国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

(3+1)維KP-Boussinesq和BKP-Boussinesq方程的孤子解

2020-04-29 08:51任曉靜葛楠楠
關(guān)鍵詞:二次方程孤子對數(shù)

任曉靜 葛楠楠

摘要:運用簡化的齊次平衡法(SHB),導(dǎo)出(3+1)維KP-Boussinesq和BKP-Boussinesq方程的非線性變換,借助非線性變換,得到這兩個方程的單孤子和雙孤子解,豐富了其精確解系。

關(guān)鍵詞:KP-Boussinesq方程; BKP-Boussinesq方程; 簡化的齊次平衡法; 非線性變換; 孤子解

中圖分類號:O175.29

DOI:10.16152/j.cnki.xdxbzr.2020-06-010

Soliton solutions of (3+1)-dimensional KP-Boussinesq andBKP-Boussinesq equations

REN Xiaojing, GE Nannan

(School of Mathematics, Northwest University, Xi′an 710127, China)

Abstract: Using the simplified homogeneous balance method(SHB), the nonlinear transformation of the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations are derived. With the help of nonlinear transformations, the one-soliton and two-soliton solutions of these two equations are obtained, enriching their exact solution system.

Key words: KP-Boussinesq equation; BKP-Boussinesq equation; simplified homogeneous balance; nonlinear transformation; soliton solutions

3 結(jié)語

本文借助非線性變換,將求解(3+1)維KP-Boussinesq和BKP-Boussinesq方程轉(zhuǎn)變?yōu)榍蠼鈨蓚€相應(yīng)的齊二次方程,由于齊二次方程有指數(shù)形式的解,把選取的解代入非線性變換,可得這兩個方程的單孤子和雙孤子解。通過求解方程,可發(fā)現(xiàn)該方法簡明有效,且每一個非線性變換只對應(yīng)一個齊二次方程。下一步會對n維對數(shù)型的非線性方程進行研究[11-13]。

參考文獻:

[1] WAZWAZ A M. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation[J].Commun Nonlinear Sci Numer Simulat, 2012, 17(2):491-495.

[2] MA W X, XIA T C. Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation[J].Phys Scr, 2013, 87(5):055003.

[3] MA W X, ZHU Z N. Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm[J].Appl Math Comput, 2012,218(24):11871-11879.

[4] WAZWAZ A M, EL-TANTAWY S A. A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation[J].Nonlinear Dyn, 2016, 84(2):1107-1112.

[5] WAZWAZ A M, EL-TANTAWY S A. Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota′s method[J].Nonlinear Dyn, 2017, 88(4):3017-3021.

[6] SUN B N, WAZWAZ A M. General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation[J].Commun Nonlinear Sci Numer Simulat, 2018, 64:1-13.

[7] YAN X W, TIAN S F, DONG M J, et al. Bcklund transformation,rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation[J].Nonlinear Dyn, 2018, 92(2):709-720.

[8] WANG M L, LI X Z. Simplified homogeneous balance method and its applications to the Whitham-Broer-Kaup model equations[J].J Appl Phys, 2014, 2(8):823-827.

[9] WANG M L, ZHANG J L, LI X Z.Decay mode solutions to cylindrical KP equation[J].Appl Math Lett, 2016, 62:29-34.

[10]WANG M L, LI X Z, ZHANG J L. Two-soliton solution to a generalized KP equation with general variable coefficients[J].Appl Math Lett, 2018, 76: 21-27.

[11]WANG M L, ZHANG J L, LI X Z. N-dimensional Auto-Bcklund transformation and exact solutions to n-dimensional Burgers system[J].Appl Math Lett, 2017, 63:46-52.

[12]WAZWAZ A M. Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities[J].Nonlinear Dyn, 2016, 83(1/2): 591-596.

[13]WAZWAZ A M, EL-TANTAWY S A. A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions[J].Nonlinear Dyn, 2016, 83(3):1529-1534.

(編 輯 張 歡)

猜你喜歡
二次方程孤子對數(shù)
含有對數(shù)非線性項Kirchhoff方程多解的存在性
指數(shù)與對數(shù)
指數(shù)與對數(shù)
一個新的可積廣義超孤子族及其自相容源、守恒律
(3+1)維Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解
對數(shù)簡史
淺談二次函數(shù)與一元二次方程的關(guān)系
兩個孤子方程的高階Painlevé截斷展開
趣談中國古代數(shù)學(xué)中的方程問題
(3+1)維非線性方程的呼吸類和周期類孤子解
淳化县| 德庆县| 筠连县| 南召县| 赤城县| 常德市| 察隅县| 普兰店市| 开阳县| 保亭| 库尔勒市| 屏南县| 奉新县| 顺昌县| 石狮市| 友谊县| 南皮县| 陕西省| 墨竹工卡县| 息烽县| 望江县| 南郑县| 监利县| 黄大仙区| 丘北县| 北安市| 雅安市| 开原市| 会理县| 佛教| 鹤岗市| 罗山县| 广州市| 扎囊县| 社会| 锡林郭勒盟| 湖北省| 桂阳县| 泰和县| 西和县| 南雄市|