周姚邑 趙新新 陳沅沅 陳焱飛 王雪絨 趙軒朗 管政 高建莉
摘 要 目的:了解免疫檢查點(diǎn)抑制劑及其聯(lián)合療法的研究進(jìn)展,為免疫檢查點(diǎn)抑制劑在癌癥治療中的應(yīng)用提供參考。方法:以“免疫療法”“免疫檢查點(diǎn)抑制劑”“聯(lián)用”“Immunotherapy”“Immune checkpoint inhibitor”“Combined application”等關(guān)鍵詞,在中國知網(wǎng)、萬方數(shù)據(jù)庫、維普網(wǎng)、PubMed、Web of Science等數(shù)據(jù)庫中組合查詢2014年1月-2020年1月發(fā)表的相關(guān)文獻(xiàn),對免疫檢查點(diǎn)抑制劑及其聯(lián)用情況進(jìn)行歸納總結(jié)。結(jié)果與結(jié)論:共檢索到相關(guān)文獻(xiàn)3 658篇,其中有效文獻(xiàn)66篇。目前常用的免疫檢查點(diǎn)抑制劑有CTLA-4抗體(如伊匹單抗)、PD-1/PD-L1抗體(如帕博利珠單抗、納武利尤單抗、阿特珠單抗、阿維單抗)、TIM-3抗體[如MBG453、TSR-022、LY3321367(暫處于臨床試驗(yàn)階段)]、LAG-3抗體(如Relatlimab)、其他抗體(如雙特異性抗體Y-traps)。其聯(lián)合療法主要有PD-1抑制劑與其他抑制劑聯(lián)用,如與CTLA-4抑制劑聯(lián)用(如納武利尤單抗和伊匹單抗聯(lián)用),可延長肺癌患者的無進(jìn)展生存期,具有很好的互補(bǔ)性;與LAG-3抑制劑聯(lián)用(如BMS-986016和納武利尤單抗聯(lián)用)治療晚期黑色素瘤,能有效克服PD-1單用療法的耐藥性;與TIM-3抑制劑聯(lián)用治療非小細(xì)胞肺癌,可抑制機(jī)體對PD-1抑制劑產(chǎn)生耐藥性。還有CTLA-4抑制劑與LAG-3抑制劑聯(lián)用,可通過共抑制信號通路誘導(dǎo)機(jī)體產(chǎn)生免疫耐受;與IDO抑制劑聯(lián)用,能有效減小黑色素瘤小鼠的腫瘤體積、延長其生存期。免疫檢查點(diǎn)抑制劑可促進(jìn)機(jī)體的抗腫瘤免疫,其中雙特異性抗體可進(jìn)行雙通路的雙靶點(diǎn)阻斷,進(jìn)而有效發(fā)揮協(xié)同作用對抗單一抗體的耐藥性;也可分別結(jié)合同一通路中T細(xì)胞表面分子和癌細(xì)胞表面抗原,引導(dǎo)T細(xì)胞直接殺傷腫瘤細(xì)胞。免疫檢查點(diǎn)抑制劑在克服耐藥性、增強(qiáng)免疫細(xì)胞對腫瘤細(xì)胞的特異性識別方面具有良好的效果。
關(guān)鍵詞 免疫療法;免疫檢查點(diǎn);免疫檢查點(diǎn)抑制劑;聯(lián)合療法;雙功能融合蛋白;雙特異性抗體
腫瘤免疫療法是一類通過激活患者自身的免疫系統(tǒng)來治療癌癥的方法,是繼手術(shù)、放療、化療之后抗腫瘤治療的第四大領(lǐng)域。腫瘤免疫療法發(fā)展迅速,第一代為缺乏靶向性的淋巴因子激活的殺傷細(xì)胞(LAK細(xì)胞)、細(xì)胞因子激活的殺傷細(xì)胞(CIK細(xì)胞)治療;第二代為通過同時輸入樹突狀細(xì)胞(DC細(xì)胞)賦予CIK細(xì)胞一定靶向性的DC-CIK治療;第三代為利用基因編輯給T細(xì)胞加入能識別腫瘤細(xì)胞并激活T細(xì)胞殺死腫瘤細(xì)胞的嵌合抗體(CAR);隨著免疫治療精準(zhǔn)性的提高,第四代免疫檢查點(diǎn)抑制劑和腫瘤疫苗技術(shù)應(yīng)運(yùn)而生,美國食品藥品監(jiān)督管理局(FDA)批準(zhǔn)免疫檢查點(diǎn)抑制劑可應(yīng)用于各適應(yīng)證的時間軸[1]詳見圖1。2011年,美國FDA批準(zhǔn)首個免疫檢查點(diǎn)抑制劑用于治療晚期黑色素瘤;2018年,美國德克薩斯大學(xué)免疫學(xué)家詹姆斯·艾利森和日本京都大學(xué)教授本庶佑因免疫檢查點(diǎn)抑制劑的相關(guān)研究而獲得諾貝爾醫(yī)學(xué)獎。至此,免疫檢查點(diǎn)抑制劑的相關(guān)研究也到達(dá)了一個新的高度。
基于此,筆者以“免疫療法”“免疫檢查點(diǎn)抑制劑”“聯(lián)用”“Immunotherapy”“Immune checkpoint inhibitor”“Combined application”等為關(guān)鍵詞,在中國知網(wǎng)、萬方數(shù)據(jù)庫、維普網(wǎng)、PubMed、Web of Science等數(shù)據(jù)庫中組合查詢2014年1月-2020年1月期間發(fā)表的相關(guān)文獻(xiàn)。結(jié)果,共檢索到相關(guān)文獻(xiàn)3 658篇,其中有效文獻(xiàn)66篇。現(xiàn)對免疫檢查點(diǎn)抑制劑及其聯(lián)用的情況進(jìn)行歸納總結(jié),以期為其在癌癥治療中的應(yīng)用及后續(xù)深入研究提供參考。
1 免疫檢查點(diǎn)及其抑制劑
免疫檢查點(diǎn)包括刺激性檢查點(diǎn)和抑制性檢查點(diǎn)。與促進(jìn)機(jī)體免疫反應(yīng)的刺激性檢查點(diǎn)不同,抑制性檢查點(diǎn)是防止人體過激免疫反應(yīng)的保護(hù)性位點(diǎn),可降低自身免疫反應(yīng),故常被腫瘤細(xì)胞利用而發(fā)生免疫逃逸。免疫檢查點(diǎn)抑制劑則可通過阻斷抑制性檢查點(diǎn)與相關(guān)配體間的相互作用,調(diào)節(jié)機(jī)體免疫細(xì)胞活性以實(shí)現(xiàn)抗腫瘤效果,故也可稱為免疫檢查點(diǎn)的抗體[2-4]。目前,較為熱門的免疫檢查點(diǎn)抑制劑有CTLA-4抗體、PD-1抗體、PD-L1抗體、TIM-3抗體、LAG-3抗體等。
1.1 CTLA-4及其抑制劑
CTLA-4,亦被稱為CD152,是T細(xì)胞的受體之一。T細(xì)胞被活化的必要條件之一是抗原呈遞細(xì)胞上的B7復(fù)合體與T細(xì)胞上的CD28受體結(jié)合;CTLA-4相較CD28對B7復(fù)合物具有更高的親和力,能競爭性阻止CD28與B7結(jié)合,從而抑制T細(xì)胞活化[5-6]?;诖?,針對CTLA-4的抑制劑在臨床上的應(yīng)用已經(jīng)使部分癌癥患者產(chǎn)生了持久的腫瘤消退反應(yīng),目前已被廣泛應(yīng)用于臨床[7]。
伊匹單抗(Ipilimumab)是一種可拮抗CTLA-4的完全人源化的免疫球蛋白G1(IgG1)單克隆抗體[8],也是第一個被FDA批準(zhǔn)的免疫檢查點(diǎn)抑制劑。Ito A等[9]對反復(fù)治療失敗、不能進(jìn)行手術(shù)切除的進(jìn)展期(Ⅲ期或Ⅳ期)黑色素瘤患者做了伊匹單抗和gp肽100疫苗給藥的對照試驗(yàn),結(jié)果顯示,伊匹單抗可有效提高患者的總體生存率。盡管此研究中,患者的中位生存期僅提高了幾個月,但治療開始后伊匹單抗組的標(biāo)志性生存率均較高,如在第一階段Ⅲ研究中,18%的患者在2年后存活,而接受gp100疫苗對照治療的患者僅有5%存活。由此可知,伊匹單抗治療在臨床試驗(yàn)中具有良好的應(yīng)用效果。
據(jù)筆者調(diào)查,至今為止CTLA-4抗體僅有伊匹單抗被FDA批準(zhǔn)用于治療黑色素瘤;另一種IgG2同型CTLA-4抗體Tremelimumab在黑色素瘤、間皮瘤試驗(yàn)中表現(xiàn)不佳,目前尚未獲批[10-11]。
1.2 PD-1/PD-L1及其抑制劑
PD-1是一種Ⅰ型跨膜蛋白,表達(dá)于T細(xì)胞、B細(xì)胞和NK細(xì)胞、調(diào)節(jié)性T細(xì)胞表面,其配體PD-L1屬于B7家族,在內(nèi)皮細(xì)胞、表皮細(xì)胞等多種細(xì)胞表面均有表達(dá)[12]。PD-1的抑制功能由蛋白酪氨酸磷酸酶SHP-2介導(dǎo),PD-1與其配體PD-L1結(jié)合后會使T細(xì)胞抗原受體(T cell receptor,TCR)下游的信號分子去磷酸化,從而抑制T細(xì)胞生長分化[13]。
目前FDA批準(zhǔn)的PD-1抑制劑有帕博利珠單抗(Pembrolizumab)、納武利尤單抗(Nivolumab);PD-L1抑制劑有阿特珠單抗(Atezolizumab)、阿維單抗(Avelumab)、德瓦魯單抗(Durvalumab)以及Cemiplimab。其中,帕博利珠單抗在臨床試驗(yàn)中已表現(xiàn)出良好的療效及安全性,如在非小細(xì)胞肺癌的臨床試驗(yàn)中,1 200余例無法手術(shù)的晚期肺癌患者分為2組,分別接受帕博利珠單抗單藥治療和以鉑為基礎(chǔ)的化療[14]。結(jié)果表明,不論患者PD-L1表達(dá)水平如何,與傳統(tǒng)化療比較,帕博利珠單抗單用療法均能顯著延長患者的總生存期,并且不良事件較少。此外,F(xiàn)DA還先后批準(zhǔn)了PD-1/PD-L1抗體用于治療黑色素瘤、非小細(xì)胞肺癌、復(fù)發(fā)性或轉(zhuǎn)移性頭頸部鱗狀細(xì)胞癌等疾病。
隨著自主研發(fā)能力的提升,我國在PD-1及PD-L1抑制劑的研制中也有了明顯的成果,如PD-1抗體特瑞普利單抗(Toripalimab)、信迪利單抗(Sintilimab)及卡瑞利珠單抗(Camrelizumab)已于近年先后獲得國家藥品監(jiān)督管理局(NMPA)批準(zhǔn)上市,分別用于治療黑色素瘤和霍奇金淋巴瘤。
綜上所述,相較于CTLA-4抗體,PD-1/PD-L1抗體適應(yīng)證較多,在臨床上得到了更為廣泛的應(yīng)用。
1.3 TIM-3及其抑制劑
與PD-1、CTLA-4相似,TIM-3作為抑制性免疫檢查點(diǎn),一旦與腫瘤細(xì)胞上相應(yīng)配體結(jié)合就會使T細(xì)胞死亡,下調(diào)機(jī)體免疫反應(yīng)。TIM-3分布廣泛,在T細(xì)胞、調(diào)節(jié)性T細(xì)胞、先天免疫細(xì)胞(DC細(xì)胞、NK細(xì)胞、單核細(xì)胞)表面均有表達(dá)。TIM-3的配體有半乳糖凝集素9、高遷移率族蛋白1及癌胚抗原相關(guān)細(xì)胞黏附分子1[15-17]。
目前,進(jìn)入臨床試驗(yàn)的TIM-3抑制劑有MBG453、TSR-022、LY3321367、Sym023、BGB-A425、INCAGN- 02390等[18]。以INCAGN02390為例,相關(guān)研究表明,其與TIM-3高度親和,不僅能阻止TIM-3接近CC′-FG結(jié)合槽,并能阻斷TIM-3與磷脂酰絲氨酸的結(jié)合,還能引起受體快速內(nèi)化,避免與其他配體相互作用[19]。
1.4 LAG-3及其抑制劑
LAG-3是一種表達(dá)于活化T細(xì)胞、NK細(xì)胞、B細(xì)胞和漿細(xì)胞樣樹突狀細(xì)胞上的免疫檢查點(diǎn)分子[20-21]。Wang J等[22]研究表明,F(xiàn)GL1是LAG-3的配體,在癌癥模型小鼠中,阻斷FGL1或LAG-3均可增強(qiáng)T細(xì)胞活性并減緩腫瘤生長。相關(guān)研究顯示,在多種癌癥中,腫瘤浸潤淋巴細(xì)胞常表達(dá)LAG-3從而抑制免疫應(yīng)答、促進(jìn)癌細(xì)胞擴(kuò)散;而阻斷LAG-3則可以解除上述抑制作用,恢復(fù)細(xì)胞毒性T細(xì)胞(Cytotoxic T cell,Tc)活性,減少調(diào)節(jié)性T細(xì)胞數(shù)量,提高免疫應(yīng)答的敏感度[23-24]。
基于LAG-3在基礎(chǔ)研究中取得的進(jìn)展,其抑制劑在臨床中的應(yīng)用也得到了廣泛關(guān)注。由于早期研究中LAG-3抗體的作用機(jī)制不明,研究者大多未關(guān)注到其主要配體FGL1的存在,故早期研發(fā)的抗體多靶向第二類主要組織相容性復(fù)合體[22],而可能不會阻斷LAG-3和FGL1的結(jié)合(即不能完全封閉LAG-3通路),推測這也可能是截至目前LAG-3抑制劑單用臨床數(shù)據(jù)不佳的主要原因之一。相關(guān)研究表明,目前針對LAG-3的研究以聯(lián)用為主,如以百時美施貴寶公司研發(fā)的Relatlimab,截至2020年1月,共有14項(xiàng)臨床試驗(yàn)正在進(jìn)行,其中13項(xiàng)聯(lián)合納武利尤單抗,1項(xiàng)聯(lián)合伊匹單抗[25]。
1.5 其他免疫檢查點(diǎn)及其抑制劑
其他免疫檢查點(diǎn)還包括IDO、VISTA、TIGIT、B7/H3、BTLA等[26]。IDO是人體色氨酸代謝的限速酶,能夠控制代謝腫瘤微環(huán)境中的色氨酸含量;色氨酸代謝完則會抑制T細(xì)胞的免疫調(diào)節(jié)作用;在腫瘤細(xì)胞(如黑色素瘤、胰腺癌、胃癌等多種細(xì)胞)中通常都會過表達(dá)IDO,誘發(fā)人體免疫系統(tǒng)對其產(chǎn)生免疫耐受,從而發(fā)生免疫逃逸[27-29]。目前進(jìn)入臨床試驗(yàn)階段的IDO抑制劑有BMS- 986205、Epacadostat、Indoximod、KHK2455等[30]。
VISTA主要表達(dá)于髓系和粒系細(xì)胞,在小鼠和人體T細(xì)胞中僅有少量的表達(dá),相關(guān)研究發(fā)現(xiàn),VISTA在浸潤到胰腺癌的巨噬細(xì)胞表面過表達(dá),提示其可能為治療靶點(diǎn)[31]。同時,另有研究表明,VISTA抑制劑單克隆抗體13F3與癌癥疫苗聯(lián)用時可抑制腫瘤生長[32]。針對晚期癌癥,VISTA抑制劑JNJ-61610588的Ⅰ期臨床試驗(yàn)結(jié)果顯示,其具有良好的安全性[33]。
此外,新興的免疫檢查點(diǎn)抑制劑還有雙特異性抗體,其又被稱為雙功能抗體或雙價抗體[34]。雙特異性抗體可進(jìn)行雙通路的雙靶點(diǎn)阻斷,進(jìn)而有效發(fā)揮協(xié)同作用對抗單一抗體耐藥性;也可分別結(jié)合同一通路中T細(xì)胞表面分子和癌細(xì)胞表面抗原,引導(dǎo)T細(xì)胞直接殺傷腫瘤細(xì)胞[35-36]。如Y-traps有2種亞型(anti-CTLA4-TGFβRⅡ和anti-PDL1-TGFβRⅡ),其中anti-CTLA4-TGFβRⅡ可同時拮抗CTLA-4與乙型轉(zhuǎn)化生長因子β(TGF-β);anti-PDL1-TGFβRⅡ則可同時阻斷PD-L1與TGF-β[37]。TGF-β是一種多功能蛋白,具有控制多種細(xì)胞的生長、分化、細(xì)胞凋亡及免疫調(diào)節(jié)等功能;在晚期腫瘤中,TGF-β能通過抑制T細(xì)胞分化和活化,誘導(dǎo)上皮-間質(zhì)轉(zhuǎn)化,誘導(dǎo)纖維化和血管生成,從而促進(jìn)腫瘤發(fā)育[38-40]。雖然相關(guān)研究表明,同時給予PD-L1抗體和阻斷TGF-β可通過促進(jìn)活化的T細(xì)胞浸潤腫瘤而觸發(fā)有效應(yīng)答[41],但由于TGF-β受體分布廣泛,TGF-β拮抗藥靶向性不佳,因而無法有效阻斷調(diào)節(jié)性T細(xì)胞的自分泌信號[37]。此外,TGF-β拮抗藥較大的心臟毒性也使其不能取得預(yù)期效果[41-42]。
2 免疫檢查點(diǎn)抑制劑的聯(lián)用及臨床效果
相較前幾代免疫療法,第四代免疫檢查點(diǎn)抑制劑的精準(zhǔn)性、適應(yīng)性得到了廣泛認(rèn)可;但在免疫檢查點(diǎn)抑制劑的臨床應(yīng)用中,仍有很多癌癥患者會對該療法產(chǎn)生抗性或復(fù)發(fā)[43]。解決這個問題的策略之一是使用聯(lián)合療法靶向不同的免疫檢查點(diǎn)蛋白,此策略不僅可解決腫瘤細(xì)胞表面缺少特異性抗原、腫瘤組織中浸潤的T細(xì)胞數(shù)量減少、T細(xì)胞耗竭、抗體本身被巨噬細(xì)胞吞噬等原因造成的耐藥性問題,還能充分發(fā)揮免疫檢查點(diǎn)抑制劑在殺滅腫瘤細(xì)胞的互補(bǔ)作用[43-44],進(jìn)而突破應(yīng)答率不足的瓶頸。目前的主要聯(lián)用策略如下:
2.1 與PD-1抑制劑的聯(lián)用
相關(guān)研究表明,與單獨(dú)表達(dá)PD-1的T細(xì)胞相比,共同表達(dá)PD-1和LAG-3、TIM-3等其他抑制分子的T細(xì)胞活性更低[45-46],故聯(lián)合阻斷比單獨(dú)阻斷任一檢查點(diǎn)更能有效抑制腫瘤生長。
2.1.1 PD-1抑制劑與CTLA-4抑制劑聯(lián)用 相關(guān)研究表明,CTLA-4主要在淋巴結(jié)中的免疫循環(huán)早期階段抑制T細(xì)胞,而PD-1主要抑制后期外周組織或腫瘤部位的Tc細(xì)胞和NK細(xì)胞的激活,并誘導(dǎo)調(diào)節(jié)性T細(xì)胞分化,二者抗體的聯(lián)用具有很好的互補(bǔ)性[47-48]。
有臨床前試驗(yàn)表明,聯(lián)合阻斷PD-1和CTLA-4比單獨(dú)阻斷任一通路的抗腫瘤效果更明顯[49]。同樣,臨床研究也證實(shí)了PD-1和CTLA-4抑制劑聯(lián)用的優(yōu)越性,其通過對比納武利尤單抗和伊匹單抗聯(lián)合治療晚期腎細(xì)胞癌與舒尼替尼單藥治療的效果[50]。結(jié)果顯示,聯(lián)用組在客觀應(yīng)答率、完全緩解率、腫瘤病灶消失的患者比例方面都具有優(yōu)勢。另有研究顯示,PD-1抑制劑與CTLA-4抑制劑聯(lián)用相較化療能更有效地延長肺癌患者的無進(jìn)展生存期[51]。該研究將2 877例患者分為納武利尤單抗+伊匹單抗組、納武利尤單抗組、化療組。結(jié)果表明,納武利尤單抗+伊匹單抗組、化療組患者的1年無進(jìn)展生存率分別為42.6%、13.2%,無進(jìn)展生存期分別為7.2、5.5個月,客觀緩解率分別為45.3%、26.9%。
2.1.2 PD-1抑制劑與LAG-3抑制劑聯(lián)用 LAG-3與PD-1協(xié)同作用,不但能抑制Tc細(xì)胞的增殖,還能增強(qiáng)調(diào)節(jié)性T細(xì)胞活性,從而進(jìn)一步抑制免疫應(yīng)答,故阻斷LAG-3對解除PD-1抗體耐受至關(guān)重要。比如在腎細(xì)胞癌中,研究人員發(fā)現(xiàn)PD-1和LAG-3檢查點(diǎn)受體能對T細(xì)胞產(chǎn)生抑制作用;同時抑制PD-1和LAG-3可以刺激干擾素-γ的釋放,進(jìn)而促進(jìn)機(jī)體免疫反應(yīng)[52]。另有研究表明,在抗原刺激較弱的條件下,阻斷LAG-3或雙重阻斷LAG-3和PD-1可顯著激活并增強(qiáng)抗腫瘤免疫應(yīng)答[53]。此外,2018年美國臨床腫瘤學(xué)會公布的 LAG-3抑制劑BMS- 986016和納武利尤單抗聯(lián)合治療晚期黑色素瘤的臨床數(shù)據(jù)顯示,兩者聯(lián)用能有效克服PD-1單藥治療的耐藥性[54]。另一項(xiàng)LAG-3抗體REGN3767與PD-1抗體Cemiplimab聯(lián)用治療多種晚期癌癥的研究也正在Ⅰ期臨床試驗(yàn)階段[55],但研究數(shù)據(jù)尚未公布。
2.1.3 PD-1抑制劑與TIM-3抑制劑聯(lián)用 一項(xiàng)針對非小細(xì)胞肺癌的研究結(jié)果顯示,PD-1抑制劑改善不同時期的腫瘤細(xì)胞微環(huán)境后,TIM-3在對PD-1抗體產(chǎn)生耐藥性的動物中出現(xiàn)高表達(dá);而當(dāng)TIM-3抑制劑與PD-1抑制劑聯(lián)用時可抑制機(jī)體對PD-1抑制劑產(chǎn)生的耐藥性[56]。此外,在乙型肝炎(HBV)相關(guān)的一項(xiàng)肝癌研究中顯示,阻斷TIM-3和/或PD-1可以逆轉(zhuǎn)HBV相關(guān)性肝癌腫瘤浸潤淋巴細(xì)胞功能障礙[57]。
2.2 與CTLA-4抑制劑的聯(lián)用
CTLA-4抑制劑除了與PD-1抑制劑聯(lián)用效果良好外,尚有多種其他聯(lián)用具有良好的臨床應(yīng)用效果。
2.2.1 CTLA-4抑制劑與LAG-3抑制劑聯(lián)用 CTLA-4和LAG-3均能抑制TCR信號通路,抑制細(xì)胞周期進(jìn)程,觸發(fā)調(diào)節(jié)性T細(xì)胞的免疫抑制功能,并可通過共抑制信號通路誘導(dǎo)機(jī)體產(chǎn)生免疫耐受[58]。如研究發(fā)現(xiàn),乳腺癌細(xì)胞在進(jìn)行PD-1/PD-L1阻斷后,上調(diào)了輔助性T細(xì)胞中CTLA-4和LAG-3免疫檢查點(diǎn)的表達(dá),提示共阻斷CTLA-4和LAG-3可能為PD-1/PD-L1抑制劑耐受的患者提供新的治療方案選擇[59]。另外有研究發(fā)現(xiàn),伊匹單抗治療會引起轉(zhuǎn)移性黑色素瘤患者中LAG-3表達(dá)水平上調(diào)[60];而在急性移植物抗宿主?。℅VHD)患者中,使用四價CTLA-4免疫球蛋白融合蛋白和LAG-3免疫球蛋白融合蛋白可以協(xié)同抑制T細(xì)胞反應(yīng),預(yù)防急性GVHD,降低死亡率[61]。
2.2.2 CTLA-4抑制劑與IDO抑制劑聯(lián)用 Holmgaard RB等[62]發(fā)現(xiàn)使用CTLA-4抑制劑之后,腫瘤細(xì)胞能夠通過IDO來逃避免疫系統(tǒng)監(jiān)視;當(dāng)CTLA-4抑制劑與IDO抑制劑聯(lián)用時,則能有效減小黑色素瘤模型小鼠的腫瘤體積,延長其生存期。
2.3 其他聯(lián)用
2017年歐洲腫瘤學(xué)學(xué)會年會披露的數(shù)據(jù)顯示,PD-1抑制劑帕博利珠單抗與IDO抑制劑Epacadostat的聯(lián)用在晚期黑色素瘤的Ⅰ/Ⅱ期臨床試驗(yàn)中表現(xiàn)出良好的效果,客觀緩解率為56%[63]。遺憾的是,與PD-1抑制劑單用療法比較,該聯(lián)合療法錯過了其在整體人群中改善無進(jìn)展存活的第一個主要終點(diǎn),于2018年4月終止試驗(yàn)[64]。但最近一項(xiàng)新的Ⅰ/Ⅱ期臨床試驗(yàn)[65]已經(jīng)開始,該臨床試驗(yàn)將研究三重靶向LAG-3、PD-1和CTLA-4的有效性,這有望引導(dǎo)癌癥治療多重靶向策略的發(fā)展。
此外,近日發(fā)現(xiàn)的免疫療法靶點(diǎn)Siglec-15是Siglec基因家族成員之一,具有特征性唾液酸結(jié)合免疫球蛋白型凝集素結(jié)構(gòu)。相關(guān)研究發(fā)現(xiàn),對 PD-1/PD-L1 抗體不響應(yīng)的腫瘤中,Siglec-15是其主要免疫抑制因子[66],即該靶點(diǎn)在功能上很可能與PD-1互補(bǔ)。因此,PD-1/PD-L1抗體與Siglec-15抗體聯(lián)用也可能成為今后的研究方向之一。
3 結(jié)語
近年來,隨著腫瘤免疫研究的迅猛發(fā)展,免疫檢查點(diǎn)抑制劑CTLA-4抗體及PD-1/PD-L1抗體等抑制劑在多種癌癥中均得到了成功應(yīng)用,如黑色素瘤、非小細(xì)胞肺癌、晚期宮頸癌、肝細(xì)胞癌、皮膚鱗狀細(xì)胞癌、膀胱癌等。免疫療法已然成為晚期癌癥患者的主要治療選擇之一。其中,具有精準(zhǔn)性、多通路靶向的免疫檢查點(diǎn)抑制劑聯(lián)合療法則在克服耐藥性、增強(qiáng)免疫細(xì)胞對腫瘤細(xì)胞的特異性識別與殺傷方面獨(dú)具優(yōu)勢。如PD-1抑制劑納武利尤單抗與CTLA-4抑制劑伊匹單抗聯(lián)用,可延長肺癌患者的無進(jìn)展生存期,具有很好的互補(bǔ)性;納武利尤單抗與LAG-3抑制劑BMS-986016聯(lián)用治療晚期黑色素瘤,能有效克服PD-1單藥療法的耐藥性;PD-1抑制劑與TIM-3抑制劑聯(lián)用治療非小細(xì)胞肺癌,則可抑制機(jī)體對PD-1抑制劑產(chǎn)生的耐藥性。CTLA-4抑制劑與LAG-3抑制劑聯(lián)用,可通過共抑制信號通路誘導(dǎo)機(jī)體產(chǎn)生免疫耐受;與IDO抑制劑聯(lián)用,能有效減小黑色素瘤小鼠的腫瘤體積,延長其生存期等。此外,兼具了較好的靶向性、可通過雙通路或雙靶點(diǎn)阻斷進(jìn)而有效發(fā)揮協(xié)同作用的雙功能抗體的出現(xiàn),更給予了腫瘤治療新的啟示,或?qū)⒊蔀槿祟惞タ税┌Y的關(guān)鍵治療策略之一。
參考文獻(xiàn)
[ 1 ] RIHOVA B,STASTNY M. History of immuno-therapy- from coleytoxins to check-points of the immune reaction[J]. Klin Onkol,2015.DOI:10.14735/amko20154S8.
[ 2 ] POSTOW MA,CALLAHAN MKWOLCHOK JD. Immune checkpoint blockade in cancer therapy[J]. J Clin Oncol,2015,33(17):1974-U1161.
[ 3 ] TOPALIAN SL,DRAKE CGPARDOLL DM. Immune checkpoint blockade:a common denominator approach to cancer therapy[J]. Cancer Cell,2015,27(4):450-461.
[ 4 ] LI X,SHAO C,SHI Y,et al. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy[J]. J Hematol Oncol,2018,11(1):31-56.
[ 5 ] WALKER LSK,SANSOM DM. Confusing signals:recent progress in CTLA-4 biology[J]. Trends Immunol,2015,36(2):63-70.
[ 6 ] CHAN DV,GIBSON HM,AUFIERO BM,et al. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation[J]. Genes Immun,2014,15(1):25-32.
[ 7 ] HARGADON KM,JOHNSON CE,WILLIAMS CJ. Immune checkpoint blockade therapy for cancer:an overview of FDA-approved immune checkpoint inhibitors[J]. Int Immunopharmacol,2018,62(1):29-39.
[ 8 ] HODI FS,ODAY SJ,MCDERMOTT DF,et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. New Engl J Med,2010,363(8):711-723.
[ 9 ] ITO A,KONDO S,TADA K,et al. Clinical development of immune checkpoint inhibitors[J]. Bio Med Res Int,2015.DOI:10.1155/2015/605478.
[10] RIBAS A,KEFFORD R,MARSHALL MA,et al. Phase Ⅲ randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma[J]. J Clin Oncol,2013,31(5):616- 622.
[11] MAIO M,SCHERPEREEL A,CALABRO L,et al. Tre- melimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE):a multicentre,international,randomised,double-blind,placebo-controlled phase 2b trial[J]. Lancet Oncol,2017,18(9):1261-1273.
[12] SAHNI S,VALECHA G,SAHNI A. Role of anti-PD-1 antibodies in advanced melanoma:the era of immunotherapy[J]. Cureus,2018.DOI:10.7759/cureus.3700.
[13] ARASANZ H,GATO-CANAS M,ZUAZO M,et al. PD1 signal transduction pathways in T cells[J]. Oncotarget,2017,8(31):51936-51945.
[14] MOKTS K,WU YL,KUDABA I,et al. Pembrolizumab versus chemotherapy for previously untreated,PD-L1-expressing,locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042):a randomised,open-label,controlled,phase 3 trial[J]. Lancet,2019,393(10183):1819-1830.
[15] SABATOS-PEYTON CA,NEVIN J,BROCK A,et al. Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy[J]. Oncoimmunology,2018.DOI:10.1080/2162402X.2017.1385690.
[16] XU L,HUANG Y,TAN L,et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol,2015,29(2):635-641.
[17] ANDERSON AC,JOLLER N,KUCHROO VK. Lag-3,Tim-3,and TIGIT:co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity,2016,44(5):989-1004.
[18] Samsung Medical Center,Symphogen AS,Changhai Hospital,et al. TIM-3 inhibitor clinical studies[EB/OL].[2019-12-23].https://clinicaltrials.gov/ct2/results?cond=TIM-3&term=&cntry=&state=&city=&dist=.
[19] WAIGHT J,IYER P,BREOUS-NYSTROM E,et al. INCAGN02390,a novel antagonist antibody that targets the co-inhibitory receptor TIM-3[J]. Cancer Research,2018.DOI:10.1158/1538-7445.AM2018-3825.
[20] YU X,HUANG X,CHEN X,et al. Characterization of a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer immunotherapy[J]. MAbs,2019,11(6):1139-1148.
[21] TAKAYA S,SAITO H,IKEGUCHI M. Upregulation of immune checkpoint molecules,PD-1 and LAG-3,on CD4+ and CD8+ T cells after gastric cancer surgery[J]. Yonago Acta Med,2015,58(1):39-58.
[22] WANG J,SANMAMED MF,DATAR I,et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3[J]. Cell,2019,176(1/2):334-347.
[23] SEGA EI,LEVESON-GOWER DB,F(xiàn)LOREK M,et al. Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation[J]. PLoS One,2014. DOI:10.1371/journal.pone.0086551.
[24] MARUHASHI T,OKAZAKI IM,SUGIURA D,et al. LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCⅡ through its conformation-dependent recognition of pMHCⅡ[J]. Nat Immunol,2018,19(12):1415-1426.
[25] Bristol-myers Squibb,Nation Cancer Institute,Vanderbilt- ingram Cancer Center,et al. Relatlimab clinical studies[EB/OL].[2020-01-18]. https://clinicaltrials.gov/ct2/results?cond=Relatlimab&term=&cntry=&state=&city=& dist=.
[26] MARIN-ACEVEDO JA,DHOLARIA B,SOYANO AE,et al. Next generation of immune checkpoint therapy in cancer:new developments and challenges [J]. J Hematol Oncol,2018.DOI:10.1186/s13045-018-0582-8.
[27] CHEVOLET I,SPEEKAERT R,SCHREUER M,et al. Characterization of the in vivo immune network of IDO,tryptophan metabolism,PD-L1,and CTLA-4 in circulating immune cells in melanoma[J]. Oncoimmunology,2015. DOI:10.4161/2162402X.2014.982382.
[28] MOON YW,HAJJAR J,HWU P,et al. Targeting the indoleamine 2,3-dioxygenase pathway in cancer[J]. J Immunother Cancer,2015,3(1):51-60.
[29] NISHI M,YOSHIKAWA K,HIGASHIJIMA J,et al. The impact of indoleamine 2,3-dioxygenase (IDO) expression on stage Ⅲ gastric cancer[J]. Anticancer Res,2018,38(6):3387-3392.
[30] SAVANE IM,Main Line Health,Herlev Hospital,et al. IDO inhibitor clinical studies[EB/OL].[2019-12-23].https://clinicaltrials.gov/ct2/results?cond=IDO&term=& cntry=&state=&city=&dist=.
[31] LIU J,XIE X,XUAN C,et al. High-density infiltration of V-domain immunoglobulin suppressor of T-cell activation up-regulated immune cells in human pancreatic cancer[J]. Pancreas,2018,47(6):725-731.
[32] LE MERCIER I,CHEN W,LINES JL,et al. VISTA regulates the development of protective antitumor immunity[J]. Cancer Res,2014,74(7):1933-1944.
[33] Janssen Research & Development. A study of safety,pharmacokinetics,pharmacodynamics of JNJ61610588 in participants with advanced cancer[EB/OL].[2020-01-18].https://clinicaltrials.gov/ct2/show/NCT02671955.
[34] KONTERMANN RE,BRINKMANN U. Bispecific antibodies[J]. Drug Discov Today,2015,20(7):838-847.
[35] KOBOLD S,PANTELYUSHIN S,RATAI F,et al. Rationale for combining bispecific T cell activating antibodies with checkpoint blockade for cancer therapy[J]. Front Oncol,2018.DOI:10.3389/fonc.2018.00285.
[36] LI J,ZHOU C,DONG B,et al. Single domain antibody- based bispecific antibody induces potent specific anti-tumor activity[J]. Cancer Biol Ther,2016,17(12):1231- 1239.
[37] RAVI R,NOONAN KA,PHAM V,et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGF beta enhance the efficacy of cancer immunotherapy[J]. Nat Commun,2018,9(741):1-14.
[38] ZHAO Y,HU J,LI R,et al. Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-beta signaling pathway[J]. Onco Targets Ther,2015.DOI:10.2147/OTT.S82616.
[39] ROS XR,VERMEULEN L. Turning cold tumors hot by blocking TGF-β[J]. Trends Cancer,2018,4(5):335-337.
[40] MORIKAWA M,DERYNCK R,MIYAZONO K. TGF-beta and the TGF-beta family:context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol,2016.DOI:10.1101/cshperspect.a021873.
[41] GANESH K,MASSAGU? J. TGF-β inhibition and immunotherapy:checkmate[J]. Immunity,2018,48(4):626- 628.
[42] COURAU T,NEHAR-BELAID D,F(xiàn)LOREZ L,et al. TGF-beta and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies[J]. JCI Insight,2016.DOI:10.1172/jci.insight. 85974.
[43] ARLAUCKAS SP,GARRIS CS,KOHLER RH,et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy[J]. Sci Transl Med,2017.DOI:10.1126/scitranslmed.aal3604.
[44] LIU D,JENKINS RW,SULLIVAN RJ. Mechanisms of resistance to immune checkpoint blockade[J]. Am J Clin Dermatol,2019,20(1):41-54.
[45] HE Y,YU H,ROZEBOOM L,et al. LAG-3 protein expression in non-small cell lung cancer and its relationship with PD-1/PD-L1 and tumor-infiltrating lymphocytes[J]. J Thorac Oncol,2017,12(5):814-823.
[46] YUN SJ,LEE B,KOMORI K,et al. Regulation of TIM-3 expression in a human T cell line by tumor-conditioned media and cyclic AMP-dependent signaling[J]. Mol Immunol,2019. DOI:10.1016/j.molimm.2018.12.006.
[47] ROTTE A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res,2019,38(1):255-267.
[48] JIA L,ZHANG Q,ZHANG R. PD-1/PD-L1 pathway blockade works as an effective and practical therapy for cancer immunotherapy[J]. Cancer Biol Med,2018,15(2):116-123.
[49] DURAISWAMY J,F(xiàn)REEMAN GJ,COUKOS G. Dualblockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors-response[J]. Cancer Res,2014,74(2):633-634.
[50] MOTZER RJ,TANNIR NM,MCDERMOTT DF,et al.Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med,2018,378(14):1277-1290.
[51] HELLMANN MD,CIULEANU TE,PLUZANSKI A,? ? et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med,2018,378(22):2093-2104.
[52] ZELBA H,BEDKE J,HENNENLOTTER J,et al. PD-1 and LAG-3 dominate checkpoint receptor-mediated T-cell inhibition in renal cell carcinoma[J]. Cancer Immunol Res,2019,7(11):1891-1899.
[53] LICHTENEGGER FS,ROTHE M,SCHNORFEIL FM,et al. Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells[J]. Front Immunol,2018.DOI:10.3389/fimmu.2018.00385.
[54] Bristol-myers Squibb. Aninvestigational immuno-therapy study to assess the safety,tolerability and effectiveness of anti-LAG-3 with and without Anti-PD-1 in the treatment of solid tumors[EB/OL].[2020-01-18]. https://clinicaltrials.gov/ct2/show/NCT01968109?cond=NCT01968109& draw=2&rank=1.
[55] Regeneron Pharmaceutical. Study of REGN3767 (Anti- LAG-3) with or without REGN2810 (Anti-PD1) in advanced cancers[EB/OL].[2020-01-18]. https://clinicaltrials.gov/ct2/show/NCT03005782?cond=NCT03005782& draw=2&rank=1.
[56] LIZOTTE PH,IVANOVA EV,AWAD MM,et al. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes[J]. JCI Insight,2016.DOI:10.1172/jci.insight.89014.
[57] LIU F,ZENG G,ZHOU S,et al. Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma[J]. Bull Cancer,2018,105(5):493-501.
[58] BAUMEISTER SH,F(xiàn)REEMAN GJ,DRANOFF G,et al. Coinhibitory pathways in immunotherapy for cancer[J]. Annu Rev Immunol,2016.DOI:10.1146/annurev-immunol-032414-112049.
[59] SALEH R,TOOR SM,KHALAF S,et al. Breast cancer cells and PD-1/PD-L1 blockade upregulate the expression of PD-1,CTLA-4,TIM-3 and LAG-3 immune checkpoints in CD4+ T cells[J]. Vaccines,2019,7(4):149-161.
[60] BJOERN J,LYNGAA R,ANDERSEN R,et al. Influence of ipilimumab on expanded tumour derived T cells from patients with metastatic melanoma[J]. Oncotarget,2017,8(16):27062-27074.
[61] CHO H,CHUNG YH. Construction,and in vitro and in vivo analyses of tetravalent immunoadhesins[J]. J Microbiol Biotechnol,2012,22(8):1066-1076.
[62] HOLMGAARD RB,ZAMARIN D,MUNN DH,et al. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4[J]. J Exp Med,2013,210(7):1389-1402.
[63] HAMID O,GAJEWSKI TF,F(xiàn)rankel AE,et al. Epacado- stat plus pembrolizumab in patients with advanced melanoma:phase 1 and 2 efficacy and safety results from ECHO-202/KEYNOTE-037[J]. Ann Oncol,2017.DOI:10. 1093/annonc/mdx377.001.
[64] FIGUEIREDO M. Keytruda-epacadostatcombo fails primary goal in phase 3 trial for melanoma,companies announce[EB/OL].[2020-01-18].https://immuno-oncologynews.com/2018/04/11/keytruda-epacadostat-fails-primary- goal-phase-3-trial-melanoma/.
[65] Bristol-myers Squibb. An investigational study of Immunotherapy combinations in participants with solid cancers that are advanced or have spread[EB/OL].[2020-01-18].https://clinicaltrials.gov/ct2/show/NCT03459222.
[66] WANG J,SUN J,LIU LN,et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med,2019,25(4):656-666.
(收稿日期:2019-11-14 修回日期:2020-01-19)
(編輯:唐曉蓮)