蔡彬 周敏紅 李春偉
[摘要] 炎癥性腸?。↖BD)是一種病因尚未明確的腸道黏膜慢性非特異性炎癥性疾病,包括克羅恩病和潰瘍性結腸炎,其病因及發(fā)病機制尚未完全清楚,一般認為與環(huán)境、遺傳、感染及免疫等多種因素有關。氨基酸是生物體內(nèi)重要的營養(yǎng)物質(zhì),是促進腸道生長、維持腸道黏膜完整和屏障功能的必需物質(zhì),作為腸細胞的能量底物,是促進腸黏膜愈合的物質(zhì)基礎。大量研究證實IBD疾病過程中存在氨基酸代謝異常,包括谷氨酰胺、谷氨酸、精氨酸、色氨酸、半胱氨酸、甘氨酸等,并且補充上述氨基酸對IBD腸道損傷具有保護作用。其作用機制涉及刺激腸上皮細胞增殖,抑制氧化應激損傷,減少促炎細胞因子釋放,增加上皮細胞遷移能力等。本文通過收集國內(nèi)外相關文獻,旨在探討氨基酸在IBD治療中的潛在價值。
[關鍵詞] 氨基酸;炎癥性腸病;潰瘍性結腸炎;克羅恩病
[中圖分類號] R574? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)03(c)-0037-04
[Abstract] Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease of the intestinal mucosa with unknown etiology, including crohn′s disease and ulcerative colitis. The etiology and pathogenesis are not completely clear, and it is generally believed to be related to environment, heredity, infection and immunity. Amino acids are important nutrients in living organisms, which are essential substances for promoting intestinal growth, maintaining intestinal mucosal integrity and barrier function. Amino acids are also energy substrates for intestinal cells and the material basis for wound healing of intestinal mucosa. A large number of studies have confirmed the abnormal amino acid metabolism in the course of IBD disease, including glutamine, glutamate, arginine, tryptophan, cysteine, glycine, etc., and the supplementation of the above amino acids has a protective effect on the intestinal damage of IBD. The mechanism involves stimulating intestinal epithelial cell proliferation, inhibiting oxidative stress damage, reducing the release of pro-inflammatory cytokines, and increasing the migration capacity of epithelial cells. This article aims to explore the potential value of amino acids in the treatment of IBD by collecting relevant literature at home and abroad.
[Key words] Amino acids; Inflammatory bowel disease; Ulcerative colitis; Crohn′s disease
炎癥性腸病(IBD)是一組累及腸道的慢性非特異性炎癥性疾病,包括潰瘍性結腸炎(UC)和克羅恩?。–D)。亞洲作為欠發(fā)達地區(qū)過去被認為是IBD發(fā)病率較低的地區(qū),但近年來亞洲地區(qū)IBD的發(fā)病率呈現(xiàn)逐年升高趨勢[1]。最新調(diào)查顯示,中國已成為亞洲IBD發(fā)病率最高的國家,我國IBD的發(fā)病率為3.44/10萬[2]。IBD的病因及發(fā)病機制目前尚未完全清楚,一般認為與環(huán)境、遺傳、感染、免疫等因素有關。介于其治愈難度大,復發(fā)率高,并且與結腸癌的發(fā)生存在關聯(lián),IBD已被世界衛(wèi)生組織列為現(xiàn)代難治性疾病之一,受到醫(yī)學界的廣泛重視。
氨基酸(AA)是生物體內(nèi)重要的營養(yǎng)物質(zhì),其可以被腸道菌群利用生成蛋白質(zhì)及各種代謝產(chǎn)物,同時作為腸細胞的能量底物,是促進腸黏膜愈合的物質(zhì)基礎[3]。氨基酸在腸道炎癥性疾病中發(fā)揮重要的生物學作用,是維持腸道生長、黏膜完整及其屏障功能的必需物質(zhì)。相對于正常人群,IBD患者血液中多種氨基酸的濃度顯著降低,并且在對IBD動物模型的研究中發(fā)現(xiàn),補充相關氨基酸可以緩解腸道炎癥,減輕氧化應激反應,減少促炎因子釋放[4]。在此,本文通過收集國內(nèi)外相關文獻,旨在探討氨基酸在IBD治療中的潛在價值。
1 谷氨酰胺(Gln)
Gln是一種非必需氨基酸,作為腸細胞的重要代謝底物,是體內(nèi)合成氨基酸、谷胱甘肽、核酸等物質(zhì)的重要前體。研究發(fā)現(xiàn)非活動期CD患者Gln的代謝未見明顯改變,而活動期CD患者腸黏膜中Gln的水平存在顯著降低[5]。Shiomi等[6]報道葡聚糖硫酸鈉(DSS)誘導的急性結腸炎小鼠血清和結腸組織中Gln的含量顯著降低,補充Gln可以明顯減輕腸炎小鼠腸道炎癥,包括減少小鼠體重丟失,減輕腸上皮細胞(IEC)損傷,緩解腸道水腫,以及改善腸黏膜完整性。Gln在刺激小腸上支細胞(IEC)增殖以及減少IEC凋亡方面同樣發(fā)揮重要作用,Zhu等[7]發(fā)現(xiàn)Gln的缺失使得IEC促分裂原活化蛋白激酶(MAPK)信號通路失活,而補充Gln可以激活MAPK信號通路,從而促進IEC增殖分化。Evans等[8]證實Gln特異性地保護IEC免受細胞因子誘導而凋亡。另有研究報道Gln可以增加緊密連接(TJS)蛋白的表達,從而改善腸道通透性,提高損傷修復能力[9]。此外,Gln還可以通過調(diào)控核因子κB(NF-κB)和信號轉導和轉錄激活因子(STAT)信號通路的激活,抑制干擾素(IFN)-γ、腫瘤壞死因子α(TNF)-α等促炎細胞因子的釋放,從而減輕腸道的炎癥損傷,并且Gln對腸道氧化應激損傷同樣具有保護作用,補充Gln可以降低腸組織中誘生型一氧化氮合酶(iNOS)和環(huán)氧化酶2(COX-2)的活性[10]。
2 谷氨酸(Glu)
Glu是由Gln在谷氨酰胺酶的作用下轉化生成的,其在蛋白質(zhì)合成以及能量代謝中扮演重要的角色。DSS誘導的結腸炎小鼠中Glu的水平顯著降低[6]。Li等[11]報道注射微量Glu到UC大鼠下丘腦室旁核可以顯著促進細胞的增殖和抗氧化水平,同時上調(diào)B淋巴細胞瘤-2(Bcl-2)蛋白的表達,下調(diào)Bcl-2相關X蛋白(BAX)和caspase-3蛋白的表達從而抑制細胞凋亡,并且發(fā)現(xiàn)補充Glu可以降低促炎細胞因子TNF-α和白細胞介素(IL)-1β的表達。Davaatseren等[12]對IBD小鼠補充Glu結果發(fā)現(xiàn),Glu可以顯著改善腸炎小鼠體重的丟失,降低疾病活動指數(shù),減輕腸炎小鼠結腸的短縮,并且明顯降低腸道組織病理學的損傷程度,此外Glu還能夠降低血管內(nèi)皮生長因子-A(VEGF-A)及其受體的表達,抑制炎癥導致的血管密度增加,同時減少腸道粒細胞的聚集。
3 精氨酸(Arg)
Arg是一種條件必需氨基酸,對促進細胞再生、傷口愈合、免疫功能、蛋白質(zhì)轉化等均有重要作用。研究發(fā)現(xiàn)UC患者腸道組織Arg的水平較健康對照組顯著下降[13],補充Arg有利于維持炎癥狀態(tài)下腸道的正常生理功能同時促進腸黏膜的愈合[14]。有報道UC患者血清Arg濃度與腸道損傷的病理學分級存在相關性,提出Arg可以作為判斷UC疾病嚴重程度的生物學標志[15]。Coburn等[16]發(fā)現(xiàn)補充Arg可以改善IBD小鼠體重下降及結腸重量減少的癥狀,抑制促炎細胞因子和趨化因子的表達,增加IEC的遷移能力,提高腸道黏膜的修復能力。Arg還能夠顯著改善IBD小鼠超氧化物歧化酶(SOD)的活力,增加抗氧化的能力,減輕腸道的氧化損傷[17]。
4 色氨酸(Trp)
Trp是一種必需氨基酸,在調(diào)控炎性反應以及機體免疫應答方面具有重要作用。研究發(fā)現(xiàn)活動期UC患者血清Trp的濃度與紅細胞沉降率(ESR)以及C-反應蛋白(CRP)呈負相關,因此認為血清Trp水平具有監(jiān)測UC疾病活動性的潛在價值[18]。研究發(fā)現(xiàn)補充Trp可以顯著改善UC大鼠體重減輕和便血次數(shù)增加的癥狀,減輕腸道組織病理學損傷[19]。Kim等[20]發(fā)現(xiàn)補充Trp可以降低促炎細胞因子TNF-α、IL-6、IFN-γ、IL-12p40、IL-1β、IL-17、IL-8、ICAM-1的表達,并且使得細胞凋亡啟動子caspase-8和Bax表達增加,從而減輕腸道炎性反應,促進腸道損傷修復。還有研究報道Trp能夠激活腸道鈣敏感受體(CaSR)從而產(chǎn)生抗炎活性,CaSR是胃腸道內(nèi)營養(yǎng)物質(zhì)的感受器具有維持黏膜免疫穩(wěn)態(tài)的功能,Trp通過激活CaSR能夠顯著降低TNF-α誘導的IL-8的分泌[21]。
5 半胱氨酸(Cys)
Cys是一種含硫氨基酸,屬于條件必需氨基酸。Kim等[22]發(fā)現(xiàn)補充Cys可以改善炎癥導致的腸道滲透性增強,減少局部趨化因子的表達和中性粒細胞的內(nèi)流,降低結腸組織的炎癥損傷,研究還發(fā)現(xiàn)Cys可以顯著抑制促炎細胞因子TNF-α、IL-6、IL-12p40、IL-1β的表達,同時促進凋亡啟動子caspase-8的表達。Song等[23]報道Cys通過調(diào)控NF-κB以及核因子NF-E2相關因子(Nrf2)信號通路,從而保護腸黏膜的屏障功能。此外,Cys的前體N-乙酰半胱氨酸(NAC)同樣對腸道炎癥發(fā)揮保護作用。研究發(fā)現(xiàn)在IBD動物模型中,NAC可以降低髓過氧化物酶(MPO)的活性,減少過氧化反應產(chǎn)物丙二醛(MDA)的水平,同時升高SOD的活性和谷胱甘肽(GSH)的水平[24]。除此之外,NAC還能夠降低TNF-α、IL-1、IL-6的表達,并且抑制環(huán)氧酶-2(COX-2)的表達以及前列腺素E2(PGE2)的水平,從而減輕TNBS誘導的腸道損傷[25]。上述結論提示NAC可以通過抑制氧化應激和炎癥反應從而在結腸炎癥中起到保護作用。
6 甘氨酸(Gly)
Gly是一種非必需氨基酸,被認為具有抵抗炎癥、免疫調(diào)節(jié)和細胞保護的功能。Tsune等[26]證實在TNBS或DSS誘導的結腸炎模型中,Gly可以減輕造模引起的腹瀉、體重減輕以及結腸炎癥損傷。研究還進一步發(fā)現(xiàn),Gly能夠降低結腸組織中MPO的活性,同時抑制IL-1β和TNF-α的表達,結腸組織中趨化因子的表達同樣受到抑制,包括中性粒細胞趨化因子(CINC)和巨噬細胞炎性蛋白2(MIP-2)。
除上述氨基酸以外,組氨酸(His)、蛋氨酸(Met)等同樣具有保護腸道、抵抗腸道炎癥反應的作用。Andou等[27]報道His可以降低結腸炎小鼠組織學損傷以及結腸重量的丟失,同時抑制脂多糖(LPS)誘導小鼠巨噬細胞產(chǎn)生TNF-α和IL-6,并且對NF-κB信號通路具有調(diào)控作用。Liu等[28]同樣發(fā)現(xiàn)補充His可以減輕氧化應激反應,抑制TNF-α誘導的IL-8分泌,同時可以改善腸炎小鼠組織學損傷以及結腸重量的減輕,減少TNF-α的表達。Met是一種含硫氨基酸,Met可以抑制腸道氧化應激反應、提高GSH的水平[29]。研究發(fā)現(xiàn)Met對DSS誘導的UC模型大鼠具有明顯的治療作用,其作用機制可能是通過改變TJS蛋白的結構和功能,改善腸黏膜屏障功能,以及促進受損腸黏膜的修復來實現(xiàn)的[30]。
綜上所述,IBD是一種涉及免疫、遺傳、環(huán)境等多種因素的復雜疾病。目前IBD的病因及其發(fā)病機制尚不完全清楚。氨基酸是維持人體正常免疫能力,保護人體抵御疾病的必要物質(zhì)。IBD患者體內(nèi)氨基酸代謝異常已被廣泛報道,補充氨基酸可以抑制腸道炎性反應,減輕腸道氧化應激損傷,減少炎性細胞因子釋放,保護腸道黏膜結構完整,促進腸道損傷修復,從而對IBD起到保護作用。但是,目前為止各項研究主要集中在IBD動物模型層面,有關補充氨基酸在人體層面的研究甚少。同時在大多數(shù)研究中,氨基酸干預通常應用在結腸炎動物模型誘導建立之前或期間。因此,在IBD治療過程中,特別是IBD臨床診斷之后,補充氨基酸的最佳時機仍然需要進一步確立。另外,各種氨基酸在IBD治療過程中的作用機制依然值得深入探討。盡管如此,通過補充氨基酸治療或者干預疾病發(fā)生發(fā)展可以成為未來IBD治療的重要手段之一。
[參考文獻]
[1]? Ng SC,Shi HY,Hamidi N,et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century:a systematic review of population-based studies [J]. Lancet,2018,390(10114):2769-2778.
[2]? Ng SC,Tang W,Ching JY,et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn′s and colitis epidemiology study [J]. Gastroenterology,2013,145(1):158-165.
[3]? Vidal-Lletjos S,Beaumont M,Tome D,et al. Dietary Protein and Amino Acid Supplementation in Inflammatory Bowel Disease Course:What Impact on the Colonic Mucosa? [J]. Nutrients,2017,9(3):310.
[4]? Co?觕ffier M,Marion-Letellier R,Déchelotte P. Potential for amino acids supplementation during inflammatory bowel diseases [J]. Inflamm Bowel Dis,2010,16(3),518-524.
[5]? Sido B,Seel C,Hochlehnert A,et al. Low intestinal glutamine level and low glutaminase activity in Crohn′s disease:a rational for glutamine supplementation? [J]. Digestive diseases and sciences,2006,51(12):2170-2179.
[6]? Shiomi Y,Nishiumi S,Ooi M,et al. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium [J]. Inflamm Bowel Dis,2011,17(11):2261-2274.
[7]? Zhu Y,Lin G,Dai Z,et al. L-Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells [J]. Amino Acids,2015,47(10):2185-2197.
[8]? Evans ME,Jones DP,Ziegler TR. Glutamine prevents cyto-kine-induced apoptosis in human colonic epithelial cells [J]. J Nutr,2003,133(10):3065-3071.
[9]? Li N,Lewis P,Samuelson D,et al. Glutamine regulates Caco-2 cell tight junction proteins [J]. Am J Physiol Gastrointest Liver Physiol,2004,287(3):726-733.
[10]? Kretzmann NA,F(xiàn)illmann H,Mauriz JL,et al. Effects of glutamine on proinflammatory gene expression and activation of nuclear factor kappa B and signal transducers and activators of transcription in TNBS-induced colitis [J]. Inflam Bowel Dis,2008,14(11):1504-1513.
[11]? Li TT,Zhang JF,F(xiàn)ei SJ,et al. Glutamate microinjection into the hypothalamic paraventricular nucleus attenuates ulcerative colitis in rats [J]. Acta Pharmacol Sin,2014, 35(2):185-194.
[12]? Davaatseren M,Hwang JT,Park JH,et al. Poly-gamma-glutamic acid attenuates angiogenesis and inflammation in experimental colitis [J]. Mediators Inflamm,2013, 2013:982383.
[13]? Coburn LA,Horst SN,Allaman MM,et al. L-Arginine Availability and Metabolism Is Altered in Ulcerative Colitis [J]. Inflamm Bowel Dis,2016,22(8):1847-1858.
[14]? Zhu HL,Liu YL,Xie XL,et al. Effect of L-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge [J]. Innate Immun,2013,19(3):242-252.
[15]? Hong SK,Maltz BE,Coburn LA,et al. Increased serum levels of L-arginine in ulcerative colitis and correlation with disease severity [J]. Inflam Bowel Dis,2010,16(1):105-111.
[16]? Coburn LA,Gong X,Singh K,et al. L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis [J]. PLoS One,2012,7(3):e33546.
[17]? Ren W,Yin J,Wu M,et al. Serum amino acids profile and the beneficial effects of L-arginine or L-glutamine supplementation in dextran sulfate sodium colitis [J]. PloS One,2014,9(2):e88335.
[18]? 蘇麗,李楠,吳凱,等.定量檢測潰瘍性結腸炎患者血清色氨酸的臨床意義[J].世界華人消化雜志,2014,22(9):1322-1327.
[19]? Shizuma T,Mori H,F(xiàn)ukuyama N. Protective effect of tryptophan against dextran sulfate sodium- induced experimental colitis [J]. Turk J Gastroenterol,2013,24(1):30-35.
[20]? Kim CJ,Kovacs-Nolan JA,Yang C,et al. l-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate(DSS)-induced colitis [J]. J Nutr Biochem,2010,21(6):468-475.
[21]? Mine Y,Zhang H. Calcium-sensing receptor(CaSR)-mediated anti-inflammatory effects of L-amino acids in intestinal epithelial cells [J]. J Agric Food Chem,2015, 63(45):9987-9995.
[22]? Kim CJ,Kovacs-Nolan J,Yang C,et al. L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis [J]. Biochimica et biophysica acta,2009,1790(10):1161-1169.
[23]? Song Z,Tong G,Xiao K,et al. L-cysteine protects intestinal integrity,attenuates intestinal inflammation and oxidant stress,and modulates NF-kappaB and Nrf2 pathways in weaned piglets after LPS challenge [J]. Innate Immun,2016,22(3):152-161.
[24]? Cetinkaya A,Bulbuloglu E,Kurutas EB,et al. Beneficial effects of N-acetylcysteine on acetic acid-induced colitis in rats [J]. Tohoku J Exp med,2005,206(2):131-139.
[25]? Uraz S,Tahan G,Aytekin H,et al. N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats [J]. Scand J Clin Lab Invest,2013, 73(1):61-66.
[26]? Tsune I,Ikejima K,Hirose M,et al. Dietary glycine prevents chemical-induced experimental colitis in the rat [J]. Gastroenterology,2003,125(3):775-785.
[27]? Andou A,Hisamatsu T,Okamoto S,et al. Dietary histidine ameliorates murine colitis by inhibition of proinflammatory cytokine production from macrophages [J]. Gastroenterology,2009,136(2):564-574.
[28]? Son DO,Satsu H,Shimizu M. Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells [J]. FEBS letters,2005,579(21):4671-4677.
[28]? Liu Y,Wang X,Hu CA. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease [J]. Nutrients,2017,9(9):920.
[29]? Shen YB,Weaver AC,Kim SW. Effect of feed grade L-methionine on growth performance and gut health in nursery pigs compared with conventional DL-methionine [J]. J Anim Sci,2014,92(12):5530-5539.
[30]? Rao YX,Chen J,Chen LL,et al. The impact of dietary methionine-restriction on tight junction expression and function in a rat colonitis model [J]. Zhonghua Nei Ke Za Zhi,2013,52(6):503-509.
(收稿日期:2019-10-12? 本文編輯:劉永巧)