李萍. 2008. 彗星電泳檢測(cè)12C6+離子束輻照人類肝L02細(xì)胞的DNA損傷效應(yīng)[J]. 原子核物理評(píng)論,25(1):67-71. [He J,Li Q,Li P. 2008. 12C6+ ion beam induced DNA damage in human hepatocyte L02 cells detected by comet assay[J]. Nuclear Physics Review,25(1):67-71.]
賈敬芬. 2010. 紫外輻射誘導(dǎo)煙草原生質(zhì)體中DNA損傷的彗星電泳檢測(cè)[J]. 植物生理學(xué)報(bào),46(6):597-600. [Jia J F. 2010. Comet assay on DNA damage induced by UV-B radiation in tobacco protoplasts[J]. Plant Physiology Journal,46(6):597-600.]
姜志艷,王建英,楊雪梅. 2013. 銅鉛、鋅對(duì)黃芪生長(zhǎng)及其DNA損傷的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),44(2):205-209. [Jiang Z Y,Wang J Y,Yang X M. 2013. Effect of copper,lead and zinc on growth of Astragalus membranaceus (Fisch.) Bge. Varmongholicus(Bge.) Hsiao and its DNA damage[J]. Journal of Southern Agriculture,44(2):205-209.]
林愛軍,張旭紅,朱永官. 2005. 鎘對(duì)小麥葉片DNA傷害的彗星實(shí)驗(yàn)研究[J]. 環(huán)境科學(xué)學(xué)報(bào),25(3):329-333. [Lin A J,Zhang X H,Zhu Y G. 2005. The comet assay detects Cd-induced DNA damages in wheat leaves[J]. Acta Scien-tiae Circumstantiae,25(3):329-333.]
沈丹艷,梅笑漫,姚巧美,江心怡,蔡夢(mèng)穎,吳鳳清,范泱,張白,高培培. 2013. 鋁對(duì)蕎麥根系DNA損傷的效應(yīng)研究[J]. 水土保持學(xué)報(bào),27(5):244-248. [Shen D Y,Mei X M,Yao Q M,Jiang X Y,Cai M Y,Wu F Q,F(xiàn)an Y,Zhang B,Gao P P. 2013. Effect of buckwheat root DNA damage on aluminum[J]. Journal of Soil and Water Conservation,27(5):244-248.]
宋超,范立民,孟順龍,裘麗萍,賈旭淑,胡庚東,陳家長(zhǎng). 2013. 苯并(a)芘對(duì)羅非魚(GIFT Oreochromis niloticus)肝細(xì)胞DNA損傷的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),22(9):1583-1587. [Song C,F(xiàn)an L M,Meng S L,Qiu L P,Jia X S,Hu G D,Chen J Z. 2013. DNA damage of live cells on tilapia(GIFT Oreochromis niloticus) induced by Benzo(a) pyrene[J]. Ecology and Environmental Sciences,22(9):1583-1587.]
宋婕. 2017. 鎘脅迫對(duì)擬南芥幼苗DNA損傷及修復(fù)的影響[D]. 沈陽(yáng):遼寧大學(xué). [Song J. 2017. Effect of Cd-induced DNA damage and DNA repair system on Arabidopsis seedlings[D]. Shenyang: Liaoning University.]
王文銀,高小剛,司曉林,徐當(dāng)會(huì). 2017. 外源鈣鹽對(duì)鹽脅迫下沙拐棗滲透調(diào)節(jié)和膜脂過(guò)氧化的影響[J]. 環(huán)境科學(xué)研究,30(8):1230-1237. [Wang W Y,Gao X G,Si X L,Xu D H. 2017. Effects of exogenous calcium on osmotic adjustment and peroxidation of Calligonum mongolicum membrane under salt stress[J]. Research of Environmental Sciences,30(8):1230-1237.]
魏志琴,陳志勇,秦蓉,王宇濤,李韶山. 2013. Cu2+對(duì)擬南芥根的局部毒性及誘導(dǎo)DNA損傷和細(xì)胞死亡[J]. 植物學(xué)報(bào),48(3):303-312. [Wei Z Q,Chen Z Y,Qin R,Wang Y T,Li S S. 2013. Cu2+ induced local toxicity and DNA damage,cell death in roots of Arabidopsis thaliana[J]. Chinese Bulletin of Botany,48(3):303-312.]
楊飛,聶浩,徐延浩. 2013. 鹽脅迫對(duì)菘藍(lán)基因組DNA甲基化的影響[J]. 中藥材,36(4):515-518. [Yang F,Nie H,Xu Y H. 2013. Effect of salt stress on DNA methylation in Isatis indigotica[J]. Journal of Chinese Medicinal Mate-rials,36(4):515-518.]
張建新,閔佳麗,俞沁媛,鄭佳夢(mèng),陳楚,吳玉環(huán),樓泱泱,劉鵬. 2017. 鋁錳復(fù)合脅迫下臭牡丹抗逆性及其DNA損傷的研究[J]. 生態(tài)環(huán)境學(xué)報(bào),26(11):1856-1864. [Zhang J X,Min J L,Yu Q Y,Zheng J M,Chen C,Wu Y H,Lou Y Y,Liu P. 2017. Research of the stress resistance and DNA damage of Clerodendrum bungei Steud. under single and combined treatment of Al and Mn[J]. Ecology and Environmental Sciences,26(11):1856-1864.]
張來(lái)軍,郝建國(guó),賈敬芬. 2010. 紫外輻射誘導(dǎo)煙草原生質(zhì)體中DNA損傷的彗星電泳檢測(cè)[J]. 植物生理學(xué)報(bào),46(6):597-600. [Zhang L J,Hao J G,Jia J F. 2010. Comet assay on DNA damage induced by UV-B radiation in tobacco protoplasts[J]. Plant Physiology Journal,46(6):597-600.]
張瑞富,王云,喬宏偉,郭志杰. 2007. 鹽脅迫對(duì)不同品種小麥發(fā)芽的影響[J]. 內(nèi)蒙古民族大學(xué)學(xué)報(bào)(自然科學(xué)版),22(3):297-301. [Zhang R F,Wang Y,Qiao H W,Guo Z J. 2007. Effect of salt stress on germination of different wheat varieties[J]. Journal of Inner Mongolia University for Nationalities(Natural Sciences),22(3):297-301.]
周萬(wàn)海,馮瑞章,師尚禮,寇江濤. 2015. NO對(duì)鹽脅迫下苜蓿根系生長(zhǎng)抑制及氧化損傷的緩解效應(yīng)[J]. 生態(tài)學(xué)報(bào),35(11):3606-3614. [Zhou W H,F(xiàn)eng R Z,Shi S L,Kou J T. 2015. Nitric oxide protection of Alfalfa seedling roots against salt-induced inhibition of growth and oxidative damage[J]. Acta Ecologica Sinica,35(11):3606-3614.]
朱美霖,魏富剛,崔斌,陳中堅(jiān),蔣艷雪,曹紅斌. 2014. 土壤Cd脅迫對(duì)三七生長(zhǎng)和根系DNA損傷及抗氧化酶活性的影響[J]. 植物資源與環(huán)境學(xué)報(bào),23(1):58-64. [Zhu M L,Wei F G,Cui B,Chen Z J,Jiang Y X,Cao H B. 2014. Effect of soil Cd stress on growth, root system DNA damage and antioxidant enzyme activity of Panax notoginseng[J]. Journal of Plant Resources and Environment,23(1):58-64.]
Collins A. 2017. The use of bacterial repair endonucleases in the comet assay[M]//Gautier J C. Drug Safety Evaluation Methods and Protocols. New York:Humana Press:137-147.
Lovell D,Omori T. 2008. Statistical issues in the use of the comet assay[J]. Mutagenesis,23(3):171-182.
Meng Z Q,Zhang L Z. 1998. Studies on DNA damage in human blood lymphocytes using the single cell microgel belectrophoresis technique[J]. Acta Genetica Sinica,25(4):294-300.
Rowan B A,Oldenburg D J,Bendich A J. 2010. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis[J]. Journal of Experimental Botany,61(10):2575-2588.
Singh B N,Singh B R,Singh R L,Prakash D,Dhakarey R,Upadhyay G,Singh H B. 2009. Oxidative DNA damage protective activity,antioxidant and anti-quorum sensing potentials of Moringa oleifera[J]. Food and Chemical Toxicology,47(6):1109-1116.
Sun Y,Cui S W,Gu X,Zhang J. 2011. Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran[J]. Carbohydrate Polymers,85(3):615-621.
Waterman D G,Ortiz-Lombardia M,F(xiàn)ogg M J,Koonin E,Koonin E V,Antson A A. 2006. Crystal structure of Bacillus anthracis ThiI,a tRNA-modifying enzyme contai-ning the predicted RNA-binding THUMP domain[J]. Journal of Molecular Biology,356(1):1-110.
Zou P,Li K C,Liu S,Xing R,Qin Y K,Yu H H,Zhou M M,Li P C. 2015. Effect of chitooligosaccharides with diffe-rent degrees of acetylation on wheat seedlings under salt stress[J]. Carbohydrate Polymers,126:62-69.