侯 雷,謝欣利,姚 沖,吳發(fā)啟
·農(nóng)業(yè)水土工程·
不同規(guī)格魚鱗坑坡面侵蝕過程及特征研究
侯 雷1,謝欣利1,姚 沖1,吳發(fā)啟2※
(1. 西北農(nóng)林科技大學水土保持研究所,楊凌 712100;2. 西北農(nóng)林科技大學資源環(huán)境學院,楊凌 712100)
探究不同雨強下魚鱗坑措施的坡面侵蝕規(guī)律及特征,對進一步明晰該措施的徑流泥沙調(diào)控機制具有重要意義。該研究采用小區(qū)模擬降雨試驗,研究3種雨強(40,70和100 mm/h)條件下2種規(guī)格魚鱗坑坡面的蓄水保土效益及侵蝕過程,并探討魚鱗坑坡面水沙特征及其與細溝形態(tài)之間的關系。結果表明,魚鱗坑的徑流泥沙調(diào)控作用明顯但也存在閾值,在措施被沖垮前,各處理減流效益和減沙效益分別為66.02%~82.20%和85.77%~91.91%;平均徑流強度和輸沙速率分別為平整坡面的18.87%~33.21%和10.04%~15.38%;當魚鱗坑被沖垮后,坡面產(chǎn)流量和產(chǎn)沙量分別為平整坡面的1.00~1.22倍和1.39~3.53倍,其平均徑流強度和輸沙速率分別為魚鱗坑沖垮前的4.60~7.46倍和13.70~16.75倍。魚鱗坑坡面徑流含沙率在措施沖垮前后的差異較大,水沙關系線性擬合的斜率在措施被沖垮前為0.020和0.035,而沖垮后斜率為0.205和0.231,同時坡面總產(chǎn)沙量和峰值產(chǎn)流產(chǎn)沙量與細溝形態(tài)顯著相關。因此,魚鱗坑措施對坡面產(chǎn)流產(chǎn)沙特征及形態(tài)的影響在其調(diào)控閾值前后有較大差異。研究可為魚鱗坑坡面水土流失的研究可為區(qū)域水土保持措施配置及管理提供相應的依據(jù)。
侵蝕;徑流;泥沙;魚鱗坑;水沙關系;調(diào)控作用;細溝
魚鱗坑是黃土高原地區(qū)坡面水土流失治理的典型工程措施,是破碎地形條件下重要的造林整地方式[1-4]。魚鱗坑措施通過改變地表微地形使坡面形成洼地,降雨初期洼地以蓄水為主,同時增加降雨入滲率[5-9],而在產(chǎn)流過程中洼地起到了攔截徑流和沉積泥沙的作用[10-13]。坡面魚鱗坑大小和空間分布差異,會影響坡面洼地蓄滿時間及匯流路徑,當魚鱗坑被蓄滿后,徑流沖刷作用加大,會對魚鱗坑的形態(tài)造成破壞[14]。唐小娟[15]研究表明,當魚鱗坑能正常發(fā)揮攔蓄作用時的蓄水保土效益顯著,然而一旦被沖垮失去攔沙功能,反而對坡面造成更為嚴重的破壞。吳淑芳等[16]的研究表明,在坡度為20°且上方匯水流量為3.0 m3/h時,魚鱗坑內(nèi)壁會被徑流沖擊和剝蝕,最終導致魚鱗坑毀壞失去攔蓄作用。Guo等[17]的試驗同樣表明在90 mm/h的間歇性降雨條件下,魚鱗坑措施會出現(xiàn)攔蓄作用失效的現(xiàn)象。由此表明,魚鱗坑徑流泥沙調(diào)控能力存在閾值,該閾值的大小與坡度、雨強等因素密切相關。黃土高原地區(qū)地形破碎、溝壑縱橫,且降雨主要集中在夏季,多為歷時短、強度大的暴雨[18-19],因此有必要對不同降雨強度條件下的魚鱗坑坡面徑流泥沙調(diào)控作用進行分析和研究。
目前多數(shù)研究只是對次降雨條件下魚鱗坑措施的侵蝕過程及特征進行探究,多集中于坡面侵蝕對坡度、雨強的響應研究,而對于不同規(guī)格及空間分布的魚鱗坑坡面侵蝕過程及特征的研究則鮮有報道,且缺乏以徑流調(diào)控閾值為界進行的分析和研究。因此,本文以魚鱗坑沖垮時間為閾值,定量分析該措施相對平整坡面的蓄水保土效益,探究2種規(guī)格魚鱗坑坡面的產(chǎn)流產(chǎn)沙過程及水沙關系,并進一步分析魚鱗坑坡面水土流失特征與細溝形態(tài)的關系,以期為該區(qū)水土流失治理及措施配置提供依據(jù)。
本試驗在西北農(nóng)林科技大學資源環(huán)境學院水土保持與荒漠化防治工程實驗室進行,試驗土壤為塿土,取自楊凌農(nóng)田表層耕作土(0~20 cm),土壤填至徑流小區(qū)后靜置沉降,使其接近自然狀態(tài)。試驗小區(qū)規(guī)格為長5.0 m,寬1.5 m。降雨設備為中科院水土保持研究所研制的側噴式降雨機降雨高度為7.5 m,降雨均勻度大于80%。
根據(jù)楊凌地區(qū)降雨強度特點[20],設計降雨強度范圍為20~120 mm/h,因此試驗雨強分別設定為40、70和100 mm/h。試驗對黃土高原地區(qū)的魚鱗坑措施進行模擬,坡度設置為25°,并在坡面挖長徑×短徑×深分別為0.6 m×0.4 m×0.1 m(大魚鱗坑)和0.4 m×0.3 m×0.1 m(小魚鱗坑)的2種不同規(guī)格魚鱗坑,鑒于試驗主要為探究不同規(guī)格及空間分布的魚鱗坑對坡面蓄水保土效益的影響,因此在布設魚鱗坑時控制坡面的初始填洼量(開挖方量)相同,即設置大魚鱗坑4個,小魚鱗坑8個,其排列方式如圖1。同時以平整坡面(無措施坡面)為對照,因此共設計9個試驗處理(3個降雨強度、3種坡面條件)。
圖1 坡面魚鱗坑布設方式
在降雨開始后記錄產(chǎn)流時間,從坡面產(chǎn)流開始,0~3 min每1 min接取徑流泥沙樣,之后每間隔2 min接取徑流泥沙樣并稱質(zhì)量,降雨持續(xù)時間為1 h,同時在降雨過程中觀察并記錄魚鱗坑最先被沖垮的時間。降雨結束后,利用精度為1 mm的直尺測量和記錄坡面細溝的溝寬和溝深,同時對所收集的徑流泥沙樣靜置處理并去除上層清液,采用105 ℃烘箱對徑流泥沙樣進行烘干處理,并對烘干后的泥沙進行稱質(zhì)量。
輸沙速率(T)為單位時間單位面積侵蝕的土壤輸送到坡面以外的質(zhì)量,計算公式如下:
T=/(·) (1)
式中T為輸沙速率,kg/(m2·h);為(h)時段內(nèi)的坡面侵蝕量,kg;為坡面面積,m2。
徑流強度(I)為單位時間單位面積表土的水流深,計算公式如下:
I=1 000/(2)
式中為徑流強度,mm/h;為徑流率,m3/h。
坡面魚鱗坑的存在增加了地表填洼量,增加徑流在坡面的停滯時間,提高入滲的可能性,進而影響坡面產(chǎn)匯流過程。圖2表示了不同降雨強度下魚鱗坑坡面和平整坡面初始產(chǎn)流時間的對比關系,可知魚鱗坑措施的存在延遲了徑流產(chǎn)生的時間,圖中1∶1線的距離反映了初始產(chǎn)流的延遲效果,因此魚鱗坑在該空間分布條件下,小魚鱗坑相較于大魚鱗坑具有更強的徑流延滯作用。由表1可知,小魚鱗坑相對于大魚鱗坑坡面,其初始產(chǎn)流時間分別增加了1.81、2.12和1.07 min。同時魚鱗坑的徑流延遲作用還與降雨強度相關,降雨強度越小,徑流延遲作用越顯著。大魚鱗坑和小魚鱗坑坡面與平整坡面相比,其初始產(chǎn)流時間分別增加27.79%~59.12%和72.42%~116.85%。在試驗的時間為60 min的條件下,40 mm/h的降雨強度未對魚鱗坑的形態(tài)造成破壞,當降雨強度為70和100 mm/h時,大魚鱗坑和小魚鱗坑形態(tài)均存在不同程度的毀壞,且小魚鱗坑被沖垮的時間更短,因此在坡度和雨強一定時,小魚鱗坑形態(tài)的穩(wěn)定性弱于大魚鱗坑。因此本研究以魚鱗坑措施被沖垮的時間點為界,將坡面水土流失過程劃分為2個子過程,分別探究魚鱗坑沖垮前后坡面的蓄水保土效益。
表1 魚鱗坑坡面與平整坡面的初始產(chǎn)流時間和沖垮時間
不同雨強條件下的魚鱗坑對坡面的減流減沙效益存在差異,本研究以相同時間段內(nèi)的平整坡面產(chǎn)流產(chǎn)沙量為對照,并以魚鱗坑措施最先出現(xiàn)沖垮現(xiàn)象的時間點為界,分析和對比魚鱗坑坡面的減流減沙效益(表2)。當降雨強度為40 mm/h時,與平整坡面相比,大魚鱗坑和小魚鱗坑坡面的總徑流量分別減少69.78%和76.04%,總侵蝕量分別減少85.77%和88.65%。當降雨強度為70 mm/h時,2種規(guī)格的魚鱗坑均出現(xiàn)不同程度的毀壞,在魚鱗坑措施未被沖垮前,大魚鱗坑坡面的總徑流量和總侵蝕量相對平整坡面分別減少67.88%和86.61%,小魚鱗坑坡面的總徑流量和侵蝕量相對平整坡面分別減少82.20%和91.91%;而沖垮后大魚鱗坑的總徑流量和總侵蝕量分別為平整坡面的1.21倍和3.53倍,小魚鱗坑的總徑流量和總侵蝕量分別為平整坡面的1.00倍和1.89倍。當降雨強度增加為100 mm/h時,大魚鱗坑和小魚鱗坑坡面同樣出現(xiàn)被沖垮的現(xiàn)象,魚鱗坑在被沖垮前,大魚鱗坑和小魚鱗坑坡面的總徑流量相對平整坡面分別減少66.02%和76.06%,總侵蝕量分別減少86.49%和89.08%;當魚鱗坑被沖垮后,大魚鱗坑和小魚鱗坑坡面的總徑流量分別為平整坡面的1.22倍和1.09倍,總侵蝕量分別為平整坡面的1.91倍和1.39倍。
表2 不同降雨條件下魚鱗坑坡面和平整坡面的徑流量和泥沙量
2.2.1 徑流強度
魚鱗坑措施坡面和平整坡坡面的徑流強度隨著坡度和降雨強度增加而逐漸增大,平整坡面的徑流強度呈現(xiàn)先增大后穩(wěn)定的趨勢,而魚鱗坑坡面的徑流強度因措施被沖垮前后而存在較大差異(圖3)。
圖3 不同降雨強度下魚鱗坑坡面和平整坡面的徑流強度變化過程
當降雨強度為40 mm/h時,大魚鱗坑和小魚鱗坑坡面的平均徑流強度分別為7.92和6.77 mm/h,相對應的平整坡面的徑流強度為23.85 mm/h。當降雨強度為70 mm/h時,大魚鱗坑坡面的徑流強度在被措施沖垮后出現(xiàn)陡增現(xiàn)象,其徑流強度峰值達到97.62 mm/h,隨后上下波動并逐漸降低,該雨強下平整坡面的平均徑流強度為51.50 mm/h,小魚鱗坑在被沖垮后,其徑流強度峰值達到87.82 mm/h。當降雨強度增加到100 mm/h時,大魚鱗和小魚鱗坑在被沖垮前平均徑流強度分別為20.87和15.70 mm/h,而坡面措施被沖垮后其平均徑流強度則分別為100.37和94.34 mm/h;相對應的平整坡面的平均徑流強度為78.61 mm/h。在魚鱗坑措施完整的條件下,有措施坡面的平均徑流強度為平整坡面的18.87%~33.21%;當魚鱗坑措施被沖垮,徑流強度均值分別為魚鱗坑沖垮前的4.60~7.46倍。
2.2.2 輸沙速率
魚鱗坑措施坡面和平整坡面的侵蝕輸沙速率差異明顯(圖4),在不同坡度及降雨強條件下,平整坡面的輸沙速率呈現(xiàn)先增大后減小,并逐漸達到穩(wěn)定的趨勢。當降雨強度為40 mm/h時,大魚鱗坑和小魚鱗坑坡面的輸沙速率分別在0.13和0.10 kg/(m2·h)上下范圍內(nèi)波動且變化穩(wěn)定,相對應的平整坡面的平均輸沙速率為0.78 kg/(m2·h)。當降雨強度為70 mm/h時,大魚鱗坑和小魚鱗坑在未被沖垮前的坡面平均輸沙速率分別為0.42和0.33 kg/(m2·h),而在措施被沖垮后,大魚鱗坑和小魚鱗坑坡面的輸沙速率陡增且其峰值分別達到18.75和12.73 kg/(m2·h),而平整坡面在整個降雨過程中的平均輸沙速率為3.04 kg/(m2·h)。當降雨強度增加到100 mm/h時,大魚鱗坑和小魚鱗坑坡面未被沖垮前的輸沙速率的范圍分別介于0.24~0.79和0.14~0.60 kg/(m2·h)之間,而當坡面措施被沖垮后,輸沙速率的峰值則分別達到22.34和16.77 kg/(m2·h),峰值之后存在上下波動和減小的趨勢,隨后逐漸趨于穩(wěn)定,平整坡面的平均輸沙速率為5.20 kg/(m2·h)。魚鱗坑措施在完整條件下坡面的平均輸沙速率為平整坡面的10.04%~15.38%;魚鱗坑措施被沖垮條件下輸沙速率均值分別為魚鱗坑沖垮前的13.70~16.75倍。
圖4 不同降雨強度下魚鱗坑坡面和平整坡面的輸沙速率變化過程
2.2.3 水沙關系
坡面徑流和泥沙之間存在一定的關系[21-23],因此對不同雨強條件下的魚鱗坑坡面徑流強度和和輸沙速率之間的關系進行分析。以100 mm/h降雨強度下的坡面為例,平整坡面擬合斜率為0.038(2=0.454),由圖5可知,在魚鱗坑措施被沖垮前,擬合方程的斜率小于平整坡面的斜率,而魚鱗坑措施一旦被沖垮,其斜率顯著增大。說明坡面魚鱗坑措施具有較好地蓄水攔沙功能,能顯著降低坡面徑流含沙量;但措施若被沖垮,則會失去攔沙功能,甚至產(chǎn)生負的減沙效益。
注:*表示顯著性水平在0.05,**表示顯著性水平在 0.01。下同。降雨強度為100 mm·h-1。
細溝形態(tài)與坡面徑流泥沙之間具有相互反饋的作用,徑流侵蝕力和土壤抗侵蝕力是影響細溝的最直接因素[24-27],魚鱗坑可以有效抑制坡面細溝的產(chǎn)生,然而魚鱗坑形態(tài)一旦遭到破壞,則會加劇細溝的形成并造成更為嚴重的水土流失。由于40 mm/h的降雨強度下坡面魚鱗坑形態(tài)完整且并未產(chǎn)生明顯的細溝,因此分別對70和100 mm/h雨強條件下魚鱗坑坡面的細溝特征進行分析(圖6),在相同降雨條件下,大魚鱗坑坡面的細溝寬度的平均值和最大值都大于小魚鱗坑坡面,主要是由于大魚鱗坑蓄積徑流和泥沙的能力較強,一旦被沖垮對魚鱗坑坑壁的毀壞更加明顯。
圖6 不同雨強下魚鱗坑坡面細溝形態(tài)特征
表3揭示了細溝形態(tài)特征與產(chǎn)流產(chǎn)沙量之間的相關關系,可以看出細溝的寬度與總產(chǎn)沙量和峰值產(chǎn)流產(chǎn)沙量呈現(xiàn)出顯著的相關性(<0.05),其中細溝的寬度與峰值產(chǎn)沙量呈極顯著相關(<0.01);細溝深度與總產(chǎn)沙量和峰值產(chǎn)流量呈極顯著相關(<0.01),因此表明細溝的形態(tài)與坡面侵蝕的關系密切,也與措施是否被沖垮具有一定關系。一方面,魚鱗坑被沖垮促進了細溝的形成和發(fā)育,并且增加細溝的寬度和深度;另一方面,細溝的出現(xiàn)為坡面徑流和泥沙提供了輸送通道,從而顯著提高了坡面土壤流失量。
表3 細溝形態(tài)參數(shù)與產(chǎn)流產(chǎn)沙量的相關性分析
魚鱗坑措施防治坡面水土流失主要是由于該措施的存在增加了地表填洼量,能夠延緩坡面徑流、增加入滲,起到了提高坡面徑流攔蓄和減弱泥沙剝離和搬運的作用[17]。同時坡面魚鱗坑能夠切斷匯流路徑并減弱徑流速率,削減徑流從上坡到下坡的能量,從而抑制坡面細溝的形成,有效調(diào)控坡面徑流和泥沙。由試驗結果可知,魚鱗坑規(guī)格和空間分布都會對魚鱗坑的蓄水保土效果產(chǎn)生不同的影響,其影響不僅表現(xiàn)在減流減沙效益,而且也會影響魚鱗坑措施被蓄滿及沖垮所需的時間。在初始填洼量(開挖方量)一致且魚鱗坑形態(tài)都未被破壞時,小魚鱗坑坡面的減流減沙效益強于大魚鱗坑,分析認為主要與魚鱗坑空間分布有關,相同面積的坡面條件下小魚鱗坑會將坡面劃分為更多的單元,縮短了上下2個坑間的徑流長度,削弱了徑流能量,從而增強了坡面的蓄滲能力。而當魚鱗坑的形態(tài)一旦被破壞,坑內(nèi)的水沙將快速泄出,增加產(chǎn)流產(chǎn)沙量的同時較大程度地促進細溝的產(chǎn)生和發(fā)育[28],并且隨著降雨過程的持續(xù)進行,會加劇細溝溝頭溯源侵蝕、溝壁擴張以及溝底的不斷下切,所以在次降雨過程中魚鱗坑措施若出現(xiàn)被沖垮的現(xiàn)象,對魚鱗坑徑流泥沙調(diào)控作用的研究則應建立在其功能是否得到有效發(fā)揮(措施是否會被沖垮)的基礎上。
因此探究坡面徑流泥沙調(diào)控臨界點對農(nóng)業(yè)耕作措施及工程措施配置下坡面侵蝕過程及蓄水保土效益的研究具有重要作用。試驗中可知,當坡面魚鱗坑被蓄滿后就會發(fā)生漫流現(xiàn)象,措施會在較短時間內(nèi)被沖垮,主要是由于坑內(nèi)溢流的水對坑邊緣侵蝕力大于坑邊緣臨界剪切力[29-30],因此明確魚鱗坑出現(xiàn)溢流現(xiàn)象的時間節(jié)點,對魚鱗坑規(guī)格的選擇與措施配置具有一定的借鑒意義。假定單個魚鱗坑正上方匯水面積內(nèi)的徑流在均勻降雨條件下(除入滲以外)全部流入坑內(nèi),則魚鱗坑出現(xiàn)溢流的時間節(jié)點可由式(3)表示為
式中為蓄滿時間,min;為魚鱗坑體積,m3;1為魚鱗坑底面積,2為魚鱗坑正上方匯水面積,m2;為降雨強度,mm/min,為入滲速率,mm/min。
此外,由于魚鱗坑對坡面入滲、產(chǎn)匯流特征及減沙機制的影響較為復雜,因此以魚鱗坑調(diào)控閾值為界的泥沙調(diào)控機理有待進一步的研究。
1)魚鱗坑坡面在較大雨強且持續(xù)時間較長的條件下其蓄水保土能力存在一定閾值,即措施被沖垮前后的產(chǎn)流產(chǎn)沙量存在明顯的正負效益,該閾值大小與魚鱗坑蓄積泥沙的能力密切相關。
2)魚鱗坑措施能夠有效延滯徑流,增加坡面初始產(chǎn)流時間,且在魚鱗坑功能正常發(fā)揮的條件下,其減流效益和減沙效益分別在66.02%~82.20%和85.77%~91.91%的范圍之內(nèi),但在較大雨強且歷時較長的條件下坡面魚鱗坑會出現(xiàn)被沖垮的現(xiàn)象,與平整坡面相比,反而會增加坡面水土流失量,其產(chǎn)流和產(chǎn)沙量分別為平整坡面的1.00~1.22倍和1.39~3.53倍。
3)在魚鱗坑措施完整的條件下,有措施坡面的平均徑流強度和輸沙速率均低于平整坡面,分別為平整坡面的18.87%~33.21%和10.04%~15.38%。但在較大雨強(70和100 mm/h)條件下時,徑流強度和輸沙速率均存在以魚鱗坑被沖垮為時間節(jié)點的突變現(xiàn)象,其均值分別為魚鱗坑沖垮前的4.60~7.46倍和13.70~16.75倍。根據(jù)對不同規(guī)格魚鱗坑坡面水沙關系的線性擬合可知,措施沖垮前斜率分別為0.020和0.035,沖垮后斜率為0.205和0.231,即魚鱗坑措施被沖垮前后徑流含沙率差異明顯。
4)細溝的寬度和深度與魚鱗坑坡面的總產(chǎn)沙量和峰值產(chǎn)流產(chǎn)沙量均具有顯著相關性。
[1] 李萍,朱清科,趙磊磊,等. 黃土丘陵溝壑區(qū)魚鱗坑雨季土壤水分狀況[J]. 農(nóng)業(yè)工程學報,2011,27(7):76-81.
Li Ping, Zhu Qingke, Zhao Leilei, et al. Soil moisture of fish-scale pit during rainy season in Loess hilly and gully region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 76-81. (in Chinese with English abstract)
[2] 王晶,朱清科,云雷,等. 黃土高原不同規(guī)格魚鱗坑土壤水分狀況研究[J]. 水土保持通報,2011,31(6):76-80.
Wang Jing, Zhu Qingke, Yun Lei, et al. Soil moisture of fish-scale pits of different specifications in Loss Plateau[J]. Bulletin of Soil and Water Conservation, 2011, 31(6): 76-80. (in Chinese with English abstract)
[3] 李萍,朱清科,王晶,等.半干旱黃土丘陵溝壑區(qū)不同規(guī)格魚鱗坑集水效果研究[J]. 灌溉排水學報,2011,30(5):91-94.
Li Ping, Zhu Qingke, Wang Jing, et al. Catchment effect of fish-scale pits with different specification in semi-arid hilly and gully Loss Plateau[J]. Journal of Irrigation and Drainage, 2011, 30(5): 91-94. (in Chinese with English abstract)
[4] 袁希平,雷廷武. 水土保持措施及其減水減沙效益分析[J]. 農(nóng)業(yè)工程學報,2004,20(2):296-300.
Yuan Xiping, Lei Tingwu. Soil and water conservation measures and their benefits in runoff and sediment reductions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(2): 296-300. (in Chinese with English abstract)
[5] Zhao Longshan, Huang Chihua, Wu Faqi. Effect of microrelief on water erosion and their changes during rainfall[J]. Earth Surface Processes and Landforms, 2016, 41(5): 579-586.
[6] Guzha A C. Effects of tillage on soil microrelief, surface depression storage and soil water storage[J]. Soil & Tillage Research, 2004, 76(2): 105-114.
[7] 趙龍山,侯瑞,吳發(fā)啟,等. 不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化[J]. 農(nóng)業(yè)工程學報,2017,33(12):249-254.
Zhao Longshan, Hou Rui, Wu Faqi, et al. Characteristics and change of surface depression storage on sloping land with different tillage practices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 249-254. (in Chinese with English abstract)
[8] 張樂濤,董俊武,袁琳,等. 黃土區(qū)工程堆積體陡坡坡面徑流調(diào)控工程措施的減沙效應[J]. 農(nóng)業(yè)工程學報,2019,35(15):101-109.
Zhang Letao, Dong Junwu, Yuan Lin, et al. Sediment-reducing benefits by runoff regulation under engineering measures in steep slope of abandoned soil deposits in Chinese loessial region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 101-109. (in Chinese with English abstract)
[9] Fu Suhua, Liu Baoyuan, Zhang Guanghui, et al. Fish-scale pits reduce runoff and sediment[J]. Transactions of the ASABE, 2010, 53: 157-162.
[10] 王林華,汪亞峰,王健,等. 地表粗糙度對黃土坡面產(chǎn)流機制的影響[J]. 農(nóng)業(yè)工程學報,2018,34(5):120-128.
Wang Linhua, Wang Yafeng, Wang Jian, et al. Effects of soil surface roughness on runoff generation mechanismon loess slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 120-128. (in Chinese with English abstract)
[11] 歌麗巴,王彬,張會蘭,等. 坡面水保措施下土壤水分特征及對坡體穩(wěn)定性的作用[J]. 土壤通報,2014,45(5):1225-1232.
Ge Liba, Wang Bin, Zhang Huilan, et al. Variations of soil moisture under soil and water conservation measures and the corresponding effects on slope stability[J]. Chinese Journal of Soil Science, 2014, 45(5): 1225-1232. (in Chinese with English abstract)
[12] 付湘,談廣鳴,胡鐵松. 土壤空間變異條件下田間降雨入滲率的發(fā)布特性[J]. 水利學報,2010,41(7):759-801.
Fu Xiang, Tan Guangming, Hu Tiesong. Characteristics of the infiltration rate distribution in spatial variable soil field[J]. Journal of Hydraulic Engineering, 2010, 41(7): 759-801. (in Chinese with English abstract)
[13] Chu Xuefeng, Yang Jun, Chi Yaping, et al. Dynamic puddle delineation and modeling of puddle-to-puddle filling-spilling- mergingsplitting overland flow processes[J]. Water Resources Research, 2013, 49(6): 3825-3829.
[14] 郭慧莉,孫立全,吳淑芳,等. 黃土高原地區(qū)魚鱗坑坡面侵蝕演化過程及水力學特征[J]. 土壤學報,2017,54(5):1125-1135.
Guo Huili, Sun Liquan, Wu Shufang, et al. Erosion evolution processes and hydraulic characteristics analysis of fish scale pit slope on Loess Plateau region[J]. Acta Pedologica Sinica, 2017, 54(5): 1125-1135. (in Chinese with English abstract)
[15] 唐小娟. 坡地分段雨水集蓄利用技術試驗研究[D].楊凌:西北農(nóng)林科技大學,2004.
Tang Xiaojuan. Experimental Study on Rainwater Catchment Utilization Technology in Slope Partition[D]. Yangling: Northwest A&F University, 2004. (in Chinese with English abstract)
[16] 吳淑芳,吳普特,宋維秀,等. 黃土坡面徑流剝離土壤的水動力過程研究[J]. 土壤學報,2010,47(2):223-228.
Wu Shufang, Wu Pute, Song Weixiu, et al. Hydrodynamic process of soil detachment by surface runoff on Loess slope[J]. Acta Pedologica Sinica, 2010, 47(2): 223-228. (in Chinese with English abstract)
[17] Guo Huili, Zhang Binbin, Hill Robert, et al. Fish scale pit effects on erosion and water runoff dynamics when positioned on a soil slope in the Loess Plateau region, China[J]. Land Degradation & Development, 2019, 30: 1813-1827.
[18] 王麒翔,范曉輝,王孟本. 近50年黃土高原地區(qū)降水時空變化特征[J]. 生態(tài)學報,2011,31(19):5512-5523.
Wang Qixiang, Fan Xiaohui, Wang Mengben. Precipitation trends during 1961—2010 in the Loess Plateau region of China[J]. Acta Ecologica Sinica, 2011, 31(19): 5512-5523. (in Chinese with English abstract)
[19] Shi Hui, Shao Ming'an. Soil and water loss from the Loess Plateau in China[J]. Journal of Arid Environments, 2000, 45(1): 9-20.
[20] 馬波,馬璠,李占斌,等. 模擬降雨條件下作物植株對降雨再分配過程的影響[J]. 農(nóng)業(yè)工程學報,2014,30(16):136-146.
Ma Bo, Ma Fan, Li Zhanbin, et al. Effect of crops on rainfall redistribution processes under simulated rainfall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 136-146. (in Chinese with English abstract)
[21] 王磊,師宏強,劉剛,等. 黑土區(qū)寬壟和窄壟耕作的順坡坡面土壤侵蝕對比[J]. 農(nóng)業(yè)工程學報,2019,35(19):176-182.
Wang Lei, Shi Hongqiang, Liu Gang, et al.Comparison of soil erosion between wide and narrow longitudinal ridge tillage in black soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 176-182. (in Chinese with English abstract)
[22] 張光輝. 對坡面徑流挾沙力研究的幾點認識[J]. 水科學進展,2018,29(2):151-158.
Zhang Guanghui. Several understandings for sediment transport capacity by overland flow[J]. Advances in water science, 2018, 29(2): 151-158. (in Chinese with English abstract)
[23] 吳淑芳,吳普特,宋維秀,等. 坡面調(diào)控措施下的水沙輸出過程及減流減沙效應研究[J]. 水力學報,2010,41(7):870-875.
Wu Shufang, Wu Pute, Song Weixiu, et al. Study on the outflow processes of slope regulated by works and its effects on overland flow and sediment reduction[J]. Journal of Hydraulic Engineering, 2010, 41(7): 870-875. (in Chinese with English abstract)
[24] 張攀,姚文藝,唐洪武,等.黃土坡面細溝形態(tài)變化及對侵蝕產(chǎn)沙過程的影響[J]. 農(nóng)業(yè)工程學報,2018,34(5):114-119.
Zhang Pan, Yao Wenyi, Tang Hongwu, et al. Rill morphology change and its effect on erosion and sediment yield on loess slope [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 114-119. (in Chinese with English abstract)
[25] 王瑩,吳漩,鄭子成,等. 玉米季橫壟坡面土壤剝蝕率與徑流含沙量關系[J]. 水土保持學報,2018,32(2):40-44.
Wang Ying, Wu Xuan, Zheng Zicheng, et al. Relationship between soil detachment rate and sediment concentration in run off on slope of contour tillage during maize growing stage[J]. Journal of soil and water conservation, 2018, 32(2): 40-44. (in Chinese with English abstract)
[26] 劉俊體,孫莉英,張學培,等. 黃土坡面細溝侵蝕發(fā)育階段的影響因素及其效應分析.水土保持學報,2013,27(4):53-57.
Liu Junti, Sun Liying, Zhang Xuepei, et al. Influencing factors and effect analysis of rill erosion in different evolution stages on loss slope[J]. Journal of soil and water conservation, 2013, 27(4): 53-57. (in Chinese with English abstract)
[27] 郭明明,王文龍,李建明,等. 野外模擬降雨條件下礦區(qū)土質(zhì)道路徑流產(chǎn)沙及細溝發(fā)育研究[J]. 農(nóng)業(yè)工程學報,2016,32(24):155-163.
Guo Mingming, Wang Wenlong, Li Jianming, et al. Runoff, sediment yield and rill development characteristic of unpaved road in mining area under field artificial simulated rainfall condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 155-163. (in Chinese with English abstract)
[28] 孫立全,吳淑芳,郭慧莉,等. 人工掏挖坡面侵蝕微地貌演化及其水力學特性分析[J]. 水科學進展,2017,28(5):720-728.
Sun Liquan, Wu Shufang, Guo Huili, et al. Microtopography evolution of artificial digging and analysis of hydraulic characteristics[J]. Advances in Water Science, 2017, 28(5): 720-728. (in Chinese with English abstract)
[29] 安娟,于妍,吳元芝. 降雨類型對褐土橫壟坡面土壤侵蝕過程的影響[J]. 農(nóng)業(yè)工程學報,2017,33(24):150-156.
An Juan, Yu Yan, Wu Yuanzhi. Effects of rainfall patterns on hillslope soil erosion process of cinnamon soil in contour ridge system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 150-156. (in Chinese with English abstract)
[30] Liu Q J, Zhang H Y, An J, et al. Soil erosion processes on row sideslopes within contour ridging systems[J]. Catena, 2014, 115: 11-18.
Erosion process and characteristics of different specifications of fish-scale pit slope
Hou Lei1, Xie Xinli1, Yao Chong1, Wu Faqi2※
(1.,,712100,;2.,,712100,)
This study explored the characteristics of fish-scale pit slope erosion under different rainfall intensities. Two specifications of fish-scale pits (0.6 m×0.4 m×0.1 m and 0.4 m×0.3 m×0.1 m) were adopted in the simulated rainfall experiment including three rainfall intensities (40, 70 and 100 mm/h). Runoff and sediment samples were collected to calculate the benefits of runoff and sediment reduction, and the widths and depths of rills were measured to describe the rill morphology. Runoff generation time and fish-scale pit damage time were also observed and recorded during the rainfall process. Moreover, runoff rate and sediment transport rate were calculated and the relationships between runoff and sediment yield and rill morphology were analyzed. The results showed that when the rainfall lasted for one hour, the morphology of fish-scale pits were intact under the 40 mm/h rainfall intensity, but the fish-scale pits were damaged under the 70 and 100 mm/h rainfall intensities. The fish-scale pit had an obvious effect on runoff and sediment yields and the threshold existed. Based on the fish-scale pit damage time, the fish-scale pit slope erosion was divided into two processes. The runoff generation time increased with decrease of the rainfall intensity. The two specifications of fish-scale pits delayed the runoff generation time, which was 27.79%-59.12% and 72.42%-116.85% higher than smooth slope. The small fish-scale pits were easier to be damaged than the big fish-scale pits under the same rainfall intensity. The benefits of runoff and sediment reduction were 66.02%-82.20% and 85.77%-91.91%, and the mean value of runoff rate and sediment transport rate were 18.87%-33.21% and 10.04%-15.38% of the smooth slope before the fish-scale pits damage. After fish-scale pits damage, slope measures would lose the regulatory function and would have the negative effects on soil and water reduction. The runoff rate and sediment transport rate were suddenly increased and the mean value of runoff rate and sediment transport rate were 4.60-7.46 and 13.70-16.75 times that before fish-scale pits damage. The mean runoff rate and sediment transport rate of the smooth slope were 51.50 mm/h and 3.04 kg/(m2·h) under the 70 mm/h rainfall intensity, and the mean runoff rate and sediment transport rate were 78.61 mm/h and 5.20 kg/(m2·h) under the 100 mm/h rainfall intensity. The flow-sediment relationship under 100 mm/h rainfall intensity showed that the sediment was greatly different before and after fish-scale pits damage. The sediment yield could be decreased by fish-scale pit measures application. The slopes of linear regression equations for fitting the relationship between runoff and sediment were 0.020-0.035 before fish-scale pit damage and they were increased to 0.205-0.231 after fish-scale pit damage. The slopes of linear regression equations for fitting the relationship between runoff and sediment on smooth slope was 0.038 under 100 mm/h rainfall intensity. The width of rill had significant correlation with peak sediment yield (<0.01) and the depth of rill had significant relationship with total sediment yield and peak runoff yield (<0.01). The overflow time of fish-scale pit was an important indicator of the regulation threshold of runoff and sediment, and slope erosion characteristic and rill morphology showed obvious difference before and after fish-scale pits damage. This study will provide valuable information for allocation and management of regional soil and water conservation measures.
erosion; runoff; sediments; fish-scale pit; flow-sediment relationship; regulation function; rills
侯雷,謝欣利,姚沖,等. 不同規(guī)格魚鱗坑坡面侵蝕過程及特征研究[J]. 農(nóng)業(yè)工程學報,2020,36(8):62-68.doi:10.11975/j.issn.1002-6819.2020.08.008 http://www.tcsae.org
Hou Lei, Xie Xinli, Yao Chong, et al. Erosion process and characteristics of different specifications of fish-scale pit slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 62-68. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.008 http://www.tcsae.org
2020-01-17
2020-04-01
國家自然科學基金“黃土坡耕地作物覆蓋與管理的防蝕作用研究”(41977065)
侯雷,博士生,主要從事土壤侵蝕過程研究。Email:houleizd@163.com
吳發(fā)啟,教授,博士生導師,主要從事土壤侵蝕與水土保持研究。Email:wufaqi@263.net
10.11975/j.issn.1002-6819.2020.08.008
S157.1
A
1002-6819(2020)-08-0062-07