国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

骨髓間充質(zhì)干細胞異常在MDS發(fā)病機制中的研究

2020-05-11 11:48樓蕓周永明朱文偉
醫(yī)學(xué)信息 2020年6期
關(guān)鍵詞:間充質(zhì)干細胞免疫抑制

樓蕓 周永明 朱文偉

摘要:骨髓增生異常綜合征是一種具有高度異質(zhì)性的源于骨髓造血干細胞的克隆性疾病,免疫失衡和骨髓微環(huán)境異常在其發(fā)病機制中具有重要地位。骨髓間充質(zhì)干細胞是骨髓微環(huán)境中重要的細胞成分,具有支持和調(diào)節(jié)造血干細胞的增殖和分化以及免疫調(diào)節(jié)的作用。骨髓間充質(zhì)干細胞異常在骨髓增生異常綜合征發(fā)病中表現(xiàn)為造血支持缺陷和免疫抑制,本文現(xiàn)就此機制進行綜述。關(guān)鍵詞:骨髓增生異常綜合征;間充質(zhì)干細胞;骨髓微環(huán)境;造血支持缺陷;免疫抑制

中圖分類號:R551 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標識碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2020.06.008

文章編號:1006-1959(2020)06-0024-04

Abstract:Myelodysplastic syndrome is a highly heterogeneous clonal disease derived from bone marrow hematopoietic stem cells. Immunological imbalance and abnormal bone marrow microenvironment play an important role in its pathogenesis. Bone marrow mesenchymal stem cells are important cellular components in the bone marrow microenvironment, and have the role of supporting and regulating the proliferation and differentiation of hematopoietic stem cells and immune regulation. The abnormality of bone marrow mesenchymal stem cells in the pathogenesis of myelodysplastic syndrome manifests as defects in hematopoietic support and immunosuppression. This article reviews the mechanism.

Key words:Myelodysplastic syndrome;Mesenchymal stem cells;Bone marrow microenvironment;Hematopoietic support defects;Immunosuppression

骨髓增生異常綜合征(myelodysplastic syndrome,MDS)是起源于造血干細胞的一組高度異質(zhì)性克隆性疾病,以一系或多系血細胞病態(tài)造血及無效造血,高風(fēng)險向急性白血病轉(zhuǎn)化為特征。目前對其發(fā)病機制的研究涉及染色體基因突變、表觀遺傳學(xué)改變、免疫失衡、骨髓微環(huán)境異常等方面。骨髓微環(huán)境被稱為造血干細胞(hematopoietic stem cells,HSCs)的“土壤”,以三維網(wǎng)狀空間結(jié)構(gòu)為HSCs提供生存的細胞和分子微環(huán)境,主要由間充質(zhì)干細胞(mesenchymal stem cells,MSCs)、細胞外基質(zhì)和各種細胞因子組成,各成分互相作用以維持和調(diào)節(jié)HSCs的正常造血[1,2]。研究顯示[2],MDS的無效造血可能與骨髓微環(huán)境異常有關(guān)。間充質(zhì)干細胞是骨髓微環(huán)境中的重要成分,其異常在MDS的發(fā)病和進展中有著重要的作用,本文就近幾年骨髓微環(huán)境中的間充質(zhì)干細胞異常在MDS發(fā)病機制中的研究進展進行綜述。

1間充質(zhì)干細胞

間充質(zhì)干細胞來源于胚胎發(fā)育早期的中胚層,是一類具有自我更新和多向分化潛能的成體干細胞。1968年Friedenstein AJ等[3]從自然貼壁法中獲得了骨髓基質(zhì)細胞(bone marrow stromal cells,BMSCs),至90年代末,研究者從中成功分離出一種具有成骨、成軟骨和成脂肪能力的細胞,命名為間充質(zhì)干細胞。其后,諸如脂肪、臍帶、胎盤、肌肉等其他組織中也被分離出間充質(zhì)干細胞,不同來源的MSCs在蛋白質(zhì)表達譜系及特性上有所差異,骨髓間充質(zhì)干細胞(bone marrow mesenchymal stem cells,BM-MSCs),簡稱MSCs。研究顯示,體內(nèi)固有的MSCs經(jīng)體外培養(yǎng)后,其生物學(xué)特性發(fā)生了根本的變化,又由于其來源于骨髓的支持結(jié)構(gòu),滋養(yǎng)HSCs的生長,因此又稱為間充質(zhì)基質(zhì)細胞(mesenchymal stromal cells,MSCs)。

MSCs有很強的增殖分化潛能,可被誘導(dǎo)分化為中胚層的成骨樣細胞、軟骨樣細胞,外胚層的神經(jīng)元樣細胞、胰島素分泌細胞、心肌樣細胞和外胚層的肝細胞樣細胞[4,5],具有組織修復(fù)功能的可能性。免疫耐受性是MSCs的另一大特性。研究表明[6,7],MSCs可以抑制T細胞的增殖從而導(dǎo)致免疫耐受,并且MSCs的分化并未導(dǎo)致其抗原性的增加[8]。另有研究顯示[9],MSCs可能通過抗原呈遞以及促細胞因子的分泌抑制T細胞從而產(chǎn)生免疫豁免。此外,還有MSCs通過轉(zhuǎn)分化[10]和細胞融合[11]、旁分泌作用[12]、細胞與細胞接觸依賴[7]、胞外囊泡[13]和線粒體轉(zhuǎn)移[14]以及表觀遺傳學(xué)調(diào)控[15]等機制產(chǎn)生大量生物活性物質(zhì),具有造血支持、提供營養(yǎng)、激活內(nèi)源性干/祖細胞、組織損傷修復(fù)、免疫調(diào)節(jié)、促進血管新生、抗細胞凋亡、抗氧化、抗纖維化以及歸巢等多方面的作用的研究報道。目前,MSCs已成為細胞治療領(lǐng)域最具臨床應(yīng)用價值的干細胞。

2間充質(zhì)干細胞異常與MDS

2.1造血支持缺陷MDS ?造血支持缺陷MDS是以病態(tài)造血和無效造血為特征表現(xiàn),異常克隆細胞在骨髓中分化、成熟障礙,出現(xiàn)病態(tài)造血,在骨髓原位或釋放入血后不久被破壞,導(dǎo)致無效造血。已有研究證實來源于MDS的MSCs(MSCs derived from MDS,MDS-MSCs)在支持造血方面存在缺陷[16]。

2.1.1 MDS-MSCs生長、增殖能力降低 ?Geyh S等[17]的研究顯示,MDS所有亞型的MSCs在結(jié)構(gòu)、功能以及表觀遺傳學(xué)方面都存在改變,表現(xiàn)為生長和增殖能力顯著降低,同時伴隨細胞克隆能力受損的提早衰老。MDS-MSCs特定的甲基化模式減低了其成骨分化能力,MDS-MSCs中的長期培養(yǎng)起始細胞(long-termculture-initiatingcell,LTC-IC)支持CD34+造血干/祖細胞(haemopoietic stem progenitor cell,HSPC)的能力顯著降低,而LTC-IC則與細胞周期活性降低密切相關(guān),二者共同作用導(dǎo)致HSPC的基質(zhì)支持受損,從而影響其造血功能。而Zhao ZG等[18]的研究排除了巨噬細胞的干擾,在單細胞水平對MDS患者骨髓的MSCs(MDS-MSCs)進行分離和體外擴增,結(jié)果顯示具有正常功能的LTC-IC在擴增的克隆MDS-MSC中的生長顯著低于正常對照組。此外,與正常MSCs相比,SCF、G-CSF和GM-CSF等造血因子在MDS-MSCs的表達降低,且有研究證實MSCs能夠通過分泌上述細胞因子來支持長期培養(yǎng)的骨髓基質(zhì)細胞(long-term bone marrow cultured stromal cells,LTBMC)中的造血作用[19]。

2.1.2 MDS-MSCs成骨分化能力減弱 ?費成明等[20]研究了MSCs異常導(dǎo)致造血缺陷的機制,發(fā)現(xiàn)低危組MDS患者骨髓MSCs成骨分化能力明顯減弱,高危組則相對正常,進而推測MSCs成骨分化能力的減弱使得成骨細胞數(shù)量的減少,造成作為造血龕的重要組成部分的成骨細胞龕結(jié)構(gòu)異常,最終導(dǎo)致造血支持能力減弱。Falconi G等[21]研究顯示,經(jīng)典的Wnt/β-連環(huán)蛋白信號通路可促進MSCs的增殖并抑制其成骨分化,并且在分化的成骨細胞中則需要β-連環(huán)蛋白的持續(xù)穩(wěn)定表達來誘導(dǎo)骨保護素的表達并抑制破骨細胞分化。另有較多研究表明,MSCs通過CXCR4/CXCL12信號傳導(dǎo)[22,23]以及各種分泌因子如SCF、TPO、IGF1等在HSC龕中維持造血功能[17,23-27]。

2.1.3 MDS-MSCs對治療反應(yīng)的影響 ?Poon Z等[28]對MDS-MSCs造成的造血異常在治療反應(yīng)中的研究發(fā)現(xiàn),在接觸MDS-MSCs后損害了健康的CD34+HSPCs的造血功能,表明MDS基質(zhì)所產(chǎn)生的造血功能異常可以被誘導(dǎo)并且在HSPCs中自主持續(xù)相當長一段時間,導(dǎo)致接受正常造血干細胞移植治療的失敗。而低甲基化療法可逆轉(zhuǎn)MDS-MSCs成骨分化、增殖、基因表達等特性的異常,并且對經(jīng)移植的正常造血干細胞的支持能力有明顯提升。

2.1.4 MDS-MSCs與AML-MSCs的差異 ?急性髓系白血?。╝cute myeloid leukemia,AML)的MSC(AML-MSCs)同樣以無效造血為主要特征,但與MDS-MSCs有所不同。Corradi G等[29]的研究顯示,MDS-MSCs和AML-MSCs在表型、分化能力、白血病特異性遺傳異常的缺乏、維持AML細胞活力的能力等方面并無顯著差異,但相比MDS-MSCs和健康供者的MSC(healthy donor-derived MSCs,HD-MSCs),AML-MSCs難以從患者體內(nèi)分離,可能與其體內(nèi)存在少量前體有關(guān),而MDS-MSCs則顯示出更低的增殖潛力。關(guān)于PI3K/AKT信號通路的研究亦證明了上述觀點,該通路中GSK3b、SOS1、RASA1和MTCP1基因在MDS-MSCs中顯著下調(diào),而在AML中并無明顯異常[21],可能與微環(huán)境紊亂在MDS和AML的發(fā)病機制中的權(quán)重不同有關(guān)。白血病造血細胞的遺傳和表觀遺傳學(xué)異常足以導(dǎo)致AML的發(fā)生,而骨髓增生異常的造血功能異常則更多地取決于異常的骨髓基質(zhì)。

2.2免疫抑制 ?MDS是一種骨髓衰竭性疾病,其發(fā)病與免疫應(yīng)答的失調(diào)密切相關(guān)[30,31]。

2.2.1 MDS-MSCs抑制T細胞增殖 ?Epperson DE等[32]的研究顯示,T細胞介導(dǎo)的免疫過程是MDS的特征之一,MDS患者TCR Vβ和Jβ使用模式代表了導(dǎo)致全血細胞減少的MDS骨髓中對特定抗原的T細胞反應(yīng)。在MDS-MSCs相關(guān)的免疫異常中,以其對T細胞增殖的抑制最為關(guān)鍵。Zhao ZG等[33]的研究表明,MDS-MSCs以可溶性因子為介質(zhì)抑制有絲分裂原或混合淋巴細胞反應(yīng)(mixed lymphocyte reaction,MLR)刺激T細胞增殖,然而這種抑制作用較健康成人及其他血液系統(tǒng)惡性疾病表現(xiàn)明顯減弱,可能與轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)的表達異常或T細胞凋亡減少有關(guān)。

2.2.2 MDS-MSCs ?有研究以TGF-β1為介質(zhì)抑制免疫應(yīng)答,結(jié)果顯示MSCs通過分泌TGF-β1和干細胞生長因子(hepatocyte growth factor,HGF)來抑制T細胞的增殖,且抑制作用與TGF-β1和HGF的表達呈正相關(guān)[34]。Wang Z等[35]發(fā)現(xiàn)MDS-MSCs以TGF-β1為介質(zhì)抑制DCs的內(nèi)吞作用、IL-12的分泌和T細胞的增殖,并且低風(fēng)險MDS-MSCs對DCs功能的抑制作用弱于高風(fēng)險MDS-MSCs,表明免疫應(yīng)答的失調(diào)在MDS發(fā)病過程中具有顯著作用,進而研究者認為MSCs通過抑制樹突狀細胞(dendritic cells,DCs)的分化和成熟的方式在免疫應(yīng)答的初始環(huán)節(jié)調(diào)節(jié)免疫系統(tǒng)。

3總結(jié)

骨髓增生異常綜合征的發(fā)病機制目前尚不明確,但研究顯示其與造血微環(huán)境和免疫系統(tǒng)的異常密切相關(guān)。骨髓間充質(zhì)干細胞是骨髓微環(huán)境中重要的細胞成分,在支持和調(diào)節(jié)造血干細胞的增殖和分化以及免疫調(diào)節(jié)中起到重要作用。MSCs的異常在MDS的發(fā)病機制中主要表現(xiàn)為造血支持的缺陷和免疫調(diào)節(jié)的抑制,涉及不同信號通路的多種基因的表達。對于MDS-MSCs的研究不僅可以闡明MDS的部分發(fā)病機制,對疾病的進展、治療方法和療效評估亦有重大的意義,有待于進一步的深入探索。

參考文獻:

[1]Birbrair A,F(xiàn)renette PS.Niche heterogeneity in the bone marrow[J].Annals of the New York Academy of Sciences,2016,1370(1):82-96.

[2]Bulycheva E,Rauner M,Medyouf H,et al.Myelodysplasia is in the niche: novel concepts and emerging therapies[J].Leukemia,2015,29(2):259-268.

[3]Friedenstein AJ,Gorskaja JF,Kulagina NN.Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].Experimental Hematology,1976,4(5):267-274.

[4]Kobolak J,Dinnyes A,Memic A,et al.Mesenchymal stem cells:Identification,phenotypic characterization,biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche[J].Methods,2016(99):62-68.

[5]Bianco P."Mesenchymal"stem cells[J].Annu Rev Cell Dev Biol,2014(30):677-704.

[6]Davies LC,Heldring N,Kadri N,et al.Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression[J].Stem Cells,2017,35(3):766-776.

[7]Di Trapani M,Bassi G,Midolo M,et al.Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T,B and NK cell functions[J].Sci Rep,2016,6(24):120.

[8]Lee HJ,Kang KS,Kang SY,et al.Immunologic properties of differentiated and undifferentiated mesenchymal stem cells derived from umbilical cord blood[J].Journal of Veterinary Science,2016,17(3):289-297.

[9]Zhao N,Li H,Yan Y,et al.Mesenchymal stem cells overexpressing IL-35 effectively inhibit CD4(+)T cell function[J].Cell Immunol,2017(312):61-66.

[10]Pesaresi M,Sebastian-Perez R,Cosma MP.Dedifferentiation,transdifferentiation and cell fusion:in vivo reprogramming strategies for regenerative medicine[J].FEBS J,2019,286(6):1074-1093.

[11]Aguilera-Castrejon A,Pasantes-Morales H,Montesinos JJ,et al.Improved Proliferative Capacity of NP-Like Cells Derived from Human Mesenchymal Stromal Cells and Neuronal Transdifferentiation by Small Molecules[J].Neurochem Res,2017,42(2):415-427.

[12]Santos ND,Mosqueira D,Sousa LM,et al.Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic,and endogenous cell-activation mechanisms[J].Stem Cell Res Ther,2014,5(1):5.

[13]Zheng G,Huang R,Qiu G,et al.Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis[J].Cell Tissue Res,2018,374(1):1-15.

[14]Paliwal S,Chaudhuri R,Agrawal A,et al.Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J].J Biomed Sci,2018,25(1):31.

[15]Mortada I,Mortada R.Epigenetic changes in mesenchymal stem cells differentiation[J].Eur J Med Genet,2018,61(2):114-118.

[16]Dazzi F,Ramasamy R,Glennie S,et al.The role of mesenchymal stem cells in haemopoiesis[J].Blood Rev,2006,20(3):161-171.

[17]Geyh S,Oz S,Cadeddu RP,et al.Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells[J].Leukemia,2013,27(9):1841.

[18]Zhao ZG,Xu W,Yu HP,et al.Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes[J].Cancer Letters,2012,317(2):136-143.

[19]Viswanathan C,Kulkarni R,Bopardikar A,et al.Significance of CD34 Negative Hematopoietic Stem Cells and CD34 Positive Mesenchymal Stem Cells-A Valuable Dimension to the Current Understanding[J].Curr Stem Cell Res Ther,2017,12(6):476-483.

[20]費成明,顧樹程,趙佑山,等.骨髓增生異常綜合征患者骨髓間充質(zhì)干細胞成骨分化功能的研究[J].中國實驗血液學(xué)雜志,2015,23(3):750-755.

[21]Falconi G,F(xiàn)abiani E,F(xiàn)ianchi L,et al.Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes[J].Experimental Hematology,2016,44(1):75-83,e4.

[22]Sackstein R.The biology of CD44 and HCELL in hematopoiesis:the"step 2-bypass pathway"and other emerging perspectives[J].Current Opinion in Hematology,2011,18(4):239.

[23]Greenbaum A,Hsu YMS,Day RB,et al.CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance[J].Nature,2013,495(7440):227.

[24]Sugino N,Miura Y,Yao H,et al.Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis-and adhesion-related gene expression profiles[J].Biochem Biophys Res Commun,2016,469(4):823-829.

[25]Fajardo-Orduna GR,Mayani H,Montesinos JJ.Hematopoietic Support Capacity of Mesenchymal Stem Cells:Biology and Clinical Potential[J].Arch Med Res,2015,46(8):589-596.

[26]Ajami M,Soleimani M,Abroun S,et al.Comparison of cord blood CD34+stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble/membrane isoforms of SCF[J].J Cell Biochem,2019,120(9):15297-15309.

[27]Caselli A,Olson TS,Otsuru S,et al.IGF-1-mediated osteoblastic niche expansion enhances long‐term hematopoietic stem cell engraftment after murine bone marrow transplantation[J].Stem Cells,2013,31(10):2193-2204.

[28]Poon Z,Dighe N,Venkatesan SS,et al.Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy[J].Leukemia,2019,33(6):1487-1500.

[29]Corradi G,Baldazzi C,Ocadlíková D,et al.Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival[J].Stem cell research&therapy,2018,9(1):271.

[30]Wang C,Yang Y,Gao S,et al.Immune dysregulation in myelodysplastic syndrome:Clinical features,pathogenesis and therapeutic strategies[J].Critical Reviews in Oncology/Hematology,2018(122):123-132.

[31]Ganán-Gómez I,Wei Y,Starczynowski DT,et al.Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes[J].Leukemia,2015,29(7):1458-1469.

[32]Epperson DE,Nakamura R,Saunthararajah Y,et al.Oligoclonal T cell expansion in myelodysplastic syndrome:evidence for an autoimmune process[J].Leukemia Research,2001,25(12):1075-1083.

[33]Zhao ZG,Li WM,Chen ZC,et al.Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases[J]. Leukemia&Lymphoma,2008,49(11):2187-2195.

[34]Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J].Blood, 2002,99(10):3838-3843.

[35]Wang Z,Tang X,Xu W,et al.The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes[J].PloS One,2013,8(3):e57470.

收稿日期:2020-01-01;修回日期:2020-01-22

編輯/肖婷婷

猜你喜歡
間充質(zhì)干細胞免疫抑制
不同灸法對免疫抑制兔脾臟、胸腺影響的組織學(xué)研究
豬免疫抑制性疾病的病因、發(fā)病特點及防控措施
防控豬群免疫抑制的技術(shù)措施
金線蓮多糖對免疫抑制小鼠脾淋巴細胞體外增殖、分泌NO及細胞因子的影響
間充質(zhì)干細胞治療放射性腸損傷研究進展
間充質(zhì)干細胞與未成熟樹突細胞聯(lián)合胰島細胞移植治療小鼠糖尿病
臍帶間充質(zhì)干細胞移植治療難治性系統(tǒng)性紅斑狼瘡患者的療效分析
丹參總酚酸對大鼠缺血性腦卒中后免疫抑制現(xiàn)象的改善作用
免疫抑制法測定血清CK-MB致結(jié)果偏高的原因分析