国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

2014—2019年北京和南京地區(qū)PM2.5和臭氧質(zhì)量濃度相關(guān)性研究

2020-05-30 10:48:04孫金金黃琳龔康佳王雪穎李婧祎秦墨梅于興娜胡建林
關(guān)鍵詞:時(shí)間尺度負(fù)相關(guān)臭氧

孫金金 黃琳 龔康佳 王雪穎 李婧祎 秦墨梅 于興娜 胡建林

摘要

自2014年以來(lái),中國(guó)細(xì)顆粒物(PM2.5)濃度大幅度下降,但臭氧(O3)濃度逐年緩慢上升,厘清PM2.5和O3(P-O)相關(guān)性尤為關(guān)鍵.在本研究中,2014—2019年北京和南京PM2.5年均質(zhì)量濃度下降幅度分別為-6.86和-6.15 μg·m-3·a-1;而日最大8小時(shí)平均O3質(zhì)量濃度(MDA8 O3)年均增長(zhǎng)幅度為1.50和1.75 μg·m-3·a-1.研究期間,北京地區(qū)MDA8 O3質(zhì)量濃度小于100 μg·m-3,P-O呈負(fù)相關(guān);而當(dāng)質(zhì)量濃度大于100 μg·m-3時(shí),P-O為正相關(guān).通過(guò)Pearson相關(guān)系數(shù)研究P-O兩者相關(guān)性.在兩個(gè)城市每月相關(guān)性分析中,在每日時(shí)間尺度5—9月為強(qiáng)的正相關(guān);而小時(shí)時(shí)間尺度11月至次年2月趨于負(fù)相關(guān).在北京,P-O每月和季節(jié)相關(guān)性變化大于南京.在日變化中,夏季在16時(shí)為強(qiáng)的正相關(guān),春秋兩季在13—17時(shí)為弱的正相關(guān),而在春、秋和冬季8時(shí),卻為強(qiáng)的負(fù)相關(guān).關(guān)鍵詞

PM2.5;臭氧;相關(guān)性分析;北京;南京

中圖分類(lèi)號(hào) X511

文獻(xiàn)標(biāo)志碼 A

0 引言

細(xì)顆粒物(空氣動(dòng)力學(xué)直徑≤2.5 μm,PM2.5)污染對(duì)呼吸系統(tǒng)、心血管系統(tǒng)等方面會(huì)造成嚴(yán)重的健康傷害[1-3].地表臭氧(O3)是一種危害人體健康、植被作物和陸地生態(tài)系統(tǒng)的有害氣態(tài)污染物[4-6].當(dāng)前,PM2.5和O3(P-O)是影響我國(guó)環(huán)境空氣質(zhì)量的主要污染物,大量研究表明有效實(shí)施P-O協(xié)同控制是解決我國(guó)復(fù)合大氣污染問(wèn)題的關(guān)鍵所在,也是我國(guó)下一階段空氣清潔行動(dòng)的最大挑戰(zhàn)[7-12].

自2013年,我國(guó)開(kāi)始實(shí)施《大氣污染防治行動(dòng)計(jì)劃》,采取了一系列嚴(yán)格的大氣污染控制措施,使我國(guó)的大氣污染形勢(shì)發(fā)生了重大的改變.2013—2017年,中國(guó)PM2.5質(zhì)量濃度下降30%~40%,細(xì)顆粒物濃度已經(jīng)得到有效控制[13-17].與此同時(shí),我國(guó)地表O3污染有所惡化.2013—2017年間,華北地區(qū)每日最大8小時(shí)平均O3(MDA8 O3)有明顯增長(zhǎng)趨勢(shì),質(zhì)量濃度增長(zhǎng)幅度有1.37 μg·m-3·a-1 [18].同一時(shí)期,我國(guó)東部地區(qū)的主要城市O3體積分?jǐn)?shù)以(1~3)×10-9 a-1的速度增加[19].2014—2018年間,我國(guó)城市地區(qū)MDA8 O3在以平均每年4.6%的速度增長(zhǎng)[20].

我國(guó)地表O3污染逐漸惡化的原因主要有,一者是近年來(lái)注重顆粒物的治理,PM2.5濃度下降,大氣中的HO2自由基損失量減少,同時(shí)到達(dá)地面的太陽(yáng)輻射增加,兩者都有利于O3的形成,O3濃度隨之逐年上升[18,21-22].同時(shí),地面O3濃度的上升改變大氣的氧化性[23],利于PM2.5二次組分(硝酸鹽和二次有機(jī)氣溶膠)的生成,硝酸鹽和二次有機(jī)氣溶膠的占比和重要性都有所上升[24-28].另一個(gè)原因是我國(guó)對(duì)O3的前體物(氮氧化物(NOx)和揮發(fā)性有機(jī)物(VOCS))的減排比例不協(xié)調(diào),O3與NOx和VOCS存在復(fù)雜的非線性關(guān)系[29].據(jù)估算,近些年以來(lái),我國(guó)NOx排放量下降幅度超過(guò)20%,但氨(NH3)和VOCs人為排放量卻有增無(wú)減[14,19-20,30].若處于VOC控制區(qū)的情景下,這會(huì)對(duì)O3濃度生成產(chǎn)生相反的效果,導(dǎo)致O3濃度上升[19,30-31].

硝酸鹽和二次有機(jī)氣溶膠是由復(fù)雜的化學(xué)反應(yīng)生成,其前體物也是NOx和VOCS[26,32].盡管P-O形成機(jī)制不同,但P-O有共同的前體物(NOx和VOCS),使得兩者存在一定的相關(guān)性,并為兩者的協(xié)同控制提供了基礎(chǔ).目前對(duì)P-O相關(guān)性已經(jīng)做了一些研究[10,33-37],但這些研究在研究范圍、時(shí)間尺度、研究方法等方面都有著不小的差異,同時(shí)P-O還受到不同時(shí)刻、地形、氣象條件、污染物排放量等因素的影響,故他們得出的結(jié)論不盡相同.主要結(jié)果有,在中國(guó)研究發(fā)現(xiàn)P-O在夏季呈強(qiáng)正相關(guān),在冬季呈負(fù)相關(guān)[35,37-39].

在本研究中,我們選擇北京和南京作為主要研究城市,收集了2014—2019年P(guān)-O的小時(shí)濃度數(shù)據(jù),同時(shí)考慮了兩個(gè)時(shí)間尺度,即每日時(shí)間尺度和每小時(shí)時(shí)間尺度,試圖從較長(zhǎng)的研究年份、不同研究城市和兩種時(shí)間尺度下,全面探討P-O相關(guān)性的日變化、月均變化和年均變化,以確定P-O相關(guān)性在我國(guó)近些年來(lái)的變化,尋找P-O共同控制的可能,為以后空氣污染控制策略提供參考,以進(jìn)一步改善我國(guó)的空氣質(zhì)量.

1 數(shù)據(jù)收集和研究方法

1.1 研究城市和數(shù)據(jù)收集

華北地區(qū)和長(zhǎng)三角地區(qū)是我國(guó)人口最集中和經(jīng)濟(jì)最發(fā)達(dá)的兩個(gè)主要地區(qū),這兩個(gè)地區(qū)都有大量的城市群.在本研究中,為了對(duì)比兩個(gè)地區(qū)P-O相關(guān)性的不同和相似之處,在兩個(gè)區(qū)域各選擇一個(gè)代表性的研究城市,北京和南京分別是兩個(gè)地區(qū)的特大城市,之前也有許多研究選擇北京和南京作為兩個(gè)地區(qū)的代表城市[25,40-42],進(jìn)行空氣污染的研究.

我們分析了兩個(gè)研究城市P-O小時(shí)空氣質(zhì)量監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)來(lái)自于中國(guó)國(guó)家環(huán)境監(jiān)測(cè)中心(CNEMC)公布網(wǎng)站(http://113.108.142.147:20035/emcpublish/).P-O小時(shí)濃度數(shù)據(jù)的時(shí)間跨度為 2014年1月1日到2019年12月31日.P-O小時(shí)濃度數(shù)據(jù)集的測(cè)量方法在先前的一些研究和其中的參考文獻(xiàn)中有詳細(xì)的介紹[39,43-44],本文不再贅述.在本研究中,北京和南京國(guó)控觀測(cè)站點(diǎn)的小時(shí)平均濃度代表各自城市站點(diǎn)的每小時(shí)濃度.

1.2 相關(guān)性分析方法

P-O之間的相關(guān)關(guān)系,我們考慮了小時(shí)和每日兩種時(shí)間尺度.表1列出了用于計(jì)算P-O兩個(gè)時(shí)間尺度下相關(guān)系數(shù)的計(jì)算數(shù)據(jù)標(biāo)準(zhǔn).這里使用的小時(shí)時(shí)間尺度的指標(biāo)是同一時(shí)刻的每小時(shí)P-O濃度,而每日時(shí)間尺度的指標(biāo)是MDA8 O3和24小時(shí)日平均質(zhì)量濃度.選擇這些指標(biāo)是基于我國(guó)當(dāng)前的國(guó)家空氣質(zhì)量標(biāo)準(zhǔn).

本研究采用Pearson相關(guān)系數(shù)(Pearson Correlation Coefficient (COR),其量值記為PCOR)計(jì)算P-O之間的相關(guān)性值,量化P-O之間的相關(guān)性.Person相關(guān)系數(shù)適用于兩個(gè)變量的觀測(cè)值是成對(duì)出現(xiàn)的,每對(duì)觀測(cè)值之間相互獨(dú)立,該系數(shù)在研究不同污染物之間的關(guān)系中被廣泛使用[10,34,37],故也適用于P-O觀測(cè)濃度的計(jì)算.

計(jì)算公式如下:

PCOR=∑ni=1(Xi-)(Yi-)∑ni=1(Xi-)2∑ni=1(Yi-)2,(1)

式中變量X和變量Y分別代表PM2.5和O3質(zhì)量濃度,和分別為P-O質(zhì)量濃度的平均值,i代表時(shí)間指標(biāo),n代表樣本數(shù).相關(guān)系數(shù)絕對(duì)值小于0.3為弱相關(guān),大于0.5為強(qiáng)相關(guān).

所有的相關(guān)性分析均使用MATLAB(R2016b)軟件進(jìn)行.2014—2019年小時(shí)和每日時(shí)間尺度下,計(jì)算每小時(shí)、每月、四季和多年的P-O相關(guān)系數(shù).

2 結(jié)果與討論

2.1 濃度變化趨勢(shì)

表2和圖1顯示了2014—2019年北京和南京的PM2.5和MDA8 O3每年和每月的平均觀測(cè)濃度.如表2所示:從2014—2019年,兩個(gè)城市PM2.5年均質(zhì)量濃度分別下降49%和48%,平均的變化幅度分別為-6.86和-6.15 μg·m-3·a-1,與之前研究結(jié)果一致[45-48].從圖1a,1c可以看出秋冬季的月均質(zhì)量濃度下降尤為劇烈,例如北京的10月至次年2月,原因是國(guó)家在冬季采取的嚴(yán)格的管控措施[49].然而,北京和南京的MDA8 O3年均質(zhì)量濃度呈逐年緩慢上升趨勢(shì),研究期間,分別上升9%和10%,平均變化幅度分別為1.50和1.75 μg·m-3·a-1,與之前的研究結(jié)果相一致[50-51],尤其明顯的是在夏季的月份,如圖1b,1d所示:5—8月,北京和南京的月平均MDA8 O3質(zhì)量濃度超過(guò)空氣質(zhì)量標(biāo)準(zhǔn)規(guī)定的160 μg·m-3.

綜上所述,近6年來(lái)北京和南京由于實(shí)施了有效的污染控制措施使得PM2.5質(zhì)量濃度持續(xù)下降,但同時(shí)O3污染卻沒(méi)有得到控制,O3污染情況加劇,尤其是夏季O3污染.

圖2顯示了在小時(shí)和每日時(shí)間尺度上,隨著O3質(zhì)量濃度的上升PM2.5質(zhì)量濃度對(duì)應(yīng)的變化情況.在北京的兩個(gè)時(shí)間尺度,當(dāng)O3質(zhì)量濃度小于100 μg·m-3時(shí),O3平均質(zhì)量濃度的上升對(duì)應(yīng)著PM2.5平均質(zhì)量濃度下降,兩者相關(guān)性為負(fù),原因是PM2.5的氣溶膠輻射效應(yīng)和表面非均相化學(xué)反應(yīng)減弱,使大氣光化學(xué)反應(yīng)增強(qiáng)和自由基含量增加,導(dǎo)致O3升高[8,21-22].當(dāng)O3質(zhì)量濃度大于100 μg·m-3時(shí),O3平均質(zhì)量濃度上升的同時(shí)PM2.5平均質(zhì)量濃度也隨著上升,兩者相關(guān)性由負(fù)變?yōu)檎蚴谴髿庋趸芰υ鰪?qiáng)和加速二次轉(zhuǎn)化[23].在南京,當(dāng)O3質(zhì)量濃度在150 μg·m-3左右時(shí),也出現(xiàn)上述的現(xiàn)象.P-O之間確實(shí)存在著某種相關(guān)性,下一節(jié)中會(huì)進(jìn)一步討論在研究期間,P-O在每個(gè)月、四季和每小時(shí)相關(guān)性的變化情況.

2.2 P-O相關(guān)性

圖3描述的是在2014至2019年間,兩個(gè)時(shí)間尺度下,兩個(gè)研究城市不同月份的P-O相關(guān)系數(shù).在北京近6年相關(guān)性分析中,如圖3a所示,每日尺度下,不同月份的P-O COR有顯著的變化,在5—9月COR值大于0.5,是強(qiáng)的正相關(guān)關(guān)系;而在冬季11月至次年2月中COR值小于-0.5,這4個(gè)月平均COR值為-0.6,是顯著的負(fù)相關(guān)關(guān)系,其他月份的COR是在正負(fù)之間過(guò)渡.圖3c北京小時(shí)尺度下,在11月至次年2月的相關(guān)性類(lèi)似,唯一不同的是在5—9月COR值在0至0.3之間,為弱的正相關(guān).在圖3b南京的每日尺度中,6—9月COR值大于0.5,P-O兩者是強(qiáng)的正相關(guān),與北京結(jié)果相同,而其余月份的COR值在0至0.5之間,是弱的正相關(guān)關(guān)系.圖3d南京小時(shí)尺度中,5—9月情況與北京的相同,但其他月的COR值在-0.5至0之間,相關(guān)性是弱的負(fù)相關(guān).由此可見(jiàn),在小時(shí)和每日時(shí)間尺度上,兩個(gè)城市在5—9月P-O都為正相關(guān)關(guān)系,每日的正相關(guān)更為顯著,為強(qiáng)的正相關(guān);北京在11月至次年2月的負(fù)相關(guān)關(guān)系比南京的更為顯著,是強(qiáng)的負(fù)相關(guān),并且小時(shí)尺度比每日尺度的負(fù)相關(guān)更為顯著.北京的逐月相關(guān)性的變化幅度較大,南京相對(duì)平緩一些,這可能是城市所在緯度不同而導(dǎo)致的[36].

圖4顯示了兩個(gè)城市在兩個(gè)時(shí)間尺度上的P-O相關(guān)系數(shù)在不同季節(jié)的變化情況.結(jié)果表明,在兩種時(shí)間尺度上,P-O在夏季更趨于正相關(guān),而在冬季更趨于負(fù)相關(guān).與之前的研究結(jié)果相一致[35,37-39].在夏季,每日的正相關(guān)性更為顯著,為強(qiáng)的正相關(guān),小時(shí)時(shí)間尺度是弱的正相關(guān),南京的COR值多數(shù)年份大于北京的;在冬季,北京的負(fù)相關(guān)關(guān)系比南京的更為顯著,是強(qiáng)的負(fù)相關(guān),且小時(shí)比每日時(shí)間尺度計(jì)算出的負(fù)相關(guān)更為顯著.此外,北京P-O相關(guān)性的季節(jié)變化幅度比南京的大,與圖3的結(jié)果一致.P-O夏季趨于正相關(guān),可能是夏季PM2.5濃度較低,光照強(qiáng)烈,由于兩者有共同的前體物,并且P-O通過(guò)光化學(xué)反應(yīng)同時(shí)產(chǎn)生,故相關(guān)性為正.P-O冬季趨于強(qiáng)負(fù)相關(guān),可能是冬季PM2.5濃度較高,光照較弱和自由基相對(duì)少,影響O3的生成,故相關(guān)性為負(fù).

2.3 P-O相關(guān)性的日變化

由于不同時(shí)刻的氣象條件、污染物排放量等因素的不同,導(dǎo)致P-O都有明顯的日變化.研究發(fā)現(xiàn),2013—2016年北京和上海的爆發(fā)性增長(zhǎng)過(guò)程中,PM2.5小時(shí)濃度具有雙峰現(xiàn)象,在早晚出行高峰有高值,8—9時(shí)和18—19時(shí),低值在16時(shí)左右[28].本研究中發(fā)現(xiàn)北京和南京的季節(jié)性平均PM2.5小時(shí)濃度呈單峰分布,高峰在8—9時(shí),最低值在16時(shí)左右,而O3濃度的日變化趨勢(shì)卻相反,峰值在14—16時(shí),最低值在7—9時(shí).故長(zhǎng)時(shí)間跨度P-O小時(shí)濃度的峰值和低值是相對(duì)的.此外還發(fā)現(xiàn),在夏季南京大氣光氧化反應(yīng)劇烈的過(guò)程中,在8時(shí)O3質(zhì)量濃度基本在60 μg·m-3以下,而到12時(shí),可驟增長(zhǎng)到180 μg·m-3以上,增長(zhǎng)速率達(dá)30 μg·m-3·h-1.

圖5顯示2014—2019年間,四季和全年P(guān)-O COR值的日變化.如圖5所示,在北京和南京全年和四季中,P-O COR值的變化趨勢(shì)和臭氧日變化相似,0—8時(shí)都有下降趨勢(shì),在8時(shí)左右達(dá)到最低值,隨后COR值上升,在14—16時(shí)達(dá)到最大,隨后下降,這可能是大氣氧化性的變化而導(dǎo)致的.在夏季,只有在8時(shí)左右COR值為負(fù)或者接近于0,其他時(shí)刻COR值都大于0,在16時(shí)左右COR值大于0.4,為強(qiáng)的正相關(guān).而在冬季,北京的所有時(shí)刻的P-O COR值都為負(fù),0—24時(shí)P-O都為強(qiáng)的負(fù)相關(guān),而南京會(huì)在14—15時(shí)P-O COR值大于0,呈微弱的正相關(guān).夏季和冬季P-O COR值的不同變化,可能是由于氣象的差異造成的,例如氣象要素溫度、相對(duì)濕度和風(fēng)速的不同,需要以后進(jìn)一步的分析證明.兩城市在春秋季都有部分時(shí)刻(13—17時(shí))COR值大于0,其余時(shí)刻COR值小于0,在8時(shí)左右為強(qiáng)烈負(fù)相關(guān).

Chu等[34]指出由于不利氣象條件或污染物區(qū)域輸送的影響,各種大氣污染物濃度同步增長(zhǎng),導(dǎo)致PM2.5和氣態(tài)污染物(NOx和SO2)普遍存在強(qiáng)正相關(guān).而本研究發(fā)現(xiàn),P-O相關(guān)性不同,隨著季節(jié)和時(shí)刻而變化,夏季8時(shí)左右時(shí)為負(fù)相關(guān),其他都為正相關(guān);春秋季,只在13—16時(shí)相關(guān)性為正,而冬季P-O為強(qiáng)的負(fù)相關(guān).

在未來(lái)的研究中,將會(huì)考慮氣象條件和前體物排放量對(duì)P-O相關(guān)性的影響,進(jìn)一步明確不同季節(jié)里P-O相關(guān)性的主要影響因素,從而為兩者的協(xié)同控制提供科學(xué)依據(jù).

3 結(jié)論

利用2014年1月至2019年12月北京和南京的PM2.5和O3的小時(shí)質(zhì)量濃度,分析P-O質(zhì)量濃度的變化情況,同時(shí)用Pearson相關(guān)系數(shù)研究P-O相關(guān)性的變化.

探討北京和南京在兩種時(shí)間尺度下,P-O相關(guān)性的日變化、月均變化和年均變化.主要結(jié)論有:

1)2014—2019年,北京和南京的PM2.5年均質(zhì)量濃度總體下降,分別下降49%和48%,平均下降幅度分別為-6.86和-6.15 μg·m-3·a-1;而MDA8 O3年均質(zhì)量濃度緩慢上升,分別上升9%和10%,平均增長(zhǎng)幅度分別為1.50和1.75 μg·m-3·a-1.尤其是在夏季,O3污染愈加嚴(yán)重.

2)研究期內(nèi),北京在兩個(gè)時(shí)間尺度分析上,O3質(zhì)量濃度小于100 μg·m-3時(shí),O3質(zhì)量濃度的上升對(duì)應(yīng)著PM2.5質(zhì)量濃度下降,P-O為負(fù)相關(guān),當(dāng)O3質(zhì)量濃度大于100 μg·m-3時(shí),O3質(zhì)量濃度上升,PM2.5質(zhì)量濃度也有所上升,P-O為正相關(guān).南京也有上述現(xiàn)象,但O3質(zhì)量濃度值是150 μg·m-3.

3)在兩個(gè)時(shí)間尺度上,北京和南京在5—9月P-O都為正相關(guān),每日時(shí)間尺度的正相關(guān)更為顯著;北京在11—次年2月為強(qiáng)的負(fù)相關(guān),小時(shí)時(shí)間尺度的負(fù)相關(guān)更為顯著.北京較南京,6年中12個(gè)月的相關(guān)性變化幅度較大.

4)在兩個(gè)時(shí)間尺度上,北京和南京的P-O在夏季為強(qiáng)的正相關(guān),COR值>0.5;而在冬季更趨于負(fù)相關(guān),北京是強(qiáng)的負(fù)相關(guān),COR值<-0.5,南京是弱的負(fù)相關(guān);夏季,每日時(shí)間尺度的正相關(guān)性更為顯著,冬季小時(shí)時(shí)間尺度的負(fù)相關(guān)更為顯著.

5)在小時(shí)時(shí)間尺度上,北京和南京的P-O COR值的變化趨勢(shì)與O3濃度日變化相似,8時(shí)左右達(dá)到最低值,14—16時(shí)達(dá)到最高.夏季在16時(shí)左右COR值>0.4,為強(qiáng)的正相關(guān);冬季在8時(shí)左右COR值<-0.5,為強(qiáng)的負(fù)相關(guān);春秋季都在13—17時(shí)COR值>0,為弱的正相關(guān),8時(shí)左右為強(qiáng)烈負(fù)相關(guān).

參考文獻(xiàn)

References

[1]Wang H,Li J W,Gao M,et al.Spatiotemporal variability in long-term population exposure to PM2.5 and lung cancer mortality attributable to PM2.5 across the Yangtze River Delta (YRD) region over 2010-2016:a multistage approach[J].Chemosphere,2020,257:127153

[2] Wang N,Mengersen K,Tong S L,et al.County-level variation in the long-term association between PM2.5 and lung cancer mortality in China[J].Science of the Total Environment,2020,738:140195

[3] Xie Y,Dai H C,Zhang Y X,et al.Comparison of health and economic impacts of PM2.5 and ozone pollution in China[J].Environment International,2019,130:104881

[4] Feng Z Z,de Marco A,Anav A,et al.Economic losses due to ozone impacts on human health,forest productivity and crop yield across China[J].Environment International,2019,131:104966

[5] Lu X,Zhang L,Wang X L,et al.Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J].Environmental Science & Technology Letters,2020,7(4):240-247

[6] Feng Z Z,Hu T J,Tai A P K,et al.Yield and economic losses in maize caused by ambient ozone in the North China Plain (2014-2017)[J].Science of the Total Environment,2020,722:137958

[7] 李紅,彭良,畢方,等.我國(guó)PM2.5與臭氧污染協(xié)同控制策略研究[J].環(huán)境科學(xué)研究,2019,32(10):1763-1778

LI Hong,PENG Liang,BI Fang,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778

[8] Li K,Jacob D J,Liao H,et al.A two-pollutant strategy for improving ozone and particulate air quality in China[J].Nature Geoscience,2019,12(11):906-910

[9] Xiang S L,Liu J F,Tao W,et al.Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas[J].Atmospheric Environment,2020,224:117259

[10] Zhu J,Chen L,Liao H,et al.Correlations between PM2.5 and ozone over China and associated underlying reasons[J].Atmosphere,2019,10(7):352

[11] 杜禎宇,殷惠民,張烴.細(xì)顆粒物與臭氧協(xié)同控制的方法和必要性[J].世界環(huán)境,2018(1):19-20

DU Zhenyu,YIN Huimin,ZHANG Ting.The methods and necessity of coordinated control of fine particulate matter and ozone [J].World Environment,2018(1):19-20

[12] 張華,陳琪,謝冰,等.中國(guó)的PM2.5和對(duì)流層臭氧及污染物排放控制對(duì)策的綜合分析[J].氣候變化研究進(jìn)展,2014,10(4):289-296

ZHANG Hua,CHEN Qi,XIE Bing,et al.PM2.5 and tropospheric ozone in China and pollutant emission controlling integrated analyses[J].Progressus Inquisitiones DE Mutatione Climatis,2014,10(4):289-296

[13] 王躍思,李文杰,高文康,等.2013—2017年中國(guó)重點(diǎn)區(qū)域顆粒物質(zhì)量濃度和化學(xué)成分變化趨勢(shì)[J].中國(guó)科學(xué):地球科學(xué),2020,50(4):453-468

WANG Yuesi,LI Wenjie,GAO Wenkang,et al.Trends in particulate matter and its chemical compositions in China from 2013-2017[J].Science China Earth Sciences,2020,50(4):453-468

[14] Zheng B,Tong D,Li M,et al.Trends in Chinas anthropogenic emissions since 2010 as the consequence of clean air actions[J].Atmospheric Chemistry and Physics,2018,18(19):14095-14111

[15] Wang Y H,Gao W K,Wang S,et al.Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017[J].National Science Review,2020,7(8):1331-1339

[16] Feng Y Y,Ning M,Lei Y,et al.Defending blue sky in China:effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017[J].Journal of Environmental Management,2019,252:109603

[17] Cheng J,Su J P,Cui T,et al.Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013-2017:a model-based decomposition analysis[J].Atmospheric Chemistry and Physics,2019,19(9):6125-6146

[18] Fan Y F,Ding X T,Hang J,et al.Characteristics of urban air pollution in different regions of China between 2015 and 2019[J].Building and Environment,2020,180:107048

[19] Li K,Jacob D J,Liao H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(2):422-427

[20] Fan H,Zhao C F,Yang Y K.A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014-2018[J].Atmospheric Environment,2020,220:117066

[21] Xing J,Wang J D,Mathur R,et al.Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates[J].Atmospheric Chemistry and Physics,2017,17(16):9869-9883

[22] Li J,Wang Z,Wang X,et al.Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over central eastern China[J].Atmospheric Environment,2011,45(10):1817-1829

[23] Lu K D,Guo S,Tan Z F,et al.Exploring atmospheric free-radical chemistry in China:the self-cleansing capacity and the formation of secondary air pollution[J].National Science Review,2019,6(3):579-594

[24] Huang R J,Zhang Y L,Bozzetti C,et al.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-222

[25] Sun P,Nie W,Wang T Y,et al.Impact of air transport and secondary formation on haze pollution in the Yangtze River Delta:in situ online observations in Shanghai and Nanjing[J].Atmospheric Environment,2020,225:117350

[26] Fu X,Wang T,Gao J,et al.Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in northern China[J].Environmental Science & Technology,2020,54(7):3881-3889

[27] Xu Q C,Wang S X,Jiang J K,et al.Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing,China[J].Science of the Total Environment,2019,689:1293-1303

[28] Sun J J,Liang M J,Shi Z H,et al.Investigating the PM2.5 mass concentration growth processes during 2013-2016 in Beijing and Shanghai[J].Chemosphere,2019,221:452-463

[29] Atkinson R.Atmospheric chemistry of VOCs and NOx[J].Atmospheric Environment,2000,34(12/13/14):2063-2101

[30] Wang N,Lyu X P,Deng X J,et al.Aggravating O3 pollution due to NOx emission control in eastern China[J].Science of the Total Environment,2019,677:732-744

[31] 漏嗣佳,朱彬,廖宏.中國(guó)地區(qū)臭氧前體物對(duì)地面臭氧的影響[J].大氣科學(xué)學(xué)報(bào),2010,33(4):451-459

LOU Sijia,ZHU Bin,LIAO Hong.Impacts of O3 precursor on surface O3 concentration over China[J].Transactions of Atmospheric Sciences,2010,33(4):451-459

[32] Guo S,Hu M,Zamora M L,et al.Elucidating severe urban haze formation in China[J].Proceedings of the National Academy of Sciences,2014,111(49):17373-17378

[33] 邵平,辛金元,安俊琳,等.長(zhǎng)三角工業(yè)區(qū)夏季近地層臭氧和顆粒物污染相互關(guān)系研究[J].大氣科學(xué),2017,41(3):618-628

SHAO Ping,XIN Jinyuan,AN Junlin,et al.An analysis on the relationship between ground-level ozone and particulate matter in an industrial area in the Yangtze River Delta during summer time[J].Chinese Journal of Atmospheric Sciences,2017,41(3):618-628

[34] Chu B W,Ma Q X,Liu J,et al.Air pollutant correlations in China:secondary air pollutant responses to NOx and SO2 control[J].Environmental Science & Technology Letters,2020.DOI:10.1021/acs.estlett.0c00403

[35] Jia M W,Zhao T L,Cheng X H,et al.Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of East China[J].Atmosphere,2017,8(12):59

[36] Chen J J,Shen H F,Li T W,et al.Temporal and spatial features of the correlation between PM2.5 and O3 concentrations in China[J].International Journal of Environmental Research and Public Health,2019,16(23):4824

[37] Zhao H,Zheng Y F,Li C.Spatiotemporal distribution of PM2.5 and O3 and their interaction during the summer and winter seasons in Beijing,China[J].Sustainability,2018,10(12):4519

[38] Chen K,Zhou L,Chen X D,et al.Acute effect of ozone exposure on daily mortality in seven cities of Jiangsu province,China:no clear evidence for threshold[J].Environmental Research,2017,155:235-241

[39] Wang Y G,Ying Q,Hu J L,et al.Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014[J].Environment International,2014,73:413-422

[40] Shu L,Wang T J,Xie M,et al.Episode study of fine particle and ozone during the CAPUM-YRD over Yangtze River Delta of China:characteristics and source attribution[J].Atmospheric Environment,2019,203:87-101

[41] Yang Y R,Liu X G,Qu Y,et al.Characteristics and formation mechanism of continuous hazes in China:a case study during the autumn of 2014 in the North China Plain[J].Atmospheric Chemistry and Physics,2015,15(14):8165-8178

[42] Li J Y,Liu Z R,Cao L M,et al.Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain[J].Science of the Total Environment,2020,705:135803

[43] Hu J L,Wang Y G,Ying Q,et al.Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta,China[J].Atmospheric Environment,2014,95:598-609

[44] Hu J L,Ying Q,Wang Y G,et al.Characterizing multi-pollutant air pollution in China:comparison of three air quality indices[J].Environment International,2015,84:17-25

[45] Zhai S X,Jacob D J,Wang X,et al.Fine particulate matter (PM2.5) trends in China,2013-2018:separating contributions from anthropogenic emissions and meteorology[J].Atmospheric Chemistry and Physics,2019,19(16):11031-11041

[46] Xiao Q Y,Geng G N,Liang F C,et al.Changes in spatial patterns of PM2.5 pollution in China 2000-2018:impact of clean air policies[J].Environment International,2020,141:105776

[47] Xue T,Zheng Y X,Tong D,et al.Spatiotemporal continuous estimates of PM2.5 concentrations in China,2000-2016:a machine learning method with inputs from satellites,chemical transport model,and ground observations[J].Environment International,2019,123:345-357

[48] Zhang Y M,Vu T V,Sun J Y,et al.Significant changes in chemistry of fine particles in wintertime Beijing from 2007 to 2017:impact of clean air actions[J].Environmental Science & Technology,2020,54(3):1344-1352

[49] Qiu J.Fight against smog ramps up:Chinese government to provide incentives for heavy polluters to go green,but analysts question whether its wider air-quality strategy goes far enough[J].Nature,2014,506(7488):273-275

[50] Liu R Y,Ma Z W,Liu Y,et al.Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017:a machine learning approach[J].Environment International,2020,142:105823

[51] Chen L,Guo B,Huang J S,et al.Assessing air-quality in Beijing-Tianjin-Hebei region:the method and mixed tales of PM2.5 and O3[J].Atmospheric Environment,2018,193:290-301

Correlation between surface PM2.5 and ozone during

2014-2019 in Beijing and Nanjing

SUN Jinjin1 HUANG Lin1 GONG Kangjia1 WANG Xueying1

LI Jingyi1 QIN Momei1 YU Xingna2 HU Jianlin1

1 Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control/Collaborative Innovation Center of

Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing 210044

2 Key Laboratory of Meteorological Disaster,Ministry of Education/Joint International Research Laboratory of Climate and

Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/

Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,

Nanjing University of Information Science and Technology,Nanjing 210044

Abstract It is particularly important to clarify the correlation between fine particulate matter (PM2.5) and O3 (P-O) in account of the seemingly increasing surface ozone and decreasing PM2.5 trends in China since 2014.Therefore,observations of hourly PM2.5 and O3 data for Beijing and Nanjing during 2014 to 2019 were summarized to reveal their P-O correlations.The observations showed a decreasing trend of annual average PM2.5 mass concentration,which was -6.86 and -6.15 μg·m-3·a-1 for Beijing and Nanjing,respectively.While the annual maximum daily 8-hour average O3 (MDA8 O3) increased by 1.50 and 1.75 μg·m-3·a-1 for Beijing and Nanjing,respectively.O3 pollution became more serious in summer for both cities.For Beijing,when O3 mass concentration was below/above 100 μg·m-3,the increase of O3 concentration would correspond to the decrease/increase of PM2.5 concentration,indicating a negative/positive P-O correlation.The same varying P-O correlation existed for Nanjing,except for the different critical value of O3 mass concentration of 150 μg·m-3.Significantly positive P-O correlation,indicated by Pearson correlation coefficient (COR) being larger than 0.5 on daily time scale,was found in both Beijing and Nanjing during May to September.While significantly negative P-O correlation,indicated by COR value being smaller than -0.5 on hourly time scale,was found for both Beijing and Nanjing during November to February.Compared with Nanjing,monthly and seasonal P-O correlation varied more greatly for Beijing.As for the diurnal variation,there was a significantly positive P-O correlation at 16:00 in summer and a weakly positive correlation during 13:00-17:00 in spring and autumn,and a significantly negative correlation at 08:00 in spring,autumn and winter.

Key words PM2.5;O3;correlation analysis;Beijing;Nanjing

收稿日期

2020-10-09

資助項(xiàng)目 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFC0213800);國(guó)家自然科學(xué)基金(41675125,42007187)作者簡(jiǎn)介

孫金金,男,碩士生,研究方向?yàn)榇髿馕廴究刂坪涂諝赓|(zhì)量數(shù)值模擬.jinjinsun@nuist.edu.cn

黃琳(通信作者),女,博士,教授,研究方向?yàn)榭諝馕廴練庀髮W(xué)、大氣污染控制和健康效應(yīng)等.huang-nuist@163.com

猜你喜歡
時(shí)間尺度負(fù)相關(guān)臭氧
時(shí)間尺度上非完整系統(tǒng)的Noether準(zhǔn)對(duì)稱(chēng)性與守恒量
N-末端腦鈉肽前體與糖尿病及糖尿病相關(guān)并發(fā)癥呈負(fù)相關(guān)
文印室內(nèi)臭氧散發(fā)實(shí)測(cè)分析及模擬
時(shí)間尺度上Lagrange 系統(tǒng)的Hojman 守恒量1)
交直流混合微電網(wǎng)多時(shí)間尺度協(xié)同控制
能源工程(2021年1期)2021-04-13 02:06:12
看不見(jiàn)的污染源——臭氧
更 正
利用臭氧水防治韭菜遲眼蕈蚊
大連市暴雨多時(shí)間尺度研究分析
翻譯心理與文本質(zhì)量的相關(guān)性探析
考試周刊(2016年63期)2016-08-15 14:33:26
通榆县| 肥城市| 探索| 姜堰市| 德惠市| 深州市| 六盘水市| 开封县| 阿鲁科尔沁旗| 南昌市| 甘谷县| 宝丰县| 陇西县| 英超| 泰安市| 改则县| 乌什县| 泰顺县| 都匀市| 丰宁| 华池县| 潼南县| 盐源县| 兴业县| 沂水县| 宣城市| 抚顺县| 白水县| 巢湖市| 报价| 项城市| 承德市| 施秉县| 尚义县| 谷城县| 上杭县| 达州市| 湘西| 白城市| 晋江市| 封丘县|