繆龍 陳龍 趙瑜 鮑宏偉
摘要:文中研究了有限p-可解群中二極大子群的相關(guān)性質(zhì)。采用極小階反例的方法,并結(jié)合極大子群的指數(shù),得出p-可解群中強二極大子群的判別條件,同時還探討了弱二極大子群本身的性質(zhì)。從而揭示了二極大子群對p-可解群結(jié)構(gòu)的重要影響。
關(guān)鍵詞:p-可解群;極大子群;二極大子群;CAP-子群
中圖分類號:O152.1
DOI:10.16152/j.cnki.xdxbzr.2020-02-012
On second maximal subgroups of p-solvable groups
MIAO LongCHEN LongZHAO Yu BAO Hongwei3
Abstract: In this paper, the properties of second maximal subgroups in finite p-solvable groups have been studied. By using the method of counterexample of minimal order and combining with the indices of maximal subgroups, the criterion of strong second maximal subgroups in p-solvable groups has been obtained and further the properties of weak second maximal subgroups have been discussed. Hence the influences of second maximal subgroups on the structure of p-solvable groups have been revealed.
Key words: p-solvable group; maximal subgroup; second maximal subgroup; CAP-subgroup
眾所周知,二極大子群是有限群論中最基本的概念之一,許多學(xué)者已對其作了很多研究[1-7]。二極大子群可以分為強二極大子群和弱二極大子群兩種類型,具體可參考下文定義4。特別地,1980 年,Plfy和Pudlak在文獻[1]中證明了可解群G中包含強二極大子群的極大子群個數(shù)為1+q(其中q為素數(shù)方冪)。隨后,F(xiàn)eit和Lucchini分別在文獻[2]和[5] 中證明了群G為非可解群時上述結(jié)果不成立。1995 年,F(xiàn)lavell 在文獻[8]中給出了群G中包含強二極大子群的極大子群個數(shù)的上界。2019年,孟沆洋和郭秀云在文獻[9]中討論了可解WSM-群的性質(zhì)。另一方面,Gaschütz在文獻 [10]中提出了子群覆蓋遠離的性質(zhì)(簡稱CAP-性質(zhì)),是對子群正規(guī)性的一個有意義的推廣。隨后,許多學(xué)者利用子群的CAP性質(zhì)研究了有限群的結(jié)構(gòu)[11-14]。作為上述工作的繼續(xù),本文將研究具有CAP性質(zhì)的二極大子群對p-可解群構(gòu)造的影響。
文中所考慮的群均是有限的,M<[KG-*2/3]·G表示子群M 是群G 的極大子群,群G的極小正規(guī)子群L記作L·[TXX-] G,max(G,H)表示群G中所有包含子群H 的極大子群的集合,HG=∩[DD(X]g∈G[DD)]Hg表示包含于子群H 的群G 的極大正規(guī)子群。未涉及的概念和符號參見文獻[15]。
參考文獻:
[1]PLFY P P,PUDLAK P.Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups [J]. Algebra Universalis, 1980,11(1):22-27.
[2]FEIT W. An interval in the subgroup lattice of a finite group which is isomorphic to M7 [J]. Algebra Universalis, 1983, 17(1):220-221.
[3] PLFY P P. On Feit′s examples of intervals in subgroup lattices[J]. Journal of Algebra, 1988, 116(2): 471-479.
[4]KHLER P. M7 as an interval in a subgroup lattice[J]. Algebra Universalis, 1983, 17(1):263-266.
[5]LUCCHINI A. On imprimitive groups with small degree[J]. Rendiconti del Seminario Matematico della Universita di Padova, 1991, 86: 131-142.
[6]LUCCHINI A. Intervals in subgroup lattices of finite groups[J]. Communications in Algebra, 1994, 22(2): 529-549.
[7]LUCCHINI A. Representation of certain lattices as intervals in subgroup lattices[J]. Journal of Algebra, 1994, 164(1): 85-90.
[8]FLAVELL P. Overgroups of second maximal subgroups[J]. Archiv Der Mathematik, 1995, 64(4): 277-282.
[9]MENG H Y, GUO X Y. Weak second maximal subgroups in solvable groups[J]. Journal of Algebra, 2019, 517(1): 112-118.
[10]GASCHTZ W. Praefrattini gruppen [J]. Archiv Der Mathematik, 1962, 13(12): 418-426.
[11]TOMKINSON M J. Cover-avoidance properties in finite soluble groups[J]. Canadian Mathematical Bulletin, 1976, 19(2): 213-216.
[12]EZQUERRO L M. A contribution to the theory of finite supersoluble groups[J]. Rendiconti del Seminario Matematico della Universita di Padova, 1993, 89: 161-170.
[13]GUO X Y, SHUM K P. Cover-avoidance properties and the structure of finite groups[J]. Journal of Pure and Applied Algebra, 2003, 181(2/3): 297-308.
[14]LIU J J, LI S R, SHEN Z C, et al. Finite groups with some CAP-subgroups[J]. Indian Journal of Pure and Applied Mathematics, 2011, 42(3): 145-156.
[15]郭文彬. 群類論[M]. 北京:科學(xué)出版社, 1997.
[16]LIU X L, DING N Q. On chief factors of finite groups[J]. Journal of Pure and Applied Algebra, 2007, 210(3): 789-796.
[17]BALLESTER-BOLINCHES A, EZQUERRO L M. Classes of Finite Groups[M].Amsterdam: Springer, 2006.
[18]徐明曜. 有限群導(dǎo)引(上)II[M].北京:科學(xué)出版社, 1999.
[19]BRAY H G, DESKINS W E, JOHNSON D, 等. 冪零與可解之間[M]. 張遠達, 文志雄, 朱德高, 等譯. 武漢:武漢大學(xué)出版社, 1988.
(編 輯 張 歡)
收稿日期:2020-01-10
基金項目:國家自然科學(xué)基金資助項目(11871062);江蘇省自然科學(xué)基金資助項目(BK20181451)
作者簡介:繆龍,男,江蘇揚州人,教授,博士生導(dǎo)師,從事群論研究。