楊瑩 王麗真
摘要:文中對(duì)時(shí)空分?jǐn)?shù)階多孔介質(zhì)方程、帶有非線性對(duì)流項(xiàng)的時(shí)空分?jǐn)?shù)階多孔介質(zhì)方程和時(shí)空分?jǐn)?shù)階雙多孔介質(zhì)方程進(jìn)行了對(duì)稱分析,得到了3類多孔介質(zhì)方程對(duì)應(yīng)的Lie對(duì)稱群,基于上述結(jié)果,進(jìn)行了相應(yīng)的對(duì)稱約化,從而得到這些方程的群不變解。
關(guān) 鍵 詞:時(shí)空分?jǐn)?shù)階多孔介質(zhì)方程;Lie對(duì)稱;相似約化;群不變解
中圖分類號(hào):0175.2
DOI:10.16152/j.cnki.xdxbzr.2020-01-012開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Lie symmetry analysis for the space-time fractionalporous medium equations
YANG Ying1,2, WANG? Lizhen1,2
(1.School of Mathematics,? Northwest University, Xi′an 710127, China;
2.Nonlinear Studies of Science, Northwest University, Xi′an 710127, China)
Abstract: In this paper, we study the space-time fractional porous medium equation, the space-time fractional porous medium equation with a nonlinear convection term, the space-time fractional dual porous medium equation using Lie symmetry analysis. The corresponding symmetry groups of these three types porous medium equations are obtained. Based on the above results we perform the similarity reduction and obtain the group-invariant solutions to these equations.
Key words: space-time fractional porous medium equation; Lie symmetry; similarity reduction; group-invariant solution
線性和非線性偏微分方程在物理、化學(xué)、機(jī)械工程等諸多學(xué)科中起著重要的作用,大量研究表明,尋求非線性偏微分方程的精確解是偏微分方程研究中非常重要的問題。為此,產(chǎn)生了許多構(gòu)造精確解的方法,如Laplace變換、同倫攝動(dòng)、Adomain 分解以及不變子空間法等。Lie對(duì)稱是研究偏微分方程的一種有效方法[1],該方法由Lie在十九世紀(jì)首次提出,隨后Ovsianikov[2],Olver[3], Bluman[4]等學(xué)者對(duì)Lie對(duì)稱法進(jìn)行了研究和推廣,應(yīng)用此方法研究了一些復(fù)雜的常微分方程和偏微分方程的解以及解的性質(zhì)。 Kasatine等在21世紀(jì)初研究了時(shí)間分?jǐn)?shù)階常微分方程的對(duì)稱[5]以及時(shí)間分?jǐn)?shù)階常微分方程方程組[6]的對(duì)稱。近幾年,許多學(xué)者利用Lie對(duì)稱研究了時(shí)間分?jǐn)?shù)階的偏微分方程,例如,黃晴等對(duì)時(shí)間分?jǐn)?shù)階Harry-Dym方程進(jìn)行了Lie群分析,并構(gòu)造了方程的群不變解[7],王麗真等對(duì)Harry-Dym類型的方程進(jìn)行Lie群分析[9]。同時(shí),還有一些學(xué)者對(duì)方程進(jìn)行了群分類,如劉漢澤對(duì)五階kdv方程進(jìn)行群分類[8],并做了相應(yīng)的對(duì)稱約化。最近,少量學(xué)者將Lie對(duì)稱方法應(yīng)用到時(shí)空分?jǐn)?shù)階方程,如Inc及其合作者對(duì)時(shí)空分?jǐn)?shù)階非線性發(fā)展方程作了對(duì)稱分析[10],Singla 對(duì)時(shí)空分?jǐn)?shù)階Gilson-Pickering 方程及推廣的Kdv方程進(jìn)行了對(duì)稱分析[11]。
多孔介質(zhì)方程在物理、工程科學(xué)等方面有很多的應(yīng)用。近幾年,這類方程引起了廣泛的關(guān)注。利用條件對(duì)稱法,Eatevez等構(gòu)造了廣義的多孔介質(zhì)方程的泛函分離變量解[12];Bonforte和Grill用Sobolev不等式研究了多孔介質(zhì)方程的漸近性[13];Caffarelli和Vazquez引入了一維分?jǐn)?shù)階多孔介質(zhì)方程,并證明了有限速度傳播的弱有界解的存在性[14];Pablo和Quiros建立了分?jǐn)?shù)階擴(kuò)散多孔介質(zhì)方程的存在性、唯一性和正則性理論[15];Stan和Teso通過自相似變換,研究了分?jǐn)?shù)階多孔介質(zhì)方程[16];Carrillo和Huang推導(dǎo)了分?jǐn)?shù)壓力下一維多孔介質(zhì)方程的指數(shù)收斂性[17];李靜等研究了用于圖像恢復(fù)的加權(quán)的雙多孔介質(zhì)方程[18];Bernis等研究了雙多孔介質(zhì)方程的奇異解[19];Galaktionov用不變子空間方法對(duì)整數(shù)階雙多孔介質(zhì)方程進(jìn)行了研究求解[20]。本文將對(duì)下列三類方程進(jìn)行對(duì)稱分析。
3 結(jié) 語
本文通過對(duì)稱分析法研究了時(shí)空分?jǐn)?shù)階多孔介質(zhì)方程,帶有非線性流項(xiàng)的時(shí)空分?jǐn)?shù)階多孔介質(zhì)方程及時(shí)空分?jǐn)?shù)階雙多孔介質(zhì)方程的解,得到了3類方程的Lie代數(shù)和群不變解。我們首先給出了Lie對(duì)稱的基本方法和公式,接著計(jì)算出對(duì)應(yīng)方程的向量場(chǎng),通過所求出的向量場(chǎng),利用對(duì)稱約化得到3類方程的群不變解。在此研究過程中,我們利用Lie對(duì)稱方法將求解分?jǐn)?shù)階偏微分方程的問題轉(zhuǎn)化為求解分?jǐn)?shù)階常微分方程的問題。求解分?jǐn)?shù)階常微分方程將是我們未來研究方程的重要方向。
參考文獻(xiàn):
[1] BLUMAN G W, KUMEI S. Symmetries and Differential Equations[M].New York:Springer, 1989.
[2] OVSIANNIKOV L V. Group Analysis of Differential Equations[M].New York:Academic Press, 1982.
[3] OLVER P J. Application of Lie Group to Differential Equation[M].New York:Springer, 1986.
[4] BLUMAN G W, ANCO S C. Symmetry and Integration Methods for Differential Equations[M].New York:Springer-Verlag, 2002.
[5] GAZIZOV R K, KASATKIN A A, LUKASHCHUK Y S. Continuous transformation groups of fractional differential equations[J].Vestnik USATU, 2007, 9: 125-135.
[6] KASATKIN A A. Symmetry properties for systems of two ordinary fractional differential equations[J].Ufa Mathematical Journal,2012, 4(1): 65-75.
[7] HUANG Q, ZHDANOV R. Symmetries and exact solutions of the time-fractional Harry-Dym equation with Riemann-Liouville derivative[J].Physica A,2014, 409: 110-118.
[8] LIU H Z. Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations[J].Studies in Applied Mathematics, 2013,131(4):317-330.
[9] WANG? L Z, WANG D J, SHEN S F, et al. Lie point symmetry analysis of the Harry-Dym type equation with Riemann-Liouville fractional derivative[J].Acta Mathematicae Applicate Sinica, English Series,2018,34(3):469-477.
[10]ESTEVEZ? P G, QU? C Z, ZHANG? S L. Separation of variables of a generalized porous medium equation with nonlinear source[J].Journal of Mathematical Analysis and Application,2002, 275(1):44-59.
[11]INC? M, YUAUF? A, ALIYU? A I. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations[J].Physica A,2018, 496: 371-383.
[12]SINGLA? K, GUPTA? R K. Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws[J].Nonlinear Dynam, 2017, 89(1): 321-331.
[13]BONFORTE? M, GRILL. GAsymptotics of the porous media equation via Sobolev inequalities[J].Journal of Funcational Analysis,2005, 225(1):33-62.
[14]CAFFARELLI? L, VAZQUEZ? J? L. Nonlinear Porous medium flow with fractional potential pressure[J].Archive for Rational Mechanics and Analysis,2011, 202(2): 537-565.
[15]STAN D, DEL F T, VAZQUEZ? J L. Transformations of self-similar solutions for porous medium equations of fractional type[J].Nonlinear Anal-Theor,2015, 119: 62-73.
[16]PABLO A D, QUIROS? F, RODRIGUEZ? A, VAZQUEZ? J. L A general fractional porous medium equation[J].Communications on Pure and Applied Mathematics,2012, 65(9): 1242-1284.
[17]CARRILLO J A,HUANG Y, SANTOS M C, et al. Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure[J].Journal of? Differential Equations,2015(3), 258: 736-763.
[18]LI J, YIN J, SUN J A. Weighted dual porous medium equation applied to image restoration[J].Mathematical Methnods in the Applied Science,2013, 36(16):2117-2127.
[19]BERNIS.F HULSHOF. J VAZQUEZ J L. A very singular solution for thedual porous medium equation and the asymptotic behaviour of general solutions[J] .Jreineangew Mathe, 1993, 435: 1-32.
[20]GALAKIONOV? V A, SVIRSHCHEVSKII? S R. Exact solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanic and Physics[M].London:Chapman and Hall/CRC,2006.
[21]MOREL J M, Cachan, TAKENS? F, TEISSIER? B, et al. The Analysis of Fractional Differential Equation[M].Berlin:Springer, 2010.
(編 輯 李 波)