任曉靜 葛楠楠
摘要:運用簡化的齊次平衡法(SHB),導(dǎo)出(3+1)維KP-Boussinesq和BKP-Boussinesq方程的非線性變換,借助非線性變換,得到這兩個方程的單孤子和雙孤子解,豐富了其精確解系。
關(guān)鍵詞:KP-Boussinesq方程; BKP-Boussinesq方程; 簡化的齊次平衡法; 非線性變換; 孤子解
中圖分類號:O175.29
DOI:10.16152/j.cnki.xdxbzr.2020-06-010
Soliton solutions of (3+1)-dimensional KP-Boussinesq andBKP-Boussinesq equations
REN Xiaojing, GE Nannan
(School of Mathematics, Northwest University, Xi′an 710127, China)
Abstract: Using the simplified homogeneous balance method(SHB), the nonlinear transformation of the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations are derived. With the help of nonlinear transformations, the one-soliton and two-soliton solutions of these two equations are obtained, enriching their exact solution system.
Key words: KP-Boussinesq equation; BKP-Boussinesq equation; simplified homogeneous balance; nonlinear transformation; soliton solutions
3 結(jié)語
本文借助非線性變換,將求解(3+1)維KP-Boussinesq和BKP-Boussinesq方程轉(zhuǎn)變?yōu)榍蠼鈨蓚€相應(yīng)的齊二次方程,由于齊二次方程有指數(shù)形式的解,把選取的解代入非線性變換,可得這兩個方程的單孤子和雙孤子解。通過求解方程,可發(fā)現(xiàn)該方法簡明有效,且每一個非線性變換只對應(yīng)一個齊二次方程。下一步會對n維對數(shù)型的非線性方程進行研究[11-13]。
參考文獻:
[1] WAZWAZ A M. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation[J].Commun Nonlinear Sci Numer Simulat, 2012, 17(2):491-495.
[2] MA W X, XIA T C. Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation[J].Phys Scr, 2013, 87(5):055003.
[3] MA W X, ZHU Z N. Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm[J].Appl Math Comput, 2012,218(24):11871-11879.
[4] WAZWAZ A M, EL-TANTAWY S A. A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation[J].Nonlinear Dyn, 2016, 84(2):1107-1112.
[5] WAZWAZ A M, EL-TANTAWY S A. Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota′s method[J].Nonlinear Dyn, 2017, 88(4):3017-3021.
[6] SUN B N, WAZWAZ A M. General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation[J].Commun Nonlinear Sci Numer Simulat, 2018, 64:1-13.
[7] YAN X W, TIAN S F, DONG M J, et al. Bcklund transformation,rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation[J].Nonlinear Dyn, 2018, 92(2):709-720.
[8] WANG M L, LI X Z. Simplified homogeneous balance method and its applications to the Whitham-Broer-Kaup model equations[J].J Appl Phys, 2014, 2(8):823-827.
[9] WANG M L, ZHANG J L, LI X Z.Decay mode solutions to cylindrical KP equation[J].Appl Math Lett, 2016, 62:29-34.
[10]WANG M L, LI X Z, ZHANG J L. Two-soliton solution to a generalized KP equation with general variable coefficients[J].Appl Math Lett, 2018, 76: 21-27.
[11]WANG M L, ZHANG J L, LI X Z. N-dimensional Auto-Bcklund transformation and exact solutions to n-dimensional Burgers system[J].Appl Math Lett, 2017, 63:46-52.
[12]WAZWAZ A M. Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities[J].Nonlinear Dyn, 2016, 83(1/2): 591-596.
[13]WAZWAZ A M, EL-TANTAWY S A. A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions[J].Nonlinear Dyn, 2016, 83(3):1529-1534.
(編 輯 張 歡)