国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水果尺寸在線測量的智能柔性手爪設(shè)計

2020-05-27 09:41:48季欽杰盧偉宋愛國王鵬丁宇王玲
江蘇農(nóng)業(yè)學(xué)報 2020年2期

季欽杰 盧偉 宋愛國 王鵬 丁宇 王玲

摘要:針對目前水果自動化分級中手爪普遍缺少抓取力和水果尺寸信息而感知能力不足的問題,設(shè)計一種具有抓取力和水果尺寸原位動態(tài)檢測功能的柔性手爪。首先,設(shè)計一種基于單氣道多腔體結(jié)構(gòu)的智能柔性三指手爪,其中一根手指通過懸臂梁力傳感器豎直安裝于手掌上用于檢測力觸覺,一根手指內(nèi)嵌柔性彎曲度傳感器用于檢測手指的彎曲度,另一根手指直接固裝于手掌上;設(shè)計力覺傳感器和彎曲度傳感器調(diào)理電路,并分別進行標定。其次,提出基于力覺傳感器和彎曲度傳感器融合的水果尺寸原位測量方法,推導(dǎo)基于手指彎曲度的水果尺寸測量公式,并通過有限元分析和試驗進行驗證。有限元仿真結(jié)果表明,基于手指彎曲度的水果直徑測量誤差小于5%;通過分別對不同直徑(15 mm、25 mm、35 mm、45 mm)的3D打印圓柱和水果(杏子、冬棗、紅提和龍眼等)進行抓取試驗,表明力覺信號第一次突變時刻(手指剛接觸到圓柱時)的手指彎曲度可用于被抓物直徑的精確測量,誤差小于5%?;谌嵝允肿Φ牧τX傳感器和彎曲度傳感器信息融合進行水果尺寸的在線快速測量是可行的。

關(guān)鍵詞:力觸覺;彎曲度;柔性手爪;原位測量;柔性機器人

中圖分類號:S225;TP241文獻標識碼:A文章編號:1000-4440(2020)02-0455-08

Abstract:For improving the shortcomings of the existed gripper without grasping force and fruit size detection in fruit grading system, an intelligent soft gripper which could measure grasping force and fruit size on-line dynamically was developed. Firstly, an intelligent flexible three-finger gripper based on the multi-cavity structure and single airway in each finger was developed. One finger was vertically installed on the palm through a cantilever beam force sensor to detect the tactile sense, one finger was embedded with a flexible curvature sensor to detect the curvature of the finger, and the other finger was installed on the palm directly. Moreover, the conditioning circuits of force sensor and bending sensor were developed and calibrated, respectively. Secondly, an in-situ measurement method of fruit size based on the fusion of the force sensor and curvature sensor was proposed. In addition, the fruit size measurement formula based on finger curvature was derived and verified by the finite element analysis experiment and fruit picking experiment. The simulation results of finite element showed that the fruit diameter detection error based on finger curvature was less than 5%. The grasping experiments on 3D-printed cylinders (15 mm, 25 mm, 35 mm, 45 mm) and different fruits(apricot, jujube, grape and longan, etc.) indicated that the finger curvature at the moment of the first mutation of force signal (the fingers just touched the object) could be used to accurately measure the diameter of the object with an error of less than 5%. Its feasible to quickly measure the fruit size online based on the fusion information of force sensor and bending sensor.

Key words:haptic;curvature;soft gripper;in-situ measurement;soft robot

水果含有豐富的維生素、膳食纖維等營養(yǎng)物質(zhì),是健康飲食必不可少的食物[1],中國的水果產(chǎn)量連續(xù)蟬聯(lián)世界首位,但目前水果采摘仍然完全依靠人工,是水果生產(chǎn)中最耗時、費力的環(huán)節(jié)[2]。為實現(xiàn)水果采摘機械化,國內(nèi)外學(xué)者做了大量研究,開發(fā)出如柑橘[3]、櫻桃[4]、番茄[5]、蘋果[6]等采摘機器人,但少有投入實際使用。主要問題之一是缺少適用于農(nóng)業(yè)采摘的末端執(zhí)行器,吸盤等專用執(zhí)行器通用性差、靈活性低、抓取力小,而剛性的多指靈巧手則容易對質(zhì)地柔軟的果蔬造成損傷[7],此外,其昂貴的價格也阻礙了其在農(nóng)業(yè)中的應(yīng)用。

相比剛性機械手,欠驅(qū)動的柔性手爪在水果采摘方面具有天然優(yōu)勢,驅(qū)動簡單[8],有無限自由度[9-10],可根據(jù)水果形狀貼合變形[11-12],自適應(yīng)抓取[13-14]。如Toshiba靈巧手[15]、基于FPA的多指靈巧手[16]、仿生搬運助手[17]、氣動網(wǎng)絡(luò)柔性手[18-20]、纖維增強結(jié)構(gòu)柔性手[21-23]等。有些柔性手被應(yīng)用于柑橘[24]、草莓[25]等農(nóng)作物采摘。這些柔性手爪是通過特殊的結(jié)構(gòu)實現(xiàn)抓取多樣性,但不能感知抓取狀態(tài)信息,因此缺少準確的力度或位置控制。

為實現(xiàn)柔性手爪感知信息,有學(xué)者將導(dǎo)電材料封入硅膠以實現(xiàn)電信號轉(zhuǎn)換,如將碳納米管復(fù)合材料[26]、eGaIn液態(tài)金屬[27]注入柔性手爪底面形成特殊圖案[28-29]以檢測柔性手爪彎曲時的應(yīng)力,但這種方法檢測信息單一而且實現(xiàn)過程相當(dāng)繁瑣,需要帶有凹槽的模具,然后從模具的一側(cè)注入材料而另一側(cè)抽真空。為降低柔性手爪的制作成本,提高信息感知多樣化,將現(xiàn)有的傳感器直接嵌入手爪內(nèi)部,如嵌入柔性傳感器利用先驗知識檢測碰觸[30],基于觸覺反饋重建燈泡三維模型[31],以及嵌裝彎曲度和觸覺傳感器提高抓取的可靠性[32],利用TOF距離傳感器實現(xiàn)變速抓取[33],將嵌入霍爾傳感器的柔性驅(qū)動器放置于特定磁場中以測量手指曲率[34] ,但多數(shù)傳感器為剛性結(jié)構(gòu),直接影響柔性手爪動作。

針對目前水果采摘和分揀中柔性手爪普遍缺少力度、位置信息感知的不足,本研究擬設(shè)計一種具有力觸覺和手指彎曲度信息動態(tài)感知的柔性手爪,可用于水果采摘機器人和水果分級自動化流水線。

1試驗設(shè)計與測量方法

1.1柔性手爪設(shè)計

1.1.1總體結(jié)構(gòu)設(shè)計柔性手爪如圖1所示,具有3根柔性手指,柔性手指一面為壁厚較薄的波紋管狀指節(jié),另一面為較厚的底板,充氣時波紋管狀指節(jié)形變遠大于底板從而使得柔性手指向底板側(cè)彎曲。其中第一根手指通過豎直安裝的懸臂梁式力覺傳感器固裝于手掌上,第二根柔性手指內(nèi)嵌入彎曲度傳感器且直接固裝到手掌上,第3根手指直接固裝到手掌上,且3根手指圓周等距安裝。3根手指分別通過氣管連接到四通快接頭的其中一個接口,剩余一個接口作為總接口連接到外部驅(qū)動氣源。

1.1.2柔性手爪傳感設(shè)計柔性手指是利用3D打印的模具由硅膠(Smooth-On,Inc)澆注而成,制作一根嵌入彎曲度傳感器的柔性手指和2根不嵌入傳感器的柔性手指,3根柔性手指通過連接件固裝于手掌上組成三指柔性手爪。

采用的彎曲度傳感器為Flex2.2,該傳感器自然狀態(tài)下電阻約為190 KΩ,當(dāng)向金屬側(cè)彎曲時電阻值隨彎曲程度增大而大幅度減小,最小值約為40 KΩ,靈敏度高;當(dāng)向另一側(cè)彎曲時電阻值小幅度增大,最大值約為220 KΩ,靈敏度較低,因此將彎曲度傳感器金屬側(cè)面向手指底板外部,非金屬側(cè)面向手爪內(nèi)部腔體嵌入手指底板內(nèi),這樣可準確檢測柔性手爪抓取動作時的彎曲度。該彎曲度傳感器柔軟可彎曲,對柔性手爪的動作影響甚微。

柔性手爪在氣壓驅(qū)動下自身形變而產(chǎn)生抓取力,能自適應(yīng)貼合物體表面,因此柔性手爪在抓取物體時的受力點、受力方向、接觸面積等因素很大程度上由被抓物體的幾何形狀所決定,這直接導(dǎo)致柔性手爪的抓力難以準確測量。目前常用的力傳感器有薄膜式和應(yīng)變片式2種,薄膜式力傳感器要求測量過程中薄膜不能彎曲、受力方向垂直于薄膜表面,否則會產(chǎn)生較大誤差甚至無法檢測力的大小,這不適用于產(chǎn)生大形變、抓力方向隨被抓物體形狀變化的柔性手爪。本研究選用的應(yīng)變片式力傳感器為懸臂梁結(jié)構(gòu),采用豎直安裝的方式通過檢測水平力來估測手爪抓力,測量結(jié)果基本不受傳感器和手爪自身重力的影響。

1.2傳感器調(diào)理電路設(shè)計及標定

1.2.1彎曲度傳感器

1.2.1.1彎曲度傳感器調(diào)理電路彎曲度傳感器R4與電阻R1、電阻R2、電位器R3組成單臂橋電路,調(diào)節(jié)電位器R3使得電橋初始輸出為零,隨后經(jīng)過兩級放大電路和T型濾波電路將彎曲度傳感器的阻值變化信號放大、濾波后輸出,如圖2所示。

1.2.1.2彎曲度傳感器標定如圖3所示,柔性手指豎直固定,定義指尖和指根的連線與豎直方向的夾角(α)為手指的彎曲度。

如圖11所示,測量值(φc)與長軸、短軸接近,誤差小于5%。其中誤差的一部分原因是由于水果為橢球體,3根柔性手指不一定能同時接觸到水果,即當(dāng)力觸覺指示手爪已經(jīng)接觸到物體時,感知彎曲度信號的柔性手指可能還未接觸到水果。此外,進一步縮短氣壓增進的步長也可以減小誤差。

3結(jié)論

為實現(xiàn)在柔性手爪抓取水果的過程中直接測量水果直徑,本研究設(shè)計一種可感知力觸覺、彎曲度的柔性手爪,并假設(shè)柔性手爪以圓弧狀彎曲、彎曲過程中底板長度不變從而推算出水果直徑測量公式。由于柔性手爪為超彈性體,運動過程復(fù)雜,因此通過有限元仿真分析驗證了假設(shè)的合理性。對標準直徑的圓柱和不同直徑的水果進行抓取試驗,結(jié)果表明,測量誤差小于5%,可滿足嬌嫩易損的類球形水果直徑的在線、快速、無損檢測,具有較好的應(yīng)用前景。

參考文獻:

[1]徐麗明,張鐵中. 果蔬果實收獲機器人的研究現(xiàn)狀及關(guān)鍵問題和對策[J].農(nóng)業(yè)工程學(xué)報,2004,20(5):38-42.

[2]王麗麗,郭艷玲,王迪,等. 果蔬采摘機器人研究綜述[J].林業(yè)機械與木工設(shè)備,2009,37(1):10-11,14.

[3]盧偉,宋愛國,蔡健榮,等. 柑橘采摘機器人結(jié)構(gòu)設(shè)計及運動學(xué)算法[J].東南大學(xué)學(xué)報(自然科學(xué)版),2011,41(1):95-100.

[4]TANIGAKI K, FUJIURA T, AKASE A, et al. Cherry-harvesting robot[J]. Computers and Electronics in Agriculture, 2008, 63(1): 65-72.

[5]KONDO N, YATA K, IIDA M, et al. ?Development of an end-effector for a tomato cluster harvesting robot[J]. Engineering in Agriculture, Environment and Food, 2010, 3(1): 20-24.

[6]BAETEN J, DONNé K, BOEDRIJ S, et al. Autonomous fruit picking machine: A robotic apple harvester[C]//Alexander Zelmsky. Field and service robotics. Berlin: Springer, 2008: 531-539.

[7]張立彬,楊慶華,胥芳,等. 機器人多指靈巧手及其驅(qū)動系統(tǒng)研究的現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2004, 20(3):271-275.

[8]BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814.

[9]TRIVEDI D, RAHN C D, KIER W M, et al. Soft robotics: Biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5(3): 99-117.

[10]SAUNDERS F, GOLDEN E, WHITE R D, et al. Experimental verification of soft-robot gaits evolved using a lumped dynamic model[J]. Robotica, 2011, 29(6): 823-830.

[11]ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie International Edition, 2011, 50(8): 1890-1895.

[12]LUO M, AGHELI M, ONAL C D. Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake[J]. Soft Robotics, 2014, 1(2): 136-146.

[13]DOLLAR A M, HOWE R D. The highly adaptive SDM hand: design and performance evaluation[J]. The International Journal of Robotics Research, 2010, 29(5): 585-597.

[14]DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35(1/3): 161-185.

[15]SUZUMORI K, IIKURA S, TANAKA H. Applying a flexible microactuator to robotic mechanisms[J]. IEEE Control Systems Magazine, 1992, 12(1): 21-27.

[16]王志恒. 基于FPA的新型氣動機器人多指靈巧手研究[D].杭州:浙江工業(yè)大學(xué),2011.

[17]ROLF M, STEIL J J. Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant[C]//Institute of Electrical and Electronics Engineers. 2012 IEEE/RSJ international conference on intelligent robots and systems. New York: Institute of Electrical and Electronics Engineers, 2012: 3440-3446.

[18]POLYGERINOS P, LYNE S, WANG Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]//Institute of Electrical and Electronics Engineers. 2013 IEEE/RSJ international conference on intelligent robots and systems. New York: Institute of Electrical and Electronics Engineers, 2013: 1512-1517.

[19]HAO Y, GONG Z, XIE Z, et al. Universal soft pneumatic robotic gripper with variable effective length[C]//Institute of Electrical and Electronics Engineers. 2016 35th chinese control conference (CCC). New York: Institute of Electrical and Electronics Engineers, 2016: 6109-6114.

[20]MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2163-2170.

[21]GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33.

[22]GALLOWAY K C, POLYGERINOS P, WALSH C J, et al. Mechanically programmable bend radius for fiber-reinforced soft actuators[C]//Institute of Electrical and Electronics Engineers. 2013 16th international conference on advanced robotics (ICAR). New York: Institute of Electrical and Electronics Engineers, 2013: 1-6.

[23]DEIMEL R, BROCK O. A compliant hand based on a novel pneumatic actuator[C]//Institute of Electrical and Electronics Engineers. 2013 IEEE International Conference on Robotics and Automation. New York: Institute of Electrical and Electronics Engineers, 2013: 2047-2053.

[24]MUSCATO G, PRESTIFILIPPO M, ABBATE N, et al. A prototype of an orange picking robot: past history, the new robot and experimental results[J]. Industrial Robot: An International Journal, 2005, 32(2): 128-138.

[25]彭艷,劉勇敢,楊揚,等. 軟體機械手爪在果蔬采摘中的應(yīng)用研究進展[J].農(nóng)業(yè)工程學(xué)報,2018,34(9):11-20.

[26]ZHU M, WANG Z, HIRAI S, et al. Design and fabrication of a soft-bodied gripper with integrated curvature sensors[C]//Institute of Electrical and Electronics Engineers. 2017 24th international conference on mechatronics and machine vision in practice (M2VIP). New York: Institute of Electrical and Electronics Engineers, 2017: 1-6.

[27]PARK Y L, CHEN B R, WOOD R J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors[J]. IEEE Sensors Journal, 2012, 12(8): 2711-2718.

[28]BILODEAU R A, WHITE E L, KRAMER R K. Monolithic fabrication of sensors and actuators in a soft robotic gripper[C]//Institute of Electrical and Electronics Engineers. 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2015: 2324-2329.

[29]MORROW J, SHIN H S, PHILLIPS-GRAFFLIN C, et al. Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails[C]//Institute of Electrical and Electronics Engineers. 2016 IEEE international conference on robotics and automation (ICRA). New York: Institute of Electrical and Electronics Engineers, 2016: 5024-5031.

[30]ELGENEIDY K, NEUMANN G, PEARSON S, et al. Contact detection and size estimation using a modular soft gripper with embedded flex sensors[C]//Institute of Electrical and Electronics Engineers. 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2018: 498-503.

[31]SHIH B, DROTMAN D, CHRISTIANSON C, et al. Custom soft robotic gripper sensor skins for haptic object visualization[C]//Institute of Electrical and Electronics Engineers. 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2017: 494-501.

[32]PARK W, SEO S, BAE J. Development of a sensorized hybrid gripper to evaluate grasping quality[C]//Institute of Electrical and Electronics Engineers. 2019 2nd IEEE international conference on soft robotics (RoboSoft). New York: Institute of Electrical and Electronics Engineers, 2019: 149-154.

[33]LI Y, CHEN Y, LI Y. Pre-charged pneumatic soft gripper with closed-loop control[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1402-1408.

[34]OZEL S, KESKIN N A, KHEA D, et al. A precise embedded curvature sensor module for soft-bodied robots[J]. Sensors and Actuators A: Physical, 2015, 236: 349-356.

[35]YAP H K, NG H Y, YEOW C H. High-force soft printable pneumatics for soft robotic applications[J]. Soft Robotics, 2016, 3(3): 144-158.

(責(zé)任編輯:陳海霞)

绥德县| 密山市| 杭锦后旗| 上饶县| 宜兴市| 五家渠市| 泾川县| 尼玛县| 鹿邑县| 滦南县| 汕头市| 宁城县| 探索| 靖江市| 谷城县| 新津县| 陕西省| 华宁县| 宽甸| 朝阳区| 云林县| 咸阳市| 隆安县| 平阳县| 安顺市| 乡城县| 平湖市| 荔浦县| 集贤县| 邛崃市| 淳安县| 六安市| 江华| 阿拉善左旗| 太仓市| 襄城县| 同仁县| 齐齐哈尔市| 高青县| 滨海县| 馆陶县|