姜 朋 何 漪 張 旭 吳 磊 張平平 馬鴻翔
寧麥9號(hào)與揚(yáng)麥158株高及其構(gòu)成因素的遺傳解析
姜 朋 何 漪 張 旭 吳 磊 張平平 馬鴻翔*
江蘇省農(nóng)業(yè)科學(xué)院 / 江蘇省農(nóng)業(yè)生物學(xué)重點(diǎn)實(shí)驗(yàn)室 / 江蘇省現(xiàn)代作物生產(chǎn)協(xié)同創(chuàng)新中心, 江蘇南京 210014
寧麥9號(hào)與揚(yáng)麥158是我國(guó)長(zhǎng)江中下游麥區(qū)的主栽品種和骨干親本, 長(zhǎng)江中下游麥區(qū)近3年來(lái)審定品種中80%都是其衍生后代, 研究其性狀的遺傳具重要意義。以寧麥9號(hào)與揚(yáng)麥158為親本構(gòu)建的包含282個(gè)家系的重組自交系群體為材料, 利用Illumina 90k芯片對(duì)群體進(jìn)行基因型分析, 建立高密度遺傳圖譜。連續(xù)3個(gè)生長(zhǎng)季對(duì)株高及節(jié)間長(zhǎng)度、穗長(zhǎng)等株高構(gòu)成因素進(jìn)行測(cè)定, 結(jié)合遺傳圖譜對(duì)株高及相關(guān)性狀進(jìn)行QTL定位, 獲得14個(gè)控制株高及其構(gòu)成因素的穩(wěn)定表達(dá)位點(diǎn)。通過(guò)進(jìn)一步位置比對(duì), 聚焦到6個(gè)染色體區(qū)段, 初步明確了各節(jié)間對(duì)株高的遺傳調(diào)控機(jī)制。同時(shí), 將6個(gè)染色體區(qū)段中同源性較低的連鎖標(biāo)記轉(zhuǎn)化為適用于高通量篩選的KASP標(biāo)記, 利用101份區(qū)域試驗(yàn)材料進(jìn)行標(biāo)記效應(yīng)驗(yàn)證, 結(jié)果顯示聚合與兩個(gè)位點(diǎn)具有較高的選擇效率, 繼續(xù)聚合后, 中選材料顯著減少, 可能降低選擇效率; 對(duì)與兩個(gè)一因多效位點(diǎn)的選擇建議以降低株高的等位變異為主;可作為穗下節(jié)間(D1)的選擇標(biāo)記對(duì)株高展開(kāi)優(yōu)化選擇。期望以上結(jié)果能為長(zhǎng)江中下游麥區(qū)的小麥株高遺傳改良提供幫助。
小麥; 寧麥9號(hào); 揚(yáng)麥158; 株高; KASP標(biāo)記
株高是小麥重要的農(nóng)藝性狀, 影響植株的形態(tài)結(jié)構(gòu), 并與田間群體產(chǎn)量密切相關(guān)。小麥矮稈基因的利用是綠色革命的重要組成部分, 對(duì)現(xiàn)代小麥育種具有深遠(yuǎn)影響[1]。經(jīng)典遺傳學(xué)研究表明, 小麥株高是一個(gè)復(fù)雜性狀, 由多個(gè)基因控制, 存在主效基因, 也有微效位點(diǎn)。迄今為止, 已有25個(gè)基因被命名[2-4]。位于 4B 和 4D 染色體上的和基因, 以及2D染色體上的基因在世界范圍內(nèi)廣為應(yīng)用, 其相關(guān)分子標(biāo)記已成功開(kāi)發(fā)[5-6]。此外, 在小麥21條染色體上均檢測(cè)到影響株高的QTL[7-11]。McCartney等[12]利用RL4452בAC’ Domain構(gòu)建的DH群體對(duì)包括株高在內(nèi)的多個(gè)農(nóng)藝性狀進(jìn)行QTL分析, 在 2D、 4B、4D、5B、7A和7B染色體檢測(cè)到6個(gè)株高QTL, 其中和的定位區(qū)間與和位置重合。Griffiths等[13]利用4個(gè)DH群體進(jìn)行了株高meta-QTL分析, 在除3D、4A、5D及第7同源群外的15條染色體上找到16個(gè)meta-QTL。Liu等[9]在5個(gè)生長(zhǎng)階段對(duì)小麥株高進(jìn)行了跟蹤調(diào)查, 利用條件與非條件QTL作圖方法進(jìn)行分析, 檢測(cè)到8個(gè)條件QTL與9個(gè)非條件QTL。其中在2個(gè)時(shí)期被重復(fù)檢測(cè)到, 表型貢獻(xiàn)率達(dá)13.42%~16.13%, 此研究表明株高基因的表達(dá)具有一定的時(shí)空特異性。小麥株高是主穗長(zhǎng)與各節(jié)間長(zhǎng)的總和, 但控制主穗長(zhǎng)及各莖節(jié)間長(zhǎng)的遺傳位點(diǎn)對(duì)小麥株高的遺傳貢獻(xiàn)并不一致。Cui等[14]利用條件QTL與非條件QTL相結(jié)合的分析方法在單個(gè)QTL水平揭示了株高與穗長(zhǎng)及各節(jié)間長(zhǎng)之間的關(guān)系, 其中倒三節(jié)對(duì)株高影響最大。Zhang等[15]測(cè)定了不同時(shí)期的各個(gè)節(jié)間長(zhǎng)度, 明確了5個(gè)穩(wěn)定的株高QTL的表達(dá)模式及貢獻(xiàn)率。
遺傳連鎖圖為遺傳定位、標(biāo)記開(kāi)發(fā)及候選基因發(fā)掘等提供了強(qiáng)有力的工具。近年來(lái)發(fā)展起來(lái)的SNP標(biāo)記具有遺傳穩(wěn)定、數(shù)量多、分布廣等特點(diǎn), 并且適于高通量檢測(cè), 基于其開(kāi)發(fā)的9k、90k、660k等基因型芯片集合了成千上萬(wàn)個(gè)SNP標(biāo)記, 不僅加快了小麥遺傳圖譜構(gòu)建速度, 也大大提高了小麥遺傳圖譜的密度[16-18]。中國(guó)春小麥參考基因組序列的公布, 有助于小麥遺傳圖譜質(zhì)量的提高, 并可直接基于目標(biāo)區(qū)段進(jìn)行候選基因預(yù)測(cè)[19]。
長(zhǎng)江中下游麥區(qū)是我國(guó)第二大麥區(qū), 同時(shí)也是我國(guó)最大的弱筋小麥產(chǎn)區(qū), 是我國(guó)小麥生產(chǎn)的重要組成部分。寧麥9號(hào)與揚(yáng)麥158分別是由江蘇省農(nóng)業(yè)科學(xué)院與江蘇里下河地區(qū)農(nóng)業(yè)科學(xué)研究所育成的高產(chǎn)優(yōu)質(zhì)抗病小麥品種, 都曾經(jīng)是生產(chǎn)上的主栽品種, 具有較大的推廣面積, 而且目前仍是重要的骨干親本, 以此為基礎(chǔ)育成了數(shù)十個(gè)小麥品種[20-21]。寧麥9號(hào)的衍生品種寧麥13、揚(yáng)輻麥4號(hào)等, 揚(yáng)麥158的衍生品種揚(yáng)麥20等均已成為當(dāng)前生產(chǎn)中的主栽品種及常用親本。在生產(chǎn)中, 寧麥9號(hào)株高一般在80~ 85 cm, 揚(yáng)麥158約為90~95 cm, 呈現(xiàn)較大差異, 明確其株高遺傳機(jī)制對(duì)小麥育種工作具有重要的指導(dǎo)意義。本研究以來(lái)源于寧麥9號(hào)/揚(yáng)麥158的282份重組自交系為材料, 結(jié)合高密度遺傳圖譜, 對(duì)株高及其構(gòu)成開(kāi)展QTL定位研究, 以期為長(zhǎng)江中下游麥區(qū)育種工作中的株高選擇提供幫助。
以寧麥9號(hào)×揚(yáng)麥158構(gòu)建重組自交系(RIL)群體(F2:8), 包括282個(gè)家系。寧麥9號(hào)是揚(yáng)麥6號(hào)與日本西風(fēng)小麥的雜交后代, 前者具有骨干親本南大2419與江東門(mén)的遺傳背景; 揚(yáng)麥158來(lái)源于St1472/506與揚(yáng)麥4號(hào)雜交組合, St1472/506是黃淮麥區(qū)的常用親本, 揚(yáng)麥4號(hào)含有南大2419、勝利麥與阿夫等多個(gè)骨干親本的遺傳背景。寧麥9號(hào)與揚(yáng)麥158株高及各節(jié)間長(zhǎng)度、穗長(zhǎng)等性狀差異顯著(圖1)。通過(guò)Ellis等[5]和Asplund等[6]報(bào)道的分子標(biāo)記確定寧麥9號(hào)與揚(yáng)麥158均為/變異類(lèi)型, 均不含位點(diǎn)(圖2), 其株高差異可能來(lái)源于其他位點(diǎn)。
圖1 寧麥9號(hào)與揚(yáng)麥158的田間表現(xiàn)
圖2 寧麥9號(hào)與揚(yáng)麥158株高相關(guān)分子標(biāo)記檢測(cè)
a: 寧麥9號(hào); b: 揚(yáng)麥158; M: marker。
a: Ningmai 9; b: Yangmai 158; M: marker.
2016—2017、2017—2018和2018—2019連續(xù)3個(gè)生長(zhǎng)季將RIL群體及其親本種植于江蘇省農(nóng)業(yè)科學(xué)院六合基地, 為方便描述, 以收獲年份2017、2018和2019分別表示3個(gè)環(huán)境。采用隨機(jī)區(qū)組設(shè)計(jì), 單行種植, 每行60粒, 行長(zhǎng)1.6 m, 行距0.25 m, 2次重復(fù), 常規(guī)田間管理。
于小麥乳熟期從每個(gè)家系中取10個(gè)單莖, 從莖基部開(kāi)始向上利用直尺測(cè)量每個(gè)節(jié)間-倒五節(jié)(The fifth internode from the top, D5)、倒四節(jié)(The fourth internode from the top, D4)、倒三節(jié)(The third internode from the top, D3)、倒二節(jié)(The second internode from the top, D2)、倒一節(jié)(The first internode from the top, D1)長(zhǎng)度及穗長(zhǎng), 株高為各節(jié)間與穗長(zhǎng)之和, 并計(jì)算平均值用于進(jìn)一步統(tǒng)計(jì)分析。另同時(shí)測(cè)量101份2018國(guó)家及省區(qū)域試驗(yàn)材料的株高, 用于后續(xù)驗(yàn)證。
采用Microsoft Excel 2016進(jìn)行表型初步統(tǒng)計(jì)與相關(guān)分析, 采用SPSS 19.0進(jìn)行方差分析及檢測(cè)。依據(jù)He等[22]的方法, 按2=δ2/(δ2+δ2/+δ/)計(jì)算遺傳力, 其中δ2表示基因型方差,δ2表示基因型與環(huán)境互作方差,δ2為誤差,代表環(huán)境數(shù)目,代表重復(fù)數(shù)。
采用Illumina 90k芯片獲取基因型。遺傳圖譜覆蓋21條染色體, 包含41個(gè)連鎖群, 2285個(gè)bin標(biāo)記, 總長(zhǎng)為3022 cM[23]。采用QTL IciMapping 4.1軟件[24]的完備區(qū)間作圖法(inclusive composite interval mapping, ICIM)進(jìn)行QTL定位[25], 設(shè)walking step為0.1 cM, LOD閾值為2.5。
根據(jù)SNP位點(diǎn)和側(cè)翼序列設(shè)計(jì)PCR擴(kuò)增引物, 開(kāi)發(fā)KASP分子標(biāo)記。設(shè)計(jì)每個(gè)標(biāo)記2條SNP特異性引物(F1/F2)和一條通用引物(R), F1尾部添加能夠與FAM熒光結(jié)合的特異性序列, F2尾部添加能夠與HEX熒光結(jié)合的特異性序列。利用Polymarker (http://www.polymarker.info/)設(shè)計(jì)KASP引物, 由生工生物工程(上海)股份有限公司合成。
從RILs群體中隨機(jī)挑選46份材料進(jìn)行幼嫩葉片取樣, 采用CTAB法[25]提取基因組DNA。KASP反應(yīng)總體系為5 μL, 包含2×KASP Master Mix 2.5 μL、KASP Assay Mix (引物混合工作液) 0.07 μL、濃度為20 ng μL–1的模板DNA 2.43 μL。KASP反應(yīng)程序第一步為94℃, 15 min; 第二步為94℃, 20 s, 61~55℃, 1 min, 每個(gè)循環(huán)降低0.6℃, 共進(jìn)行10個(gè)循環(huán); 第三步為94℃, 20 s, 55℃, 1 min, 共進(jìn)行26個(gè)循環(huán), 在LGC公司為Hydrocycler-16水浴PCR儀中進(jìn)行PCR。通過(guò)KASP熒光分析儀(LGC公司型號(hào)為PHERAstar plus)掃描分析PCR結(jié)果。
在連續(xù)3年的調(diào)查中(表1), 揚(yáng)麥158的各節(jié)間長(zhǎng)度、穗長(zhǎng)及株高均高于寧麥9號(hào), 其中D5與D4差異較小, 一般為1~2 cm, D3、D2與D1差異較大, 約為2~3 cm, 穗長(zhǎng)相差約1 cm, 最終造成株高相差約10 cm。在RIL群體中, 各節(jié)間長(zhǎng)度、穗長(zhǎng)及株高均呈現(xiàn)較大變異, D5變異系數(shù)最大, 約20%, 其余節(jié)間、穗長(zhǎng)及株高變異系數(shù)在10%左右, 最大株高與最小株高差異均超過(guò)30 cm, 節(jié)間差距從D5的5 cm左右遞增至D1的近20 cm。從D5至D1, 性狀遺傳力從0.43逐步增大至0.83, 穗長(zhǎng)與株高遺傳力均超過(guò)0.7。
表1 株高及其構(gòu)成因素的表型統(tǒng)計(jì)
D5: the fifth internode from the top; D4: the fourth internode from the top; D3: the third internode from the top; D2: the second internode from the top; D1: the first internode from the top.
株高、穗長(zhǎng)及各節(jié)間長(zhǎng)度在不同基因型與不同年份間差異極顯著, 同時(shí)基因型與年份的互作對(duì)其也有極顯著影響(表2)。各節(jié)間長(zhǎng)度間均呈極顯著正相關(guān), 而與穗長(zhǎng)相關(guān)系數(shù)普遍較低。株高與各節(jié)間長(zhǎng)度、穗長(zhǎng)均呈極顯著正相關(guān), 而同一節(jié)間在不同環(huán)境間亦呈現(xiàn)出良好的相關(guān)性(表3)。
表2 株高及其構(gòu)成因素的方差分析(F值)
*和**分別表示0.05和0.01顯著水平。
*and**indicate significant difference at the 0.05 and 0.01 probability levels, respectively. Abbreviations are the same as those given in Table 1.
表3 株高及其構(gòu)成因素的相關(guān)分析
*和**分別表示0.05和0.01顯著水平; 對(duì)角線上括號(hào)內(nèi)數(shù)字為同一性狀不同環(huán)境間的相關(guān)系數(shù), 2017為2017年度與2018年度間相關(guān)系數(shù), 2018為2018年度與2019年度間相關(guān)系數(shù), 2019為2019年度與2017年度間相關(guān)系數(shù)。
*and**indicate significant difference at the 0.05 and 0.01 probability levels, respectively. The figures in brackets on the diagonal line indicate correlation coefficients between the same traits in different environments. The correlation coefficients between 2017 and 2018 are put in the line of 2017, and those between 2018 and 2019, 2019 and 2017 are put in lines of 2018 and 2019, respectively. Abbreviations are the same as those given in Table 1.
綜合3個(gè)環(huán)境表型數(shù)據(jù), 利用完備區(qū)間作圖法共鑒定到96個(gè)QTL, 分布在18條染色體上, 表型貢獻(xiàn)率為1.72%~12.32%。其中, D5至D1分別檢測(cè)到7、14、17、13和13個(gè)QTL, 與穗長(zhǎng)相關(guān)的QTL有11個(gè), 控制最終株高的QTL有21個(gè)。進(jìn)一步對(duì)這些QTL比較分析, 最終在2A、2D、5A、5D、7A等5條染色體上獲得14個(gè)多環(huán)境表達(dá)的穩(wěn)定QTL (圖2和表4)。其中, 控制D5、D4及D3長(zhǎng)度的QTL均為1個(gè), 控制D2與D1均為3個(gè), 而控制株高的為5個(gè), 沒(méi)有檢測(cè)到與穗長(zhǎng)相關(guān)的穩(wěn)定QTL。
通過(guò)位置比對(duì)發(fā)現(xiàn),、、、、和遺傳位置接近或重合, 很可能為1個(gè)一因多效QTL, 同時(shí)控制多個(gè)節(jié)間的長(zhǎng)度。、與,與, 均是相同的情況。為方便描述, 將與分別簡(jiǎn)寫(xiě)為、與。除此3個(gè)QTL外,對(duì)D1具有調(diào)節(jié)作用,同時(shí)對(duì)D4與D3產(chǎn)生影響。以株高及各節(jié)間長(zhǎng)度減少定義其加性效應(yīng), 這3個(gè)位點(diǎn)對(duì)應(yīng)多個(gè)性狀的加性效應(yīng)表現(xiàn)一致,的加性效應(yīng)來(lái)源于揚(yáng)麥158, 而與的加性效應(yīng)來(lái)源于寧麥9號(hào)。此外,加性效應(yīng)來(lái)源于寧麥9號(hào),與加性效應(yīng)來(lái)源于揚(yáng)麥158。
根據(jù)定位結(jié)果, 我們最終獲得6個(gè)株高及其構(gòu)成因素控制區(qū)段(圖3), 每個(gè)區(qū)段內(nèi)含有多個(gè)SNP標(biāo)記, 選擇其中序列同源性較低的標(biāo)記進(jìn)行KASP標(biāo)記開(kāi)發(fā), 最終將IAAV880 ()、IACX9152 ()、BobWhite_c1796_701 ()、BS00098207_51 ()、Kukri_c7786_81 ()與wsnp_JD_c6050_ 7214383 ()等成功轉(zhuǎn)化(表5和圖4)。
圖3 株高及其構(gòu)成因素的QTL定位
Fig. 3 QTL mapping for plant height and its components
圖中數(shù)字與表4中QTL的序號(hào)一致。
The numbers in the figure are consistent with the sequence numbers of QTL in Table 4.
為檢測(cè)已開(kāi)發(fā)KASP標(biāo)記的功效, 利用101份2018國(guó)家及省區(qū)域試驗(yàn)材料進(jìn)行驗(yàn)證。結(jié)果顯示, 除與外, 其他4個(gè)標(biāo)記的加性效應(yīng)與定位結(jié)果一致(表6)。對(duì)于與位點(diǎn), 僅有不到10%的檢測(cè)材料中含有寧麥9號(hào)等位變異, 這可能影響統(tǒng)計(jì)檢測(cè)結(jié)果的準(zhǔn)確性; 而主要調(diào)控D1長(zhǎng)度, 對(duì)最終株高影響不顯著。在其他3個(gè)位點(diǎn)中,對(duì)株高有顯著影響, 可產(chǎn)生近2 cm的株高差異,、分別產(chǎn)生0.59 cm、1.32 cm的差異, 但未達(dá)到顯著水平。
表5 株高及其構(gòu)成因素的KASP標(biāo)記序列
F1、F2為SNP特異性引物, F1尾部添加能夠與FAM熒光結(jié)合的特異性序列, F2尾部添加能夠與HEX熒光結(jié)合的特異性序列; R為通用引物。
F1 and F2 are the specific primers for the SNP, specific sequence with FAM binding fluorescence is added to the end of F1, and that with HEX binding fluorescence is added to the end of F2; R is common primer.
圖4 株高及其構(gòu)成因素的KASP標(biāo)記開(kāi)發(fā)
Fig, 4 Development of KASP markers for plant height and its components
A表示寧麥9號(hào)等位變異類(lèi)型, B表示揚(yáng)麥158等位變異類(lèi)型。
A indicates the allele of Ningmai 9 and B indicates the allele of Yangmai 158.
表6 區(qū)域試驗(yàn)材料中不同等位變異的t-檢測(cè)
*表示0.05顯著水平; 括號(hào)中數(shù)字表示攜帶相應(yīng)等位變異的材料數(shù)量。
*indicates significant difference at the 0.05 probability level. The figures in brackets indicate the number of the materials with corresponding alleles.
按照差異大小逐步分析幾個(gè)位點(diǎn)的聚合效應(yīng)發(fā)現(xiàn), 當(dāng)聚合與位點(diǎn)時(shí), 株高可相差4 cm, 進(jìn)一步聚合后, 差異超過(guò)10 cm, 但材料數(shù)量急劇減少, 從降低株高的角度出發(fā), 結(jié)合與較單一分子標(biāo)記選擇更加有效, 當(dāng)聚合更多標(biāo)記后, 株高降低不顯著, 而入選材料有所減少, 選擇效率降低。
表7 QTL聚合的效應(yīng)分析
“+”表示增加株高的等位變異組合, “?”表示降低株高的等位變異組合;*表示0.05顯著水平; 括號(hào)中數(shù)字表示攜帶相應(yīng)等位變異的材料數(shù)量。
“+” indicates the combination of the alleles which increase plant height, and “?” indicates the combination of the alleles which reduce plant height;*indicates significant difference at the 0.05 probability level; the figures in brackets indicate the number of the materials with corres-ponding alleles.
寧麥9號(hào)與揚(yáng)麥158分別于1997年和1993年通過(guò)品種審定, 育成后均在生產(chǎn)上大面積種植, 為長(zhǎng)江中下游麥區(qū)乃至全國(guó)具有重大影響力的品種。揚(yáng)麥158適應(yīng)性廣, 且具有良好的農(nóng)藝性狀和較好的赤霉病抗性[27], 寧麥9號(hào)具有突出的弱筋小麥品質(zhì), 且多花多粒、結(jié)實(shí)性高、豐產(chǎn)性好, 還是我國(guó)小麥栽培品種赤霉病抗性QTL-的主要供體[28]。這2個(gè)品種已經(jīng)育成超過(guò)20年, 在生產(chǎn)中已被后代品種替代, 但它們目前仍被作為雜交親本應(yīng)用于小麥育種。當(dāng)前小麥生產(chǎn)中大面積推廣的寧麥13、揚(yáng)輻麥4號(hào)、揚(yáng)麥20等均為寧麥9號(hào)或揚(yáng)麥158的衍生后代。據(jù)統(tǒng)計(jì), 近3年江蘇省淮南麥區(qū)與國(guó)家長(zhǎng)江中下游麥區(qū)通過(guò)審定的小麥品種中, 超過(guò)80%是寧麥9號(hào)或揚(yáng)麥158的衍生后代(http://www.jsseed. cn/, http://www.moa.gov.cn/)。此外, 作為我國(guó)小麥品種中的主要來(lái)源, 寧麥9號(hào)已被引入其他麥區(qū)作為赤霉病抗性親本加以利用[29]; 輪選16、輪選66及輪選166等國(guó)家黃淮南片麥區(qū)的審定品種均含有揚(yáng)麥158的遺傳背景。鑒于此, 針對(duì)其重要農(nóng)藝性狀開(kāi)展遺傳研究對(duì)更好地在育種中利用這2個(gè)材料具實(shí)踐意義。
寧麥9號(hào)與揚(yáng)麥158株高差異較大。本研究顯示揚(yáng)麥158各節(jié)間長(zhǎng)度與穗長(zhǎng)均大于寧麥9號(hào), 同時(shí)遺傳因素在株高及其構(gòu)成因素中占主導(dǎo)作用, 與前人研究結(jié)果一致[30-31]。我們通過(guò)分子標(biāo)記檢測(cè)確定寧麥9號(hào)與揚(yáng)麥158均為/變異類(lèi)型, 均不含位點(diǎn)。對(duì)遺傳定位結(jié)果比對(duì)分析, 最終將影響株高的QTL聚焦到6個(gè)染色體區(qū)段。通過(guò)物理位置比對(duì),位于2D染色體短臂中部, 與位于2D染色體短臂末端的[32]相距較遠(yuǎn), 而與Wang等[33]利用條件與非條件QTL作圖檢測(cè)到的接近。梁子英等[34]在5A染色體–區(qū)段檢測(cè)到株高、D4與D5的控制位點(diǎn), 其位置與基本重合, 而在2019環(huán)境中與D4、D3也表現(xiàn)相關(guān)。位于5A染色體長(zhǎng)臂, 與的關(guān)聯(lián)標(biāo)記位置接近, 并且來(lái)源于日本小麥品種, 而亦來(lái)源于含有日本西風(fēng)小麥血統(tǒng)的寧麥9號(hào), 推測(cè)可能為同一位點(diǎn)[32]。位于5D染色體, 其連鎖標(biāo)記、均與相近, 但由于5D染色體標(biāo)記較少, 覆蓋度不足, 是否為同一位點(diǎn)有待進(jìn)一步驗(yàn)證[32]。前人在2A染色體上鑒定到多個(gè)株高控制位點(diǎn)[10,33-34], 但與均相距較遠(yuǎn)。Peng等[35]在7A染色體短臂末端–區(qū)間定位到, 而位于7A染色體短臂中部, 可能為不同的位點(diǎn)。
在小麥育種中, 一般將株高較低的基因型作為優(yōu)勢(shì)等位變異。與在101份區(qū)域試驗(yàn)材料中呈現(xiàn)較強(qiáng)的選擇效應(yīng), 多數(shù)材料在位點(diǎn)處呈現(xiàn)來(lái)源于揚(yáng)麥158的優(yōu)勢(shì)等位變異,與所有節(jié)間長(zhǎng)度都有關(guān), 可能為一個(gè)非常重要的選擇位點(diǎn), 并且很可能經(jīng)歷過(guò)早代選擇, 使其在高代材料中分布頻率較低; 針對(duì)此位點(diǎn), 今后可在低代材料中進(jìn)行驗(yàn)證, 并同時(shí)構(gòu)建次級(jí)分離群體, 為進(jìn)一步精細(xì)定位奠定基礎(chǔ)。通過(guò)比較基因組學(xué)分析發(fā)現(xiàn),附近區(qū)域?yàn)樵S多小麥重要農(nóng)藝、抗性、品質(zhì)性狀控制位點(diǎn)的熱點(diǎn)聚集區(qū), 包括開(kāi)花期、葉枯病、黃色素含量等[36-39], 對(duì)其中某些性狀的定向選擇促使某種基因型被大量保留, 最終導(dǎo)致呈現(xiàn)大量的非優(yōu)勢(shì)等位變異。
各節(jié)間長(zhǎng)度與不同的農(nóng)藝性狀具有一定的相關(guān)性[40-41], 特別是植株抗倒性, 研究表明矮稈、D5較短、D1較長(zhǎng)的植株有利于協(xié)調(diào)高產(chǎn)與抗倒性[42]。本研究顯示同時(shí)調(diào)控D1與株高,同時(shí)調(diào)控D5、D1與株高, 且其對(duì)應(yīng)各性狀的加性效應(yīng)來(lái)源一致, 無(wú)法通過(guò)這2個(gè)位點(diǎn)實(shí)現(xiàn)D1與D5、株高的差異化選擇。前述在多數(shù)區(qū)域試驗(yàn)材料中呈現(xiàn)來(lái)源于揚(yáng)麥158的降低株高、縮短各節(jié)間長(zhǎng)度的等位變異,也是多數(shù)保留了來(lái)源于寧麥9號(hào)的降低株高的等位變異, 表明育種家在株高選擇中仍以整株株高為主要選擇目標(biāo), 未考慮各節(jié)間的差異性選擇, 在選擇方向上對(duì)這2個(gè)一因多效位點(diǎn)的選擇以降低株高的等位變異為主。僅控制D1長(zhǎng)度, 且對(duì)整體株高影響不大(表4和表6), 可作為D1的選擇標(biāo)記。
共定位到6個(gè)株高控制區(qū)段, 并成功轉(zhuǎn)化為適用于大規(guī)模篩選的KASP標(biāo)記, 經(jīng)過(guò)初步驗(yàn)證, 聚合、標(biāo)記對(duì)整體株高具有較高的選擇效率; 繼續(xù)聚合后, 中選材料顯著減少, 可能降低選擇效率, 而對(duì)需要在早代育種材料進(jìn)一步驗(yàn)證, 并且對(duì)與一因多效位點(diǎn)的選擇建議以降低株高的等位變異為主;可作為D1的選擇標(biāo)記對(duì)株高進(jìn)行優(yōu)化選擇。
[1] Hedden P. The genes of the green revolution., 2003, 19: 5–9.
[2] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development., 2018, 131: 2021–2035.
[3] Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S. Molecular mapping of reduced plant height genein bread wheat., 2017, https://doi.org/10.3389/fpls.2017.01379.
[4] McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Xia X C. Catalogue of gene symbols for wheat: 2017 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017. pdf. Accessed 17 Feb 2018.
[5] Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R. “Perfect” markers for theanddwarfing genes in wheat., 2002, 105: 1038–1042.
[6] Asplund L, Leino M W, Hagenblad J. Allelic variation at thelocus in a 19th century wheat collection., 2012, 2012: 385610.
[7] B?rner A, Schumann E, Fürste A, C?ster H, Leithold B, R?der S, Weber E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (L.)., 2002, 105: 921–936.
[8] Peng J, Yefim R, Tzion F, RiDer M S, Youchun L, Eviatar N, Abraham K. Domestication quantitative trait loci in, the progenitor of wheat., 2003, 100: 2489–2494.
[9] Liu G, Xu S B, Ni Z F, Xie C J, Qin D D, Li J, Lu L H, Zhang J P, Peng H R, Sun Q X. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (L.) and spelt wheat (L.)., 2011, 56: 1897–1903.
[10] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm., 2012, 29: 159–171.
[11] Tobias W, Langer S M, Longin C F H. Genetic control of plant height in European winter wheat cultivars., 2015, 128: 865–874.
[12] Mccartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross Rl4452x ‘AC Domain’., 2005, 48: 870.
[13] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm., 2009, 119: 383–395.
[14] Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat., 2011, 122: 1517–1536.
[15] Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J. Characterization of the temporal and spatial expression of wheat (L.) plant height at the QTL level and their influence on yield-related traits., 2017, 130: 1235–1252.
[16] Cavanagh C R, Shiaoman C, Shichen W, Bevan Emma H, Stuart S, Seifollah K, Kerrie F, Cyrille S, Brown-Guedira G L, Alina A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars., 2013, 110: 8057–8062.
[17] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array., 2014, 12: 787–796.
[18] Cui F, Zhang N, Fan X, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X. Utilization of a wheat660k SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number., 2017, 7: 3788.
[19] Consortium T I W G S. Shifting the limits in wheat research and breeding using a fully annotated reference genome., 2018, 361: eaar7191.
[20] 張曉, 張伯橋, 江偉, 呂國(guó)鋒, 張曉祥, 李曼, 高德榮. 揚(yáng)麥系列品種品質(zhì)性狀相關(guān)基因的分子檢測(cè). 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48: 3779–3793. Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R. Molecular detection for quality traits-related genes in Yangmai series wheat cultivars., 2015, 48: 3779–3793 (in Chinese with English abstract).
[21] Jiang P, Zhang P P, Zhang X, Ma H X. Genetic contribution of Ningmai 9 wheat to its derivatives evaluated by using SNP markers., 2016, 2016: 3602986.
[22] He X, Lillemo M, Shi J, Wu J, Bj?rnstad ?, Belova T, Dreisigacker S, Duveiller E, Singh P. QTL characterization ofhead blight resistance in CIMMYT bread wheat line Soru#1., 2016, 11: e0158052.
[23] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance tohead blight in wheat., 2020, 69: 249–258.
[24] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations., 2015, 3: 269–283.
[25] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping., 2007, 175: 361–374.
[26] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics., 1984, 81: 8014–8018.
[27] 程順和, 張勇, 張伯橋, 高德榮, 吳宏亞, 陸成彬, 呂國(guó)鋒, 王朝順. 小麥抗赤霉病育種2條技術(shù)路線的探討. 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2003, 24: 59–62. Cheng S H, Zhang Y, Zhang B Q, Gao D R, Wu H Y, Lu C B, Lyu G F, Wang C S. Discussion of two ways of breeding scab resistance in wheat.(Agric & Life Sci), 2003, 24: 59–62 (in Chinese with English abstract).
[28] 朱展望, 徐登安, 程順和, 高春保, 夏先春, 郝元峰, 何中虎. 中國(guó)小麥品種抗赤霉病基因的鑒定與溯源. 作物學(xué)報(bào), 2018, 44: 473–482. Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H. Characterization ofhead blight resistance geneand its putative ancestor in Chinese wheat germplasm., 2018, 44: 473?482 (in Chinese with English abstract).
[29] 張宏軍, 宿振起, 柏貴華, 張旭, 馬鴻翔, 李騰, 鄧云, 買(mǎi)春艷, 于立強(qiáng), 劉宏偉, 楊麗, 李洪杰, 周陽(yáng). 利用基因功能標(biāo)記選擇提高黃淮冬麥區(qū)小麥品種對(duì)赤霉病的抗性. 作物學(xué)報(bào), 2018, 44: 505–511. Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W. Improvement of resistance of wheat cultivars tohead blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection ofgene., 2018, 44: 505?511 (in Chinese with English abstract).
[30] 陳廣鳳, 陳建省, 田紀(jì)春. 小麥株高相關(guān)性狀與SNP標(biāo)記全基因組關(guān)聯(lián)分析. 作物學(xué)報(bào), 2015, 41: 1500–1509. Chen G F, Chen J S, Tian J C. Genome-wide association analysis between SNP markers and plant height related traits in wheat., 2015, 41: 1500–1509 (in Chinese with English abstract).
[31] 武炳瑾, 馮潔, 崔紫霞, 張傳量, 孫道杰. 利用90k基因芯片進(jìn)行小麥株高QTL分析. 麥類(lèi)作物學(xué)報(bào), 2017, 5: 578?584. Wu B J, Feng J, Cui Z X, Zhang C L, Sun D J. QTL analysis of plant height by using 90k chip technology., 2017, 5: 578–584 (in Chinese with English abstract).
[32] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat., 2005, 111: 423–430.
[33] Wang Z H, Wu X S, Ren Q, Chang X P, Li R Z, Jing R L. QTL mapping for developmental behavior of plant height in wheat (L.)., 2010, 174: 447–458.
[34] 梁子英, 李美霞, 王竹林, 沈瑋囡, 奚亞軍, 孫風(fēng)麗, 劉曙東. 小麥株高相關(guān)性狀的QTL分析. 西北農(nóng)業(yè)學(xué)報(bào), 2014, 23: 64–72. Liang Z Y, Li M X, Wang Z L, Shen W N, Xi Y J, Sun F L, Liu S D. Mapping quantitative trait loci for plant height related characteristics in wheat.,2014, 23: 64–72 (in Chinese with English abstract).
[35] Peng Z S, Li X, Yang Z J, Liao M L. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai., 2011, 10: 2349.
[36] Roncallo P F, Cervigni G L, Jensen C, Miranda R, Carrera A D, Helguera M, Echenique V. QTL analysis of main and epistatic effects for flour color traits in durum wheat., 2012, 185: 77–92.
[37] Kamran A, Iqbal M, Spaner D. Flowering time in wheat (L.): a key factor for global adaptability., 2014, 197: 1–26.
[38] Botwright Acu?a T L, Rebetzke G J, He X, Maynol E, Wade L J. Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments., 2014, 34: 631–642.
[39] Dreisigacker S, Wang X, Martinez Cisneros B A, Jing R, Singh P K. Adult-plant resistance toblotch in hexaploid spring wheat., 2015, 128: 2317–2329.
[40] Kelbert A J, Spaner D, Briggs K G, King J R. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes., 2004, 136: 211–221.
[41] 朱新開(kāi), 郭文善, 李春燕, 封超年, 彭永欣. 小麥株高及其構(gòu)成指數(shù)與產(chǎn)量及品質(zhì)的相關(guān)性. 麥類(lèi)作物學(xué)報(bào), 2009, 29: 1034?1038.Zhu X K, Guo W S, Li C Y, Feng C N, Peng Y X. Relationship of plant height component indexes with grain yield and quality in wheat., 2009, 29: 1034–1038 (in Chinese with English abstract).
[42] 朱新開(kāi), 王祥菊, 郭凱泉, 郭文善, 封超年, 彭永欣. 小麥倒伏的莖稈特征及對(duì)產(chǎn)量與品質(zhì)的影響. 麥類(lèi)作物學(xué)報(bào), 2006, 26: 87–92. Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X. Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality., 2006, 26: 87–92 (in Chinese with English abstract).
Genetic analysis of plant height and its components for wheat (L.) cultivars Ningmai 9 and Yangmai 158
JIANG Peng, HE Yi, ZHANG Xu, WU Lei, ZHANG Ping-Ping, and MA Hong-Xiang*
Jiangsu Academy of Agricultural Sciences / Jiangsu Provincial Key Laboratory for Agrobiology / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, Jiangsu, China
Ningmai 9 and Yangmai 158 are the main wheat cultivars and core parents in the middle and lower reaches of the Yangtze River in China. In the past three years, 80% of the released varieties in the middle and lower reaches of the Yangtze River had the background of Ningmai 9 or Yangmai 158. To make better use of these two parents, the genetic mechanism of their traits need to be further clarified. A high-density genetic map was constructed by Illumina 90k chip using 282 recombinant inbred lines (RILs) from the cross between Ningmai 9 and Yangmai 158. In this study, the traits including plant height, internode length, and spike length were determined in three consecutive growing seasons, and 14 stable QTLs were obtained by QTL mapping. By further position alignment, we focused on six chromosome intervals, which preliminarily revealed the genetic regulatory mechanism of the internode on plant height. KASP markers suitable for high-throughput analysis were developed based on the low-homology markers in the six chromosome intervals, and they were further validated in 101 wheat accessions. The polymerization ofandhad high selection efficiency which might be decreased if further intruding. It suggests that the selection ofandshould mainly focus on the alleles reducing plant height, andcould be used in marker-assisted selection for internode length below spike (D1). The results in this study may provide assistance for wheat height genetic improvement in the middle and lower reaches of the Yangtze River.
wheat (L.); Ningmai 9; Yangmai 158; plant height; KASP marker
10.3724/SP.J.1006.2020.91063
本研究由國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0100801), 國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)(CARS-3)和國(guó)家自然科學(xué)基金項(xiàng)目(31671690)資助。
This study was supported by the National Key Project for the Research and Development of China (2017YFD0100801), the China Agriculture Research System (CARS-3), and the National Natural Science Foundation of China (31671690).
馬鴻翔, E-mail: hxma@jaas.ac.cn
E-mail: hmjp2005@163.com
2019-10-15;
2020-01-15;
2020-02-17.
URL: http://kns.cnki.net/kcms/detail/11.1809.S.20200215.1946.004.html