杜永峰,李 虎,韓 博,李芳玉
(1. 蘭州理工大學(xué)防震減災(zāi)研究所,甘肅,蘭州 730050;2. 蘭州理工大學(xué)甘肅省減震隔震國際合作研究基地,甘肅,蘭州 730050)
近年來,具有施工周期短、能源消耗少、環(huán)境污染小、勞動(dòng)力成本低等優(yōu)點(diǎn)的預(yù)制裝配式建筑在我國得到廣泛應(yīng)用和推廣。裝配式混凝土(PC)框架結(jié)構(gòu)是目前應(yīng)用最為廣泛的裝配式結(jié)構(gòu)體系之一,該類結(jié)構(gòu)體系通常是指梁、柱、樓板等構(gòu)件部分或全部采用預(yù)制,在施工現(xiàn)場進(jìn)行節(jié)點(diǎn)連接,從而構(gòu)成整體的結(jié)構(gòu)體系[1]。歷次地震災(zāi)害表明:PC 結(jié)構(gòu)在地震中的破壞主要表現(xiàn)為各預(yù)制構(gòu)件間的連接破壞,進(jìn)而導(dǎo)致整體結(jié)構(gòu)的離散、倒塌,而預(yù)制構(gòu)件本身較少發(fā)生損壞[2]。所以,節(jié)點(diǎn)連接性能是影響PC 結(jié)構(gòu)整體性和抗震性能的關(guān)鍵,是PC 結(jié)構(gòu)體系抗震設(shè)計(jì)的核心。
在PC 框架結(jié)構(gòu)中,框架柱是關(guān)鍵承重構(gòu)件,它的強(qiáng)度、剛度及延性等直接影響著整個(gè)結(jié)構(gòu)的抗震性能,故應(yīng)對其抗震性能進(jìn)行深入研究。國內(nèi)外學(xué)者已經(jīng)開展了相關(guān)方面的研究,劉陽等[3]對改進(jìn)的裝配柱節(jié)點(diǎn)進(jìn)行了低周反復(fù)加載試驗(yàn),結(jié)果表明:改進(jìn)連接的裝配柱具有與整澆柱相當(dāng)?shù)目拐鹦阅?;陳俊等[4]、張微敬等[5]、Xu 等[6]采用波紋套管、擠壓套筒、集束鋼筋等灌漿連接方式實(shí)現(xiàn)了預(yù)制柱的連接,通過數(shù)值模擬或試驗(yàn)方法對其連接性能進(jìn)行了檢驗(yàn),并與傳統(tǒng)整澆柱的抗震性能做了對比分析;Tullini 等[7]和張興虎等[8]對采用灌漿套筒連接的裝配柱進(jìn)行了系統(tǒng)的試驗(yàn)研究;汪梅等[9]采用預(yù)埋鋼板將預(yù)制柱構(gòu)件進(jìn)行連接,并通過試驗(yàn)對其可靠性做了檢驗(yàn);Yang 等[10]提出了兩種新型預(yù)制鋼筋混凝土柱,并通過擬靜力試驗(yàn)對其抗震性能做了考察;趙東拂等[11]提出了一種具有新型裝配式梁柱節(jié)點(diǎn)的格構(gòu)柱,通過數(shù)值模擬方法分析了抗側(cè)力格構(gòu)柱的抗震性能;Nzabonimpa 等[12]采用連接端板將預(yù)制柱進(jìn)行拼接,并通過模型試驗(yàn)考察了PC 框架的抗震性能;Liu[13]對一種采用新型鋼筋骨架的裝配式節(jié)點(diǎn)進(jìn)行了數(shù)值分析和試驗(yàn)研究,研究發(fā)現(xiàn)該新型節(jié)點(diǎn)的抗震性能優(yōu)于傳統(tǒng)現(xiàn)澆節(jié)點(diǎn);鄧明科 等[14]在節(jié)點(diǎn)區(qū)域用高延性混凝土代替普通混凝土,有效提高了節(jié)點(diǎn)的變形和耗能能力;Rave-Arango等[15]在柱頂位置采用縱筋搭接灌漿連接方式進(jìn)行連接,并對其連接性能進(jìn)行試驗(yàn)檢驗(yàn),研究表明:該連接節(jié)點(diǎn)具有與傳統(tǒng)現(xiàn)澆節(jié)點(diǎn)相當(dāng)?shù)目拐鹦阅堋?/p>
為了提高PC 框架體系的施工效率和改善PC框架結(jié)構(gòu)的抗震性能,本文針對PC 框架柱提出了一種新的連接方式,詳細(xì)構(gòu)造如圖1 所示。預(yù)制上下柱通過一個(gè)格構(gòu)式的組合鋼節(jié)點(diǎn)進(jìn)行拼接,然后將拼接段進(jìn)行二次澆筑,故稱為鋼-混凝土組合節(jié)點(diǎn)連接PC 柱(簡稱:PC 柱)。其中,鋼節(jié)點(diǎn)由連接鋼板、加勁肋、栓釘?shù)群附訕?gòu)成;縱筋端頭設(shè)滾扎直螺紋,與連接鋼板通過高強(qiáng)螺栓連接固定;上柱縱筋與鋼節(jié)點(diǎn)固定連接并預(yù)先澆筑;預(yù)制下柱頂端設(shè) 鍵槽,槽內(nèi)預(yù)埋錨固鋼筋,并將連接端面處理粗糙。本文擬用一柱多層進(jìn)行框架設(shè)計(jì),以減少框架柱的節(jié)點(diǎn)連接數(shù)目,提高施工效率;并選擇避開柱塑性鉸區(qū)域,且便于施工的截面位置進(jìn)行連接,以提高其抗震能力。本文首先通過擬靜力試驗(yàn)對比分析了PC 柱與整澆柱的抗震性能差異,在此基礎(chǔ)上,采用ABAQUS 建立PC 柱的有限元分析模型,并以此預(yù)測結(jié)構(gòu)及節(jié)點(diǎn)參數(shù)改變后PC 柱的抗震性能。
圖1 PC 柱拼接構(gòu)造詳圖 Fig.1 Assembly details of PC column
試驗(yàn)設(shè)計(jì)了1 個(gè)整澆柱試件(RC)和2 個(gè)PC 柱試件(PC-1、PC-2),對比分析PC 柱與整澆柱的抗震性能差異,研究軸壓比對PC 柱抗震性能的影響。試件RC 與試件PC-2 的試驗(yàn)軸壓比均為0.3,試件 PC-1 的試驗(yàn)軸壓比為0.1,試件尺寸、構(gòu)造及配筋如圖2 所示。選用C40 混凝土,澆筑試件時(shí)制作標(biāo)準(zhǔn)立方體混凝土試塊,與試件同條件養(yǎng)護(hù)28 d 后 測其強(qiáng)度,實(shí)測整澆柱與PC 柱構(gòu)件混凝土立方體抗壓強(qiáng)度值為44.7 MPa,PC 柱拼接段后澆混凝土立方體抗壓強(qiáng)度值為46.2 MPa??v筋選用HRB400鋼筋,箍筋選用HPB300 鋼筋,鋼節(jié)點(diǎn)選用Q345B鋼材,選用與縱筋直徑相匹配的10.9 級加厚螺母,栓釘選用鉚螺鋼材質(zhì)的M16*120 圓柱頭焊釘。試件構(gòu)件截面尺寸及配筋如表1 所示,鋼材性能參數(shù)實(shí)測值如表2 所示。
圖2 試件尺寸及配筋詳圖 /mm Fig.2 Dimensions and reinforcement of specimens
表1 試件構(gòu)件參數(shù) Table 1 Parameters of specimens
表2 鋼材性能參數(shù) Table 2 Material properties of steel
試件采用懸臂式加載,底部為嵌固端。試驗(yàn)時(shí)豎向由千斤頂施加軸向力,并維持恒定,水平往復(fù)荷載由MTS 作動(dòng)器施加。水平加載通過位移角控 制,位移角依次為1/800、1/500、1/250、1/150、1/100時(shí),每級循環(huán)1 次,位移角依次為1/75、1/50、1/30、1/20 和1/15 時(shí)每級循環(huán)3 次,當(dāng)試件水平承載力下降至峰值承載力的85%以下或試件出現(xiàn)嚴(yán)重破壞不宜繼續(xù)加載時(shí)結(jié)束試驗(yàn)。試驗(yàn)加載裝置如圖3 所示。
圖3 加載裝置 Fig.3 Test setup
圖4 滯回曲線與骨架曲線對比 Fig.4 Comparison of hysteretic curves and skeleton curves
試驗(yàn)測得各試件的滯回曲線和骨架曲線如圖4所示。圖4 中,P為加載點(diǎn)處的水平荷載值,Δ為 加載點(diǎn)處的水平位移。由圖4(a)可知,相同軸壓比下,試件PC-2 與試件RC 的滯回曲線相似,均呈現(xiàn)飽滿的梭形,說明二者具有良好的耗能能力,而且耗能能力相當(dāng);與試件PC-1 相比,試件PC-2 的滯回曲線更加飽滿,說明PC 柱的耗能能力隨軸壓比的增大而增強(qiáng)。由圖4(b)可知,相同軸壓比下,試件PC-2 與試件RC 的骨架曲線基本一致,說明二者的水平承載力、水平剛度、延性等性能接近;與試件PC-2 相比,試件PC-1 骨架曲線的峰值點(diǎn)偏低,達(dá)到峰值荷載后骨架曲線下降更平緩,說明試件PC-1 的水平極限承載力降低,但變形能力提高。
總體上,本文提出的鋼-混凝土組合節(jié)點(diǎn)連接PC 柱具有與傳統(tǒng)整澆柱相當(dāng)?shù)目拐鹦阅埽趯?shí)際工程中可按整澆柱進(jìn)行設(shè)計(jì)。
采用有限元軟件ABAQUS 建立鋼-混凝土組合節(jié)點(diǎn)連接PC 柱的有限元模型?;炷梁弯摪寰捎萌S實(shí)體減縮積分單元,單元類型為C3D8R;鋼筋采用桁架單元,單元類型為T3D2。使用嵌入?yún)^(qū)域約束(Embedded region)功能將鋼筋骨架和鋼節(jié)點(diǎn)嵌入混凝土單元,不考慮鋼板與混凝土之間的粘結(jié)滑移。試驗(yàn)過程中連接螺栓沒有出現(xiàn)松動(dòng)、滑移、損壞等情況,說明縱筋與鋼節(jié)點(diǎn)之間采用螺栓連接是可靠的。在實(shí)際工程中,可通過增加螺母數(shù)量或?qū)⒙菽概c絲桿焊接等措施,完全可以實(shí)現(xiàn)縱筋與鋼節(jié)點(diǎn)的固結(jié)連接,可采用壓力注漿、重力補(bǔ)漿等施工技術(shù)將拼接段澆筑密實(shí)。為簡化計(jì)算,建模時(shí)縱筋端頭與連接板預(yù)留螺栓孔內(nèi)壁之間采用耦合(Coupling)約束固定。與整澆柱相比,PC 柱中連接鋼板與混凝土之間、新舊混凝土之間存在多個(gè)薄弱粘結(jié)面,需在有限元模型中體現(xiàn)。本文采用摩擦接觸來定義上述薄弱粘結(jié)面上的連接作用,分別考慮其切向和法向作用[16]。試驗(yàn)過程中上連接鋼板的上表面與混凝土接觸面上出現(xiàn)了微小水平裂縫,這是由于鋼板表面比較光滑,與混凝土之間的粘結(jié)作用較弱,受拉時(shí)容易脫離導(dǎo)致的,所以法向行為選擇“硬”接觸屬性。為提高拼接段的抗剪水平,本文通過增設(shè)抗剪栓釘、鍵槽、錨固鋼筋等構(gòu)造措施,特意加強(qiáng)了拼接區(qū)域的抗剪能力,所以切向行為采用“罰”函數(shù)定義摩擦屬性,摩擦系數(shù)取0.6[17]。PC 柱有限元模型如圖5 所示。
圖5 PC 柱有限元模型 Fig.5 Finite element model of PC column
往復(fù)荷載作用下,鋼筋材料需要考慮包辛格效應(yīng),實(shí)際中包辛格效應(yīng)的影響因素非常復(fù)雜[18]。為了便于分析計(jì)算,需對鋼筋本構(gòu)模型進(jìn)行了簡化描述,Clough[19]較早提出了帶有再加載剛度退化的雙折線滯回模型,如圖6(a)所示。清華大學(xué)曲哲[20]將Clough[19]提出的雙折線滯回模型進(jìn)行了修正,提出了改進(jìn)的Clough[19]鋼筋滯回本構(gòu)模型(圖6(b)),該模型能較好地考慮鋼筋加載-卸載-反向加載過程產(chǎn)生的包辛格效應(yīng),其可行性已經(jīng)得到了驗(yàn)證[21]。本文利用方自虎等[22]根據(jù)曲哲改進(jìn)的Clough[19]模型編寫完成的鋼筋材料子程序,直接在ABAQUS 中通過用戶子程序調(diào)用,來模擬滯回曲線的“捏攏” 現(xiàn)象,得到與試驗(yàn)結(jié)果更加吻合的數(shù)值模擬結(jié)果。鋼板采用雙折線形式的隨動(dòng)強(qiáng)化模型,泊松比取0.3,強(qiáng)化段模量取彈性模量的1%,鋼材彈性模量、屈服強(qiáng)度、極限強(qiáng)度取值見表2。
圖6 鋼筋滯回模型 Fig.6 Hysteretic model of steel
混凝土材料選用混凝土損傷塑性模型(CDP 模型),CDP 模型是ABAQUS 軟件隱式算法自帶的混凝土材料本構(gòu)模型,適用于單調(diào)加載和循環(huán)加載作用下混凝土結(jié)構(gòu)和構(gòu)件的非線性分析[23―24]?;炷敛牧蠎?yīng)力-應(yīng)變關(guān)系采用我國《混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范》(GB50010―2010)[25]附錄C 推薦的本構(gòu)關(guān)系。規(guī)范中的混凝土單軸受拉/壓損傷演化參數(shù)與CDP模型中塑性損傷因子的含義不同,不能直接用于CDP 模型,根據(jù)能量等價(jià)原理,可建立二者之間的轉(zhuǎn)化關(guān)系[26]。本文所用C40 混凝土的CDP 模型參數(shù)如圖7 所示。CDP 模型的其他參數(shù)還包括:膨脹角、偏心率、抗壓強(qiáng)度比值σb0/σc0、雙軸極限抗壓強(qiáng)度與單軸極限抗壓強(qiáng)度之比K、黏性系數(shù),參考其他學(xué)者建議和根據(jù)筆者試算,建議上述參數(shù)取值如表3 所示。單元網(wǎng)格尺寸直接影響模型的計(jì)算效率和收斂性,經(jīng)過多次試算和對比,混凝土的單元尺寸取為60 mm,鋼筋桁架單元尺寸取為30 mm,鋼節(jié)點(diǎn)的單元尺寸取為20 mm。
表3 CDP 模型參數(shù)取值 Table 3 Parameters of CDP model
試驗(yàn)實(shí)測滯回曲線與有限元計(jì)算滯回曲線如圖8 所示。由圖8 可知,數(shù)值計(jì)算所得滯回曲線與試驗(yàn)測得滯回曲線比較吻合,水平承載力接近,達(dá)到峰值荷載后承載力的下降趨勢幾乎一致,但有限元計(jì)算結(jié)果的初始水平剛度略大于試驗(yàn)結(jié)果。導(dǎo)致初始剛度差異的原因可能是試驗(yàn)中基礎(chǔ)梁沒有達(dá)到完全固結(jié),水平荷載作用下產(chǎn)生了微小滑動(dòng),以及采用文獻(xiàn)[18]公式計(jì)算的混凝土彈性模量與試驗(yàn)中實(shí)際混凝土彈性模量有差異等因素,使得數(shù)值模擬結(jié)果略大于試驗(yàn)結(jié)果??傮w來說,采用上述方法建立的三維實(shí)體模型能夠較好地反映鋼-混凝土組合節(jié)點(diǎn)連接PC 柱在水平往復(fù)荷載作用下的剛度退化、殘余位移、損傷累積、承載力下降和捏縮現(xiàn)象等滯回特性。
圖7 C40 混凝土CDP 模型參數(shù) Fig.7 CDP Model parameters of C40
圖8 計(jì)算滯回曲線與試驗(yàn)滯回曲線對比 Fig.8 Comparison of calculated hysteretic curves and tested hysteretic curves
采用上述有限元模型,擴(kuò)充結(jié)構(gòu)參數(shù)范圍,進(jìn)一步研究軸壓比、配箍率、縱筋率、剪跨比對鋼-混凝土組合節(jié)點(diǎn)連接PC 柱抗震性能的影響[27]。數(shù)值模型參數(shù)匯總?cè)绫? 所示,所選參數(shù)基本涵蓋土木工程中常用的參數(shù)范圍,模型尺寸及材料強(qiáng)度見第1 章、第2 章。表4 中,P0 為基準(zhǔn)模型;n為軸壓比;ρv為PC 柱的體積配箍率;ρl為PC 柱的縱筋配筋率;λ為PC 柱加載時(shí)的剪跨比。
表4 有限元模型結(jié)構(gòu)參數(shù) Table 4 Structural parameters of finite element models
不同結(jié)構(gòu)參數(shù)下PC 柱的滯回曲線計(jì)算結(jié)果如圖9 所示。由圖9 可知,水平位移較小時(shí),構(gòu)件基本處于彈性階段,滯回曲線幾乎呈直線,殘余位移較??;隨著水平位移的增加,滯回曲線逐漸偏離直線,滯回環(huán)的面積逐漸增大,殘余位移也逐漸變大;達(dá)到峰值荷載后,隨著水平位移的持續(xù)增大,水平承載力逐漸降低,殘余位移逐漸增大。改變軸壓比、配箍率、縱筋率和剪跨比的大小對PC 柱滯回曲線的影響都比較顯著。
將滯回曲線中各滯回環(huán)的峰值點(diǎn)相連即得到構(gòu)件的骨架曲線,如圖10 所示。改變不同結(jié)構(gòu)參數(shù)對PC 柱骨架曲線的影響如下:1) 如圖10(a)所示,軸壓比增加,PC 柱的水平剛度增加,水平極限承載力提高,骨架曲線下降段更加傾斜,變形能力降低。說明軸壓比對PC 柱的剛度、水平承載力和變形能力均有影響。2) 如圖10(b)所示,提高配箍率對PC 柱的水平剛度影響不大,配箍率增大,水平承載力增加,骨架曲線下降越平緩,表現(xiàn)出較好的變形能力,這是由于配箍率的增加加強(qiáng)了柱芯混凝土的完整性,延緩了核心區(qū)縱筋的拉伸和壓屈破壞,從而提高了構(gòu)件的承載力和延性。3) 由圖10(c)可知,隨著縱筋直徑的增加,PC 柱的水平剛度增大,水平承載力顯著提高。4) 由10(d)可以看出,剪跨比對PC 柱的剛度、水平承載力和變形性能等影響十分顯著,剪跨比降低時(shí),PC 柱的水平剛度增大,水平承載力提高,骨架曲線下降段更傾斜,變形能力變差。
以正向加載為例,不同結(jié)構(gòu)參數(shù)下骨架曲線的特征參數(shù)匯總?cè)绫? 所示。由表5 可知,改變結(jié)構(gòu)參數(shù)會使PC 柱的承載能力、延性等發(fā)生相應(yīng)變化:1) 隨著軸壓比從0.1 增加到0.5,PC 柱的水平極限承載力增加10.92 kN,極限位移減小12.26 mm,位移延性相應(yīng)降低;2) 隨著體積配箍率從0.71%增加到1.96%,PC 柱的水平承載力增加18.17 kN,極限位移增加19.96 mm,位移延性相應(yīng)提高;3) 當(dāng)縱筋率從1.28%增加到3.14%時(shí),PC 柱的水平承載力增加45.01 kN,極限位移增加10.38 mm,延性系數(shù)相應(yīng)增大,說明增加縱筋率可顯著提高PC 柱的承載能力和變形能力;4) 當(dāng)剪跨比由4.8 減小到3.0時(shí),PC 柱的水平承載力增加24.01 kN,極限位移 減小14.30 mm,位移延性明顯增大,說明剪跨比對PC 柱的水平承載力和延性會產(chǎn)生顯著影響。
圖9 不同結(jié)構(gòu)參數(shù)下PC 柱滯回曲線數(shù)值模擬結(jié)果對比 Fig.9 Comparison of numerical simulation results of hysteretic curves of PC columns with different structural parameters
圖10 不同結(jié)構(gòu)參數(shù)下PC 柱骨架曲線數(shù)值模擬結(jié)果對比 Fig.10 Comparison of numerical simulation results of skeleton curves of PC columns with different structural parameters
表5 骨架曲線特征參數(shù)匯總 Table 5 Summary of characteristic parameters of skeleton curves
本文采用滯回總耗能來評價(jià)PC 柱的耗能能力。由表5 可知:隨著軸壓比、配箍率、縱筋率和剪跨比的增加,PC 柱的耗能能力增加;鋼節(jié)點(diǎn)的材料強(qiáng)度等級對PC 柱的耗能能力影響不大。
剛度退化是結(jié)構(gòu)在往復(fù)荷載作用下剛度降低的現(xiàn)象,反映了結(jié)構(gòu)在地震作用下的損傷累積情況。不同結(jié)構(gòu)參數(shù)下,PC 柱剛度退化曲線如圖11所示:1) 由圖11(a)可知,提高軸壓比,會提高PC柱的水平剛度;2) 由圖11(b)可知,配箍率增大,PC 柱的水平剛度隨之增大,剛度退化曲線相對平緩,表明增加配箍率可提高PC 柱的水平剛度,降低剛度退化速率;3) 由圖11(c)可知,縱筋率增大,PC 柱的水平剛度明顯增大,剛度退化曲線更加平緩,表明增加縱筋直徑可顯著提高PC 柱的水平剛度,降低剛度退化速率;4) 由圖11(d)可知,改變剪跨比會明顯改變PC 柱的水平剛度和剛度退化速率,隨著剪跨比的增加,PC 柱的水平剛度和剛度退化速率降低。
圖11 不同結(jié)構(gòu)參數(shù)下PC 柱剛度退化曲線 數(shù)值模擬結(jié)果對比 Fig.11 Comparison of numerical simulation results of stiffness degradation curves of PC columns with different structural parameters
節(jié)點(diǎn)連接的可靠性是影響PC 柱抗震能力的關(guān)鍵。采用上述有限元模型,進(jìn)一步分析拼接段鋼節(jié) 點(diǎn)的材料強(qiáng)度等級、后澆混凝土強(qiáng)度等級、鋼筒及加勁肋板厚度等節(jié)點(diǎn)參數(shù)對鋼-混凝土組合節(jié)點(diǎn)連接PC 柱滯回性能、極限承載能力的影響,對連接節(jié)點(diǎn)的參數(shù)選取進(jìn)行優(yōu)化分析。
鋼節(jié)點(diǎn)分別選用Q235B、Q345B 和Q420B 鋼材時(shí)PC 柱的滯回曲線和極限承載力對比結(jié)果如圖12 所示。由圖12 可知:提高鋼節(jié)點(diǎn)的鋼材強(qiáng)度等級對PC 柱滯回性能的影響較??;隨著鋼材強(qiáng)度等級的提高,PC 柱的極限承載能力提高;鋼材強(qiáng)度等級越高,極限承載能力增長幅值越小。
圖12 不同鋼材強(qiáng)度下PC 柱抗震性能對比 Fig.12 Comparison of seismic behavior of PC columns with different strength classes of structural steel
拼接段分別澆筑C30、C40、C50 和C60 混凝土?xí)r,PC 柱的滯回性能和極限承載力對比結(jié)果如圖13 所示。由圖13 可知:提高拼接段混凝土的強(qiáng)度等級對PC 柱滯回性能的影響較小;隨著后澆混凝土強(qiáng)度等級的提高,PC 柱的極限承載能力相應(yīng)提高,但增長幅度較?。缓鬂不炷翉?qiáng)度等級越高,極限承載力增長幅度越小。
圖13 不同后澆混凝土強(qiáng)度等級下PC 柱抗震性能對比 Fig.13 Comparison of seismic behavior of PC columns with different strength grades of post-cast concrete
在該節(jié)點(diǎn)設(shè)計(jì)中,鋼筒與加勁肋選用鋼板的厚度相同,記為δ。δ分別取2 mm、4 mm、6 mm、8 mm、10 mm 時(shí),PC 柱的滯回性能和極限承載力對比結(jié)果如圖14 所示。由圖14 可知:提高鋼筒與加勁肋的厚度對PC 柱的滯回性能和極限承載能力影響不顯著;δ=4 mm 時(shí),PC 柱的極限承載能力略高。
鋼筒與加勁肋板厚度不同時(shí),鋼筒開孔面積大小對PC 柱滯回性能的影響也不同,但影響規(guī)律相似。以δ為4 mm 為例,分析不同開孔面積對PC柱滯回性能和極限承載力的影響規(guī)律,計(jì)算結(jié)果如圖15 所示。由圖15 可知:鋼筒開孔面積對PC 柱滯回性能的影響也不顯著;孔徑D=50 mm 時(shí),PC柱的極限承載能力較高。
綜上可知,鋼節(jié)點(diǎn)及后澆混凝土的強(qiáng)度等參數(shù)對鋼-混凝土組合節(jié)點(diǎn)連接PC 柱抗震性能的影響較小。這是因?yàn)楸疚脑谄唇佣我肓艘粋€(gè)鋼節(jié)點(diǎn),抗拉強(qiáng)度提高,澆筑混凝土后,拼接段相當(dāng)于一截型鋼混凝土柱,其強(qiáng)度、剛度、抗壓及抗剪能力較預(yù) 制柱構(gòu)件顯著提高,本文又將連接段設(shè)在柱底塑性鉸區(qū)域之外,故改變拼接段的節(jié)點(diǎn)參數(shù)對PC 柱抗震性能的影響不顯著。
圖14 不同鋼筒及加勁板厚度下PC 柱抗震性能對比 Fig.14 Comparison of seismic behavior of PC columns with different thicknesses of steel cylinder and stiffener plate
圖15 不同鋼筒開孔直徑下PC 柱抗震性能對比 Fig.15 Comparison of seismic behavior of PC columns with different apertures on steel cylinder
通過對鋼-混凝土組合節(jié)點(diǎn)連接PC 柱進(jìn)行擬靜力試驗(yàn)研究和數(shù)值模擬分析,得到以下結(jié)論:
(1) 采用新型連接方式的PC 柱試件具有與整澆柱試件相當(dāng)?shù)臏匦阅?;本文建立的有限元模型能夠較好地反映PC 柱在水平往復(fù)荷載作用下的剛度退化、損傷累積、位移延性和承載力下降等特性。
(2) 軸壓比和剪跨比是影響PC 柱抗震性能的重要參數(shù)。軸壓比增加,PC 柱的水平剛度增加,水平承載力提高,耗能增加,延性降低,變形能力變差;隨著剪跨比的增大,PC 柱的水平承載力和抗側(cè)剛度明顯降低,延性增加,剛度退化速率減小,耗能能力提高。
(3) 提高配箍率和縱筋率均可改善PC 柱的抗震性能。配箍率增大,PC 柱的位移延性增加,耗能能力提高,在設(shè)計(jì)PC 柱時(shí)保證一定配箍率,將使其擁有較好的抗震性能;隨著縱筋直徑的增大,PC 柱的水平承載力顯著提高,剛度退化速率減小,位移延性增加,耗能能力提高。
(4) 澆筑混凝土后,拼接段形成型鋼混凝土構(gòu)件,抗震性能優(yōu)于上下部預(yù)制柱構(gòu)件,故改變節(jié)點(diǎn)參數(shù)對PC 柱抗震性能的影響較小。