申昌軍 張帥 李浩鵬
[摘要] 目的 探討沉默信息調(diào)節(jié)因子1(SIRT1)在四氯化碳(CCl4)致小鼠肝纖維化肝臟中的活性變化及姜黃素對(duì)肝纖維化的干預(yù)作用與分子機(jī)制。 方法 選取C57BL/6小鼠24只,隨機(jī)分為正常組、模型組和姜黃素治療組,每組8只。腹腔注射CCl4制備肝纖維化模型,建模后姜黃素治療組給予0.5%羧甲基纖維素鈉姜黃素懸液灌胃;模型組及正常組給予0.5%羧甲基纖維素鈉灌胃,6周后處死小鼠。HE染色檢測(cè)小鼠肝臟病理變化情況;檢測(cè)各組血清谷丙轉(zhuǎn)氨酶(ALT)、谷草轉(zhuǎn)氨酶(AST)、白細(xì)胞介素-6(IL-6)、腫瘤壞死因子-α(TNF-α)、SIRT1活性;轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)、α-平滑肌肌動(dòng)蛋白(α-SMA)、Ⅰ型膠原(CollⅠ)mRNA表達(dá),及Cleaved-caspase3、CollⅠ蛋白表達(dá)情況。 結(jié)果 模型組血清中ALT、AST、IL-6、TNF-α的表達(dá)量均顯著高于正常組(均P < 0.01),而治療組血清ALT、AST、IL-6、TNF-α表達(dá)量均低于模型組,差異均有高度統(tǒng)計(jì)學(xué)意義(均P < 0.01);模型組肝臟組織細(xì)胞中SIRT1的酶活性低于正常組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。治療組SIRT1的酶活性明顯高于模型組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。模型組肝臟組織中TGF-β1、α-SMA的mRNA表達(dá)及CollⅠ表達(dá)量顯著高于正常組,Cleaved-caspase3顯著低于正常組,差異均有高度統(tǒng)計(jì)學(xué)意義(均P < 0.01),治療組TGF-β1、α-SMA的mRNA表達(dá)及CollⅠ表達(dá)量低于模型組,Cleaved-caspase3顯著高于模型組,差異均有高度統(tǒng)計(jì)學(xué)意義(均P < 0.01)。 結(jié)論 姜黃素對(duì)CCl4誘導(dǎo)的肝纖維化具有抑制作用,其機(jī)制可能是通過上調(diào)SIRT1活性,減輕炎性反應(yīng),抑制肝星狀細(xì)胞的活化,拮抗肝臟纖維化。
[關(guān)鍵詞] 肝臟;纖維化;姜黃素;炎性反應(yīng);沉默信息調(diào)節(jié)因子1
[中圖分類號(hào)] R285.5? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2020)03(c)-0011-05
[Abstract] Objctive To investigate the activity of silencing information regulator 1 (SIRT1) in the liver of carbon tetrachloride (CCl4) induced liver fibrosis in mice, and to investigate the effect of curcumin on liver fibrosis and its molecular mechanism. Methods Twenty-four C57BL/6 mice were randomly divided into normal group, model group and Curcumin treatment group, with 8 mice in each group. Hepatic fibrosis model was prepared by intraperitoneal injection of CCl4. After the modeling, the curcumin treatment group was given 0.5% Carboxymethyl Cellulose Sodium Curcumin Suspension by gavage. The model group and the normal group were given 0.5% Sodium Carboxymethyl Cellulose by gavage, the mice were killed after 6 weeks. HE staining was used to detect the pathological changes of mouse liver. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and activity of SIRT1 were detected. Transforming growth factor β1 (TGF -β1), α-smooth muscle actin (α-SMA), collagen typeⅠ (Coll Ⅰ) mRNA expression, and Cleaved - caspase3, Coll Ⅰ protein expression. Results The expression levels of ALT, AST, IL-6 and TNF-α in serum of the model group were all significant higher than those of the normal group (all P < 0.01). The expression levels of ALT, AST, IL-6 and TNF-α in the treatment group were all lower than those in the model group, and the differences were highly statistically significant (all P < 0.01). The enzyme activity of SIRT1 in the liver cells of the model group was lower than that of the normal group, and the difference was highly statistically significant (P < 0.01). The enzyme activity of SIRT1 in the treatment group was significantly higher than that in the model group, and the difference was highly statistically significant (P < 0.01). Model group in the liver tissue, TGF-β1, α-SMA mRNA and Coll Ⅰ expression of amount of expression were significantly higher than those of normal group, Cleaved-caspase3 was significantly lower than that of normal group, with highly statistically significant differences (all P < 0.01). The mRNA expression of TGF-β1, α-SMA and Coll Ⅰ expression quantity in the treatment group were lower than those in the model group, Cleaved-caspase3 was significantly higher than that of model group, with highly statistically significant differences (all P < 0.01). Conclusion Curcumin has an inhibitory effect on CCl4-induced liver fibrosis, and the mechanism may be to up-regulate the activity of SIRT1, thereby reducing the inflammatory response, inhibiting the activation of hepatic stellate cells, and antagonizing liver fibrosis.
[Key words] Liver; Fibrosis; Curcumin; Inflammation; Silencing information regulator 1
酒精性肝病、慢性肝炎、自身免疫性肝病等多種慢性肝病,往往導(dǎo)致肝纖維化病變。針對(duì)肝纖維化,目前臨床上尚無特異性治療方法阻斷甚至逆轉(zhuǎn)疾病進(jìn)程。因此,預(yù)防和逆轉(zhuǎn)肝纖維化仍然是眾多肝臟疾病研究的熱點(diǎn)及攻克的主要目標(biāo)。姜黃素是姜黃根莖中提取的一種黃色酸性酚類物質(zhì),具有抗腫瘤、抗氧化、抗炎等多種藥理活性[1]。近年來,姜黃素的拮抗纖維化作用日益受到人們的關(guān)注,但其拮抗纖維化的分子機(jī)制仍不清楚。本研究擬在已有研究的基礎(chǔ)上,通過CCl4誘導(dǎo)的小鼠肝纖維化模型,明確姜黃素抑制肝纖維化的作用及分子機(jī)制。
1 材料與方法
1.1 動(dòng)物、主要試劑及儀器來源
SPF級(jí)雄性C57BL/6小鼠24只,6~8周齡,體重18~20 g,購自空軍軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心(合格證號(hào):SYXK(軍)2012-0022)。腫瘤壞死因子-α(TNF-α)(貨號(hào):h052)、白細(xì)胞介素-6(IL-6)(貨號(hào):H007)、谷丙轉(zhuǎn)氨酶(ALT)(貨號(hào):C009-2-1)、谷草轉(zhuǎn)氨酶(AST)(貨號(hào):C010-2-1)均從南京建成生物工程研究所購買。姜黃素(分析純,國藥集團(tuán)化學(xué)試劑有限公司,批號(hào):F20050102);SYBR Green MasterMix(美國應(yīng)用生物系統(tǒng)公司,批號(hào):A8605),Trizol試劑(美國Invitrogen公司,批號(hào):AHF1813A),7900HT型熒光定量PCR儀(美國應(yīng)用生物系統(tǒng)公司)。
1.2 動(dòng)物分組及模型制備
C57BL/6小鼠采用22~26℃、SPF級(jí)飼養(yǎng)環(huán)境,光照控制12 h明暗交替,濕度50%~60%。24只小鼠采用隨機(jī)數(shù)字表法分為正常組、模型組、姜黃素治療組,每組8只(動(dòng)物倫理批準(zhǔn)號(hào):XJYYLL-201805023)。模型組、姜黃素治療組小鼠按10 mL/kg給予腹腔注射10% CCl4的油劑溶液(CCl4∶橄欖油為1∶3~4次/周),經(jīng)病理切片證實(shí)肝纖維化模型建立成功。6周后姜黃素治療組采用姜黃素(劑量為40 mg/100 g)與0.5%羧甲基纖維素鈉混懸后按1 mL/100 g灌胃,每周3次,共6周;模型組自第7周起給予0.5%羧甲基纖維素鈉1 mL/100 g灌胃,每周3次,共6周;正常組,前6周給予腹腔橄欖油稀釋液,每周3次,第7周起給予0.5%羧甲基纖維素鈉1 mL/100 g灌胃,每周3次,共6周。灌胃6周后,取小鼠肝臟組織進(jìn)行病理切片及對(duì)血清相關(guān)指標(biāo)進(jìn)行檢測(cè)。
1.3 檢測(cè)指標(biāo)
1.3.1 形態(tài)學(xué)檢測(cè)? 取各組固定的組織標(biāo)本,常規(guī)石蠟包埋,切片,脫蠟后HE染色,鏡下觀察組織形態(tài)。
1.3.2 血清學(xué)指標(biāo)檢測(cè)? 小鼠眼球采血后,靜置15 min,4℃低溫離心(離心半徑15 cm,1500 r/min)15 min,分離血清,按試劑盒說明書測(cè)ALT、AST、IL-6、TNF-α水平。
1.3.3 酶活性試劑盒檢測(cè)肝臟組織沉默信息調(diào)節(jié)因子1(SIRT1)活性? 肝臟組織低溫裂解離心(4℃低溫離心,離心半徑15 cm,1500 r/min,15 min),收集上清。按照試劑盒說明書檢測(cè)SIRT1酶活性。
1.3.4 實(shí)時(shí)熒光定量PCR法檢測(cè)肝臟組織中纖維化相關(guān)分子TGF-β1、Ⅰ型膠原、α-SMA的表達(dá)? 采用Trizol一步法提取肝臟組織中總RNA,定量后逆轉(zhuǎn)錄合成cDNA,進(jìn)行實(shí)時(shí)熒光定量PCR反應(yīng),引物序列分別為:甘油醛-3-磷酸脫氫酶(GAPDH)上游5′-TTCCTTCCTGGGCATGGAGTCC-3′,下游5′-TGGCGTAC-AGGTCTTTGCGG-3′;轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)上游5′-CCACCTGCAAGACCATCGAC-3′,下游5′-CT-GGCGAGCCTTAGTTTGGAC-3′;Ⅰ型膠原(CollⅠ)上游5′-TGACTGGAAGAGCGGAGAGT-3′,下游5′-AT-CCATCGGTCATGCTCTCT-3′;平滑肌肌動(dòng)蛋白α-SMA上游5′-CCCAGACATCAGGGAGTAATGG-3′,下游TCTATCGGATACTTCAGCGTCA-3′。擴(kuò)增條件為:95℃預(yù)變性10 min,95℃變性10 s,60℃退火延伸20 s,循環(huán)40次,按照2-△△Ct的相對(duì)定量方法計(jì)算。
1.3.5 蛋白印跡法(Westen blot)檢測(cè)肝臟組織中Cleaved-caspase3、CollⅠ的表達(dá)? 肝臟組織,低溫組織勻漿,進(jìn)行十二烷基磺酸鈉-聚丙烯酰胺凝膠電泳,轉(zhuǎn)膜,室溫封閉2 h,分別加入Cleaved-caspase3、Call Ⅰ一抗(1∶1000),4℃孵育過夜后加入辣根過氧化物酶標(biāo)記的二抗(1∶3000),37℃孵育40 min?;瘜W(xué)發(fā)光,凝膠圖像分析系統(tǒng)分析數(shù)據(jù)。
1.4 統(tǒng)計(jì)學(xué)方法
使用SPSS 19.0軟件進(jìn)行數(shù)據(jù)處理,計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,三組間比較采用單因素方差分析,兩組之間比較采用兩樣本獨(dú)立樣本t檢驗(yàn)(LSD-t檢驗(yàn))。以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 小鼠肝臟病理變化情況
HE染色顯示正常組(圖1A)鼠肝細(xì)胞結(jié)構(gòu)清晰,小葉及匯管區(qū)無異常。而模型組(圖1B)小鼠注射CCl4后,光鏡下觀察到明顯的小葉結(jié)構(gòu)紊亂,肝細(xì)胞腫脹,氣球樣變可見,明顯腫脹變形,伴點(diǎn)狀、片狀壞死及炎癥細(xì)胞浸潤,大量膠原沉積,在匯管區(qū)之間、匯管區(qū)與中央靜脈之間形成纖維間隔。治療組(圖1C)經(jīng)過干預(yù)后肝細(xì)胞輕度腫脹,細(xì)胞結(jié)構(gòu)清楚,膠原沉積量降低程度明顯。
A:正常組;B:模型組;C:治療組
2.2 三組小鼠血清中AST、ALT表達(dá)水平的比較
與正常組比較,模型組AST、ALT表達(dá)量明顯高于正常組,治療組AST、ALT表達(dá)量均低于模型組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見表1。
2.3 三組小鼠血清中IL-6、TNF-α表達(dá)水平的比較
模型組IL-6、TNF-α表達(dá)量均明顯高于正常組,治療組IL-6、TNF-α表達(dá)量均低于模型組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見表2。
2.4 三組小鼠肝臟細(xì)胞中SIRT1活性的比較
正常組小鼠SIRT1相對(duì)活性為(127.62±17.34)%,模型組為(64.80±7.25)%,治療組為(104.72±11.14)%,三組比較差異有統(tǒng)計(jì)學(xué)意義(F = 17.36,P = 0.012)。模型組小鼠SIRT1相對(duì)活性明顯低于正常組(t = 13.57,P < 0.01);治療組小鼠SIRT1相對(duì)活性明顯高于模型組(t = 6.54,P = 0.001)。
2.5 三組小鼠肝臟組織纖維化相關(guān)分子TGF-β1、CollⅠ、α-SMA表達(dá)及Cleaved-caspase3、CollⅠ相關(guān)蛋白表達(dá)的比較模型組中TGF-β1、α-SMA、CollⅠ的mRNA及CollⅠ蛋白表達(dá)明顯高于正常組;治療組TGF-β1、α-SMA、Coll Ⅰ的mRNA及Coll Ⅰ蛋白表達(dá)明顯低于模型組,模型組小鼠肝臟中Cleaved-caspase3的表達(dá)低于正常組,而治療組Cleaved-caspase3的表達(dá)高于模型組,差異均有高度統(tǒng)計(jì)學(xué)意義(均P < 0.01)。見表3~4、圖2。
3 討論
損傷后的肝臟在各種刺激下,肝臟內(nèi)細(xì)胞外基質(zhì)(ECM)產(chǎn)生和降解失衡,導(dǎo)致過度增生與異常沉積,使肝臟結(jié)構(gòu)破壞、功能異常,從而導(dǎo)致肝臟纖維化[2]。目前肝纖維化治療主要是通過抗病因治療,尚無特效的藥物治療。
臨床上無論是肝臟損傷、病毒感染、藥物作用、自身免疫等因素最終都會(huì)經(jīng)過肝星狀細(xì)胞(hepatic stellate cells,HSCs)活化發(fā)展成纖維化[3]。當(dāng)肝臟受到損傷后直接或間接激活HSC,使其由靜息狀態(tài)轉(zhuǎn)變?yōu)榛罨癄顟B(tài),導(dǎo)致大量ECM的形成。IL-6、TNF-α等促炎介質(zhì)能通過介導(dǎo)炎性反應(yīng)啟動(dòng)纖維化的形成,并可通過促進(jìn)ECM的合成而促進(jìn)肝纖維化的發(fā)生發(fā)展[4]。已有研究顯示,TGF-β1能夠刺激ECM合成,抑制其降解,是最強(qiáng)促纖維化細(xì)胞因子[5]。本研究結(jié)果顯示,與模型組比較,正常組TNF-α、IL-6、TGF-β1表達(dá)均明顯增多,而治療組可顯著降低TNF-α、IL-6、TGF-β1的表達(dá)。
此外,HSC的活化可促進(jìn)ECM的大量表達(dá),在此過程中纖維化相關(guān)因子α-SMA的生成被認(rèn)為是HSC活化的主要標(biāo)志物[6],而CollⅠ是ECM的主要成分,產(chǎn)生大量的CollⅠ是纖維化疾病的共同病理特征。Inagaki等[7]研究顯示,抑制CCL4誘導(dǎo)的肝纖維化大鼠體內(nèi)CollⅠ的表達(dá),可減輕ECM的過度增生。在本研究中,與模型組比較,治療組可降低ALT、AST活性,減少致纖維化因子α-SMA,CollⅠ的表達(dá)。通過模型驗(yàn)證,治療組顯示出良好的拮抗肝損傷和阻止纖維化的功能,且可能通過抑制HSC的活化發(fā)揮作用。
有研究報(bào)道[8-10],SIRT1在多種疾病中具有重要的調(diào)節(jié)作用。Cappetta等[11]發(fā)現(xiàn),激活SIRT1可通過下調(diào)TGF-β/smad3信號(hào)通路發(fā)揮抗心肌纖維化實(shí)現(xiàn)。本研究檢測(cè)了姜黃素對(duì)SIRT1活性表達(dá)的影響。結(jié)果顯示,與正常組比較,模型組SIRT1的酶活性顯著下調(diào)。而治療組可顯著改善CCl4介導(dǎo)的肝臟組織細(xì)胞SIRT1的酶活性水平。提示SIRT1信號(hào)分子可能參與姜黃素對(duì)肝臟纖維化的拮抗作用。
目前研究顯示,在不同器官中,姜黃素拮抗纖維化可能有多種途徑,與細(xì)胞的氧化應(yīng)激、炎性反應(yīng)等密切相關(guān)[12-14]。而SIRT1是生物體內(nèi)具有重要意義的去乙?;浮Q芯匡@示,SIRT1可調(diào)控肝臟疾病的多個(gè)環(huán)節(jié)[15]。在肝癌的研究中發(fā)現(xiàn),姜黃素可以抑制腫瘤進(jìn)展[16]。此外,SIRT1可顯著抑制高脂飲食導(dǎo)致的肝損傷[17-19]。而脂肪肝、肝纖維化、肝癌本身可能是相互轉(zhuǎn)化[20-21]。本研究顯示,姜黃素可能通過調(diào)控SIRT1進(jìn)而抑制HSC的活化拮抗肝纖維化。姜黃素可以在肝臟病變的多個(gè)環(huán)節(jié)影響疾病的進(jìn)展、改善結(jié)局。因此,深入研究姜黃素-SIRT1調(diào)節(jié)軸的作用機(jī)制,發(fā)現(xiàn)多種肝臟疾病的共同調(diào)控通路,可以為臨床治療提供新的思路。
綜上所述,姜黃素可通過抑制HSC的活化拮抗CCl4介導(dǎo)的肝臟纖維化,在此過程中可能通過增加SIRT1的酶活性發(fā)揮作用。
[參考文獻(xiàn)]
[1]? Kao NJ,Hu JY,Wu CS,et al. Curcumin represses the activity of inhibitor-κB kinase in dextran sulfate sodium-induced colitis by S-nitrosylation [J]. Int Immunopharmacol,2016,38:1-7.
[2]? Su TH,Kao JH,Liu CJ. Molecular mechanism and treatment of viral hepatitis-related liver fibrosis [J]. Int J Mol Sci,2014,15(6):10578-10604.
[3]? Hu YB,Ye XT,Zhou QQ,et al. Sestrin 2 Attenuates Rat Hepatic Stellate Cell (HSC) Activation and Liver Fibrosis via an mTOR/AMPK-Dependent Mechanism [J]. Cell Physiol Biochem,2018:2111-2122.
[4]? O′Reilly S,Ciechomska M,Cant R,et al. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein [J]. J Biol Chem,2014,289(14):9952-9960.
[5]? Khanizadeh S,Ravanshad M,Hosseini S,et al. Blocking of SMAD4 expression by shRNA effectively inhibits fibrogenesis of human hepatic stellate cells [J]. Gastroenterol Hepatol Bed Bench,2015,8(4):262-269.
[6]? Kisseleva T,Brenner DA. The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis [J]. J Hepatol,2012,56(4):965-972.
[7]? Inagaki Y,Nemoto T,Kushida M,et al. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice [J]. Hepatology,2003, 38(4):890-899.
[8]? Gu L,Tao X,Xu Y,et al. Dioscin alleviates BDL-and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway [J]. Toxicol Appl Pharmacol,2016,292:19-29.
[9]? Sodhi K,Puri N,F(xiàn)avero G,et al. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet [J]. PLoS One,2015,10(6):e0128648.
[10]? Li M,Hong W,Hao C,et al. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice [J]. FASEB J,2018,32(1):500-511.
[11]? Cappetta D,Esposito G,Piegari E. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy [J]. Int J Cardiol,2016,205:99-110.
[12]? Zhao XA,Chen G,Liu Y,et al. Curcumin reduces Ly6Chi,monocyte infiltration to protect against liver fibrosis by inhibiting Kupffer cells activation to reduce chemokines secretion [J]. Biomed Pharmacother,2018,106:868-878.
[13]? Sica A,Invernizzi P,Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology [J]. Hepatology,2014,59(5):2034-2042.
[14]? Zheng J,Wu C,Lin Z,et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation--a novel mechanism suppressing liver fibrosis [J]. FEBS J,2014,281(1):88-103.
[15]? Bellet MM,Masri S,Astarita G,et al. Histone Deacetylase SIRT1 Controls Proliferation,Circadian Rhythm,and Lipid Metabolism during Liver Regeneration in Mice [J]. J Biol Chem,2016,291(44):23318-23329.
[16]? Mccubrey JA,Lertpiriyapong K,Steelman LS,et al. Effects of resveratrol,curcumin,berberine and other nutraceuticals on aging,cancer development,cancer stem cells and microRNAs [J]. Aging,2017,9(6):1477-1536.
[17]? Lee DE,Lee SJ,Kim SJ,et al. Curcumin Ameliorates Nonalcoholic Fatty Liver Disease through Inhibition of O-GlcNAcylation [J]. Nutrients,2019,11(11):E2702.
[18]? Ding RB,Bao J,Deng CX. Emerging roles of SIRT1 in fatty liver diseases [J]. Int J Biol Sci,2017,13(7):852-867.
[19]? Yin H,Hu M,Liang X,et al. Deletion of SIRT1 From Hepatocytes in Mice Disrupts Lipin-1 Signaling and Aggravates Alcoholic Fatty Liver [J]. Gastroenterol,2014, 146(3):801-811.
[20]? Marengo A,Rosso C,Bugianesi E. Liver Cancer:Connections with Obesity,F(xiàn)atty Liver,and Cirrhosis [J]. Annu Rev Med,2016,67:103-117.
[21]? Unalp-Arida A,Ruhl CE. PNPLA3 I148M and liver fat and fibrosis scores predict liver disease mortality in the United States population [J]. Hepatology,2019,31032.
(收稿日期:2019-09-30? 本文編輯:封? ?華)